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Abstract

The necessity and policy of eco-economy stimulate enterprises to attain sustainability by executing supply chain man-

agement. Generally, the evaluation process of sustainable recycling partner (SRP) selection is treated as a multi-criteria 

decision-making problem due to existence of numerous influencing aspects. To tackle the uncertain information during the 

process of SRP selection, the q-rung orthopair fuzzy sets have a good choice, which can refer to a broader range of uncertain 

decision-making information. Thus, this study presents a combined framework with the additive ratio assessment (ARAS) 

approach, notions of q-rung orthopair fuzzy set (q-ROFS) and information measures, and further implements to tackle the 

multi-criteria SRP selection problem with q-ROFSs setting. In this procedure, the criteria weights are evaluated with the 

integration of the subjective weights given by decision-experts and the objective weights obtain from the entropy and dis-

crimination measures-based approach. For this, new entropy and discrimination measures are introduced for q-ROFSs and 

discussed the effectiveness of proposed measures. To elucidate the applicability of the present methodology, a case study 

related to sustainable recycling partner assessment is presented under q-ROFSs context. Sensitivity analysis is conducted over 

diverse set of criteria weights to verify the robustness of introduced framework. The results of the sensitivity analysis signify 

that the recycling partner SRP1 constantly secures the best rank and despites how sub-criteria weights differ. A comparison 

with extant methods is made to validate of the results of proposed one. The findings of the work verify that the developed 

framework is more valuable and well consistent with formerly proposed decision-making models.

Keywords Sustainable recycling partner · q-rung orthopair fuzzy sets · Entropy · Discrimination measure · Multi-criteria 

decision-making
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q-ROF  q-rung orthopair fuzzy

q-ROF-ARAS  q-rung orthopair fuzzy additive ratio 

assessment

q-ROF-DM  q-rung orthopair decision matrix

q-ROFN  q-rung orthopair fuzzy number

q-ROFS  q-rung orthopair fuzzy set

q-ROF-TOPSIS  q-rung orthopair fuzzy technique for 

order of preference by similarity to ideal 

solution

SCM  Supply chain management

SI  Sensitivity investigation

SMEs  Small and medium-sized enterprises

SRP  Sustainable recycling partner

SSCM  Sustainable supply chain management

SWARA   Step-wise weight assessment ratio 

analysis

TOPSIS  Technique for order of preference by 

similarity to ideal solution

VIKOR  VlseKriterijumska optimizacija i Kom-

promisno resenje

WEEE  Waste electrical and electronic 

equipment

1 Introduction

In recent times, sustainable supply chain management 

(SSCM) has extensively been received an immense consid-

eration because of the increasing environmental issues, pub-

lic consciousness, strict government schemes and economic 

motivation. It is a broader term containing all the triple bot-

tom lines of sustainability including people (social), planet 

(environmental) and profits (economical), while green sup-

ply chain management (GSCM) only focuses on the planet 

aspects of sustainability (Tseng et al. 2015; Ghisellini et al. 

2018). Businesses that are involved in supply chain manage-

ment (SCM) under sustainability usually have to execute a 

goal by reducing negative impact on environment, minimiz-

ing costs, capitalize on both productivity level and social 

well-being (Hassini et al. 2012).

The extended responsible principle (ERP) standardizes 

that the industries are accountable for their consumption 

(Bellmann and Khare 2000). As for industrial candidates, 

they necessitate to emphasis on sustainability in the process 

of manufacturing with the aim that capitalize the eco-econ-

omy and diminishing manufacturing wastes. In the present 

growing eco-economy, the businesses tend to focus on the 

SSCM operations which include sustainable plan, produc-

tion, scrapping and consumption, respectively. Accordingly, 

numerous articles have been presented in the literature, for 

instance, product design assessment (Bellmann and Khare 

2000), material/technology/procedure practices (Wu et al. 

2016) and logistics services (Wang and Lv 2015) from sus-

tainable point of view.

Generally, the investigations executed into end-of-life 

(EOL) products can be classified as analyses related to 

policies and instructions, investigations on recycling-based 

equipment and surveys on assessed activities. A sustainable 

recycling partner (SRP) is proficient to help the companies 

for sponsoring the SSCM performances (Sabaghi et  al. 

2015). The concept of ‘‘3R (reduce, reuse, recycle)’’ encour-

ages the manufacturers to consider the accountability of the 

individual scrapped substances/objects. Several practices in 

vivid manufacturing organizations namely Apple, Foxconn 

and Ford, have been taken this principle into consideration 

(Ghisellini et al. 2018). Most of the previously recycling 

businesses have happened in multinational corporations due 

to its excellent position and intense benefits. Alternatively, 

for small and medium-sized enterprises (SMEs), it is of a 

great significance to implement the recycling trade in both 

applied and theoretical modes. Therefore, it is required to 

investigate a systematic framework for selecting a suitable 

recycling partner with the aim that can effectively deal with 

the scrapped goods of SMEs. In recent times, many research 

efforts have been made on sustainable performances of the 

forward SCM (Seuring and Muller 2008), but few studies 

have been conducted on after-sale business such as con-

sumption and scrapping activities. Therefore, the present 

study encourages for developing and utilizing an innova-

tive multi-criteria decision-making (MCDM) technique to 

improve the mentioned flaw. In general, the SRP assessment 

process involves several alternatives and criteria, so this 

process is usually treated as an MCDM problem. The main 

objective of the SRP assessment problem is to find the suit-

able recycling partner that satisfies a number of qualitative 

and quantitative criteria (Zhou et al. 2018; Li et al. 2020).

In the practice of assessing diverse recycling partners, 

there are several qualitative criteria, such as brand reputation 

and customer satisfaction. In reality, it is complicated for the 

decision experts (DEs) to give accurate numerical values to 

these criteria. In order to address such types of problems, 

Zadeh (1965) pioneered the fuzzy set (FS) theory, which is 

represented by a belongingness degree (BD). The notion of 

FS has received ample range of concerns and in-depth stud-

ies in different disciplines. As the generalization of FS, the 

concepts of intuitionistic fuzzy set (IFS) (Atanassov 1986) 

and Pythagorean fuzzy set (PFS) (Yager 2014) have been 

introduced in the literature. To overcome the drawbacks of 

IFS and PFS, Yager (2017) proposed the notion of q-rung 

orthopair fuzzy set (q-ROFS). The constraint condition of 

q-ROFS is that the addition of qth-power of belongingness 

degree and non-belongingness degree is restricted to unity. 

If q = 1, the q-ROFSs are transformed into the IFSs; if q = 2, 

the q-ROFSs are converted into the PFSs, which means 
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that the q-ROFSs are extended form of IFSs and PFSs. The 

q-ROFSs can be employed to address more complex fuzzy 

information as the value of the flexible parameter q can be 

dynamically regulated to decide the information representa-

tion space. Consequently, in comparison with IFS and PFS, 

q-ROFS is more general and flexible. Thus, the present study 

aims to propose a q-rung orthopair fuzzy (q-ROF) informa-

tion-based approach for better dealing with the uncertain 

and inexact data.

1.1  Contributions and organization of the study

Consequently, the key contributions of the study are dis-

cussed as

Novel entropy and discrimination measures are discussed 

under q-ROFS context.

An innovative procedure is introduced to determine the 

decision experts’ weights.

A novel weighting procedure by integrating objective and 

subjective weighting approaches is presented to compute 

the criteria weights.

Classical ARAS technique is extended within the con-

text of q-ROFSs for dealing with the complex MCDM 

problems with unidentified decision experts and criteria 

weights.

A case study of SRP assessment problem is considered 

to display the usefulness and flexibility within q-ROFSs 

context. Sensitivity investigation and comparative study 

are discussed to certify the obtained outcomes.

The remaining sections are systematized as follows: 

Sect. 2 shows comprehensive review related to the present 

work. Section 3 discusses some fundamental notions of 

q-ROFSs. Section 4 develops new entropy and discrimina-

tion measures for q-ROFSs. In addition, comparative studies 

are presented to validate the effectiveness of the developed 

measures. Section 5 introduces a novel q-ROF-ARAS frame-

work using entropy and discrimination measures. Section 6 

confers a case study of SRP assessment problem with q-ROF 

information. Further, sensitivity investigation and compari-

son are also deliberated. Finally, Sect. 7 illustrates the con-

clusions and suggestions for further research.

2  Literature review

2.1  q‑rung orthopair fuzzy set (q‑ROFS)

Uncertainty is a very significant aspect in the process of 

MCDM. Handling uncertainty requires a flexible and 

powerful tool because of the vagueness and imprecision 

involved in human subjective judgments, and the objective 

complexity of practical decision-making situations. To han-

dle such types of problems, Zadeh (1965) originated the 

notion of FS theory, which has become an effective tool for 

deciphering MCDM issues with imprecise or vague infor-

mation. Further, Atanassov (1986) suggested the theory of 

IFS, which is an extension of Zadeh’s FSs. Compared to 

FS, IFS is made up of belongingness degree (BD) and non-

belongingness degree (NBD), in which their addition is ≤ 1. 

Therefore, it can more elegantly describe the fuzzy evalua-

tion values. However, the IFSs cannot handle the situation 

in which the addition of the BD and NBD is higher than 

one. To address this limitation, Yager (2014) extended the 

concept of IFS to PFS. It is also represented by the degree 

of both belongingness and non-belongingness wherein their 

squares sum of BD and NBD is ≤ 1. It is worth mentioning 

that the main difference between PFS and IFS is their dif-

ferent constraint conditions. Hence, it is clear that the range 

of the Pythagorean fuzzy value is larger than the range of an 

intuitionistic fuzzy value. Consequently, the PFSs allow bet-

ter freedom to the DEs for expressing their views regarding 

the ambiguity of the problem. Due to its uniqueness, PFSs 

have been implemented in several disciplines (Abdullah and 

Goh, 2019; Deb and Roy 2021).

Owing to the complexity of MCDM problems and the 

conflicting psychology of DEs, it is still not easy for PFSs 

to model the corresponding uncertain information. For 

instance, consider that a DE express his/her opinion in (0.9, 

0.6), neither the IFS nor PFS can model this case because 

0.9 + 0.6 > 1 and 0.92 + 0.62 > 1. In view of this, Yager 

(2017) originated the theory of q-ROFS, wherein the addi-

tion of the qth powers of the BD and NBD is restricted to 

unity. Evidently, the q-ROFSs are generalization of the PFSs 

and IFSs. This flexibility of q-ROFSs gives an ample sov-

ereignty for the depiction of uncertain information. As a 

result, the q-ROFSs have more flexibility and stronger capa-

bility than the IFS and PFS in order to deal with uncertain 

information. Due to such advantages, the q-ROFSs have 

gotten extensive researches and applications. For example, 

Liu and Wang (2018) studied various aggregation opera-

tors (AOs) on q-ROFSs. Liu and Liu (2018) defined some 

q-ROF Bonferroni mean operators. Inspired by the classical 

Heronian mean operator, Liu et al. (2018a) proposed some 

q-ROF information based Heronian mean operators and 

their weighted forms. Pinar and Boran (2020) established 

an integrated model based on distance measure for q-ROFSs 

and employed for evaluating the suppliers. Yang and Pang 

(2020) studied a number of q-ROF Bonferroni mean Dombi 

operators and their relevance in MCDM applications. Garg 

and Chen (2020) suggested some neutral AOs on q-ROFSs. 

Tang et  al. (2020) designed a pioneering framework to 

cope with three-way decision problem under q-ROFS con-

text. Darko and Liang (2020) originated a series of q-ROF 

Hamacher AOs and their applications. Krishankumar et al. 
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(2020) proposed a decision model for solving the renewable 

energy resource assessment problem with q-ROF informa-

tion. Further, an attempt has been accomplished to create 

an innovative q-ROF information based decision-making 

method for solving the MCDM problems (Arya and Kumar 

2020). Recently, Alkan and Kahraman (2021) studied two 

extended q-ROF information based methods for assessing 

the government strategies against COVID-19 outbreak. In a 

study, a novel q-ROF-information based VIKOR (VlseKrit-

erijumska Optimizacija I Kompromisno Resenje) technique 

has been introduced to evaluate and rank the manufacturing 

small and mid-size enterprises (Cheng et al. 2021). How-

ever, no study has developed an innovative q-ROF-informa-

tion based MCDM method for evaluating and prioritizing 

the SRP candidates.

2.2  Additive ratio assessment (ARAS)

The ARAS approach, pioneered by Zavadskas and Tur-

skis (2010), is an innovative method which is based on 

the philosophy that the phenomenon of complex domains 

with contradictory attributes can be demonstrated by uti-

lizing effortless relative comparisons. This technique uti-

lizes the notion of optimality degree to find a ranking. The 

main advantages of ARAS approach are as (i) direct and 

proportional relationship with criterion weights (Dahooie 

et al. 2018); (ii) potential to handle extremely compli-

cated problems (Buyukozkan and Guler 2020) and (iii) 

consists of direct and easy processes, which yield satis-

factory, realistic and reasonably accurate results in evalu-

ating and prioritizing various alternatives (Ghenai et al. 

2019). Recently, there have been many studies regarding 

the extension of classical ARAS approach. For instance, 

Ecer (2018) applied the combined AHP (Analytic hierarchy 

process) with ARAS method on FSs. Dahooie et al. (2018) 

developed the SWARA (Step-wise Weight Assessment 

Ratio Analysis) with Grey ARAS model to deal with IT 

personnel assessment issue. Rani et al. (2020b) made use 

of the SWARA-ARAS framework to assess the healthcare 

waste treating method Rostamzadeh et al. (2020) initiated a 

fuzzy ARAS model and its relevance in MCDM problems. 

Recently, Mishra et al. (2021a) suggested an integrated 

ARAS method to evaluate and prioritize the locations 

for the EVCS. Jin et al. (2021) gave a collective meth-

odology by combining the maximizing deviation method 

and the ARAS technique with interval-valued q-ROFSs 

and applied to evaluate the MCDM problems. In a study, 

interval type-2 fuzzy information based ARAS model has 

been introduced to assess the recycling facility problems 

(Karagöz et al. 2021). Further, a hybrid model based on 

hesitant fuzzy ARAS technique has been developed for 

the treatment of mild symptoms of COVID-19 disease 

(Mishra et al. 2021b). Gül (2021) studied the Fermatean 

fuzzy extension of ARAS method and its application in 

COVID-19 testing laboratory selection problem. Inspired 

by interval type-2 fuzzy set, Dorfeshan et al. (2021) intro-

duced an improved ARAS technique for critical path selec-

tion of engineering projects. Liu and Xu (2021) presented 

an overview of ARAS technique from the perspectives of 

fundamental information, development on the theory and 

application, and the future challenges. In conclusion, there 

is no study regarding the development of ARAS method 

under q-ROFS context.

2.3  Approaches for SRP assessment

Selection of the most suitable SRP candidate has been con-

sidered as a MCDM problem concerning both the quanti-

tative and qualitative uncertain information. In this regard, 

few existing literatures have focused their attention on the 

analysis of SRP evaluation. For example, Zhou et al. (2018) 

designed a hybrid model with DEMATEL (Decision-making 

trial and evaluation laboratory), AEW (Anti-entropy weight-

ing) and VIKOR approaches within fuzzy environment and 

then, utilized to select an appropriate SRP for SMEs. Kumar 

and Dixit (2019) prepared a collective framework for WEEE 

(Waste Electrical and Electronic Equipment) recycling part-

ner evaluation with green competencies. Rani and Mishra 

(2020a,b) suggested a new Combined Compromise Solution 

model for evaluating sustainable WEEE recycling partners 

under single-valued neutrosophic environment. In a study, 

Li et al. (2020) proposed the probabilistic linguistic influ-

ence relations between attributes and obtained the main 

factors that manipulate the assessment outcomes of SRPs. 

Further, Rani et al. (2020a) recommended a new Pythago-

rean fuzzy similarity measure based TOPSIS (Technique 

for Order of Preference by Similarity to Ideal Solution) pro-

cedure to choose the best SRP option under PFS context. 

However, there is no research regarding the evaluation of 

SRP candidates by means of ARAS method under q-ROFS 

environment.

2.4  Limitations of the existing studies

Based on the literature, we identify the following issues and 

limitations:

• As the topic of entropy and discrimination measures has 

been proven as one of the key research issues in different 

disciplines, such as pattern recognition, image segmenta-

tion, decision-making etc. Also, it is noticeably seen that 

the q-ROFS acts as a valuable way to perform decision-

making in the complex, vague and conflicting situation, 

and efficiently fills the gaps in IFS and PFS concepts. In 

the literature, very few studies (Liu et al. 2018b, 2020; Peng 

and Liu, 2019; Khan et al. 2020; Verma, 2020) have been 
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presented regarding the development of new entropy and 

discrimination measures under q-ROFS context. In addition, 

these measures have some counter intuitive cases.

• In most of the existing studies (Liu et al. 2019b; Darko and 

Liang, 2020; Garg and Chen, 2020; Krishankumar et al. 

2020; Alkan and Kahraman, 2021), the weight of each deci-

sion expert is directly allocated under q-ROFS settings, 

which can cause subjective randomness. Thus, how to derive 

the decision expert’s weight information is also an important 

challenge during the process of MCDM.

• In several existing studies (Liu et al. 2018a; Khan et al. 

2020; Garg and Chen, 2020; Tang et al. 2020), the cri-

terion weight information is given in advance. In fact, 

different criteria weights will lead to diverse decision 

results. Thus, it is an important to estimate the criteria 

weights in actual decision-making applications.

• Several generalizations of Additive Ratio Assessment 

(ARAS) approach has been presented in the literature 

(Dahooie et al. 2018; Rostamzadeh et al. 2020; Liu and 

Xu 2021; Karagöz et al. 2021; Gül, 2021; Dorfeshan 

et al. 2021) but the previously developed ARAS mod-

els have restrictions in managing the q-ROF uncertain 

information. Therefore, the formerly proposed ARAS 

approaches cannot be directly utilized for q-ROFSs. 

Moreover, to the best of our information, there is no 

study that reports the use of the ARAS approach under 

q-ROFS environment.

• In the literature (Zhou et al. 2018; Li et al. 2020; Rani 

et al. 2020a), few decision-making models have pre-

sented to determine the most suitable sustainable recy-

cling partner (SRP) under different circumstances but 

these models have some restrictions in handling the com-

plex sustainable recycling partner selection problem with 

q-ROF information.

2.5  Motivations of the study

To eliminate the aforementioned limitations, the present 

study develops a new q-ROF information based ARAS 

method for the evaluation and prioritization of recycling 

partners from sustainability point of view. The key motiva-

tions of the present study are given as

This study analyzes the limitations of existing entropy 

and divergence measures using some counter intuitive 

cases and also motivates us to develop new entropy and 

discrimination measures for q-ROFSs.

Considering the influences of the relative decision 

experts’ weights on decision results, we introduce a new 

formula to derive the decision experts’ weights.

To avoid the undesirable influence of objective and sub-

jective aspects, we develop a combined weighting pro-

cedure by integrating objective-weighting model using 

entropy and discrimination measures, and subjective-

weighting model based on aggregation operator and 

score value to enumerate the weights of criteria within 

q-ROFSs environment.

To overcome the limitation of existing ARAS methods, 

this study proposes an extended ARAS method within 

q-ROFSs context. Consequently, the developed method-

ology can model the higher degrees of uncertainty in a 

more efficient and adaptable way.

During the SSCM practices, the requirement and policy 

of eco-economy motivates the companies to choose an 

appropriate SRP alternative. The process of SRP selec-

tion depends on multiple influencing factors, thus, it 

can be considered as a MCDM problem. To handle the 

multi-criteria SRP selection problem, we introduce a 

combined methodology based on ARAS technique with 

fully unidentified information about the decision experts 

and criteria, which can avoid the drawbacks of existing 

studies.

3  Basic concepts

Here, we present the elementary definitions associated with 

q-ROFSs.

Definition 3.1 (Yager 2017). A q-ROFS B on a discourse 

set Θ =
{

v1, v2, ..., v
n

}

 is defined as follows:

where �
B
∶ Θ → [0, 1] shows the BD of an element 

v
i
∈ Θ, while �

B
∶ Θ → [0, 1] expresses the NBD of an 

element v
i
∈ Θ under the following condition:

For each v
i
∈ Θ, the hesitancy value is given by 

�B

(

vi

)

=
q

√

1 −

(

�B

(

vi

))q
−

(

�B

(

vi

))q
. For convenience, 

⟨

�
B

(

v
i

)

, �
B

(

v
i

)⟩

 is said to be a q-rung orthopair fuzzy num-

ber (q-ROFN) and is symbolized by � =

(

�
�
, �

�

)

.

Definition 3.2 (Liu and Wang 2018). For three q-ROFNs 

� =

(

�
�
, �

�

)

,�1 =

(

�
�1

, �
�1

)

 and �2 =

(

�
�2

, �
�2

)

, the basic 

operations are defined by

B =

{⟨
v

i
, �

B

(
v

i

)
, �

B

(
v

i

)⟩||
|
v

i
∈ Θ

}
,

0 ≤ �B

(

vi

)

, �B

(

vi

)

≤ 1, 0 ≤
(

�B

(

vi

))q

+
(

�B

(

vi

))q
≤ 1, q ≥ 1, ∀ vi ∈ Θ.

(1) �c =
(

�
�
, �

�

)

;
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Defnition 3.3 (Liu and Wang 2018). Consider 

� =

(

�
�
, �

�

)

 be a q-ROFN. Then, �(�) = �
q

� − �
q

� and 

ℏ(�) = �
q

� + �
q

� are called as the score and accuracy func-

tions, wherein �(�) ∈ [−1, 1] and ℏ(�) ∈ [0, 1].

As �(�) ∈ [−1, 1], then a normalized score function of 

q-ROFNs is discussed as.

Definition 3.4. Consider � =

(

�
�
, �

�

)

 be a q-ROFN. 

Then, the normalized score and uncertainty values are 

defined as

For  any  two  q -ROFNs  �1 =

(

�
�1

, �
�1

)

 and 

�2 =

(

�
�2

, �
�2

)

,

(i) If ℵ
(

�1

)

> ℵ
(

�2

)

, then �1 > �2,

(ii) If ℵ
(

�1

)

= ℵ
(

�2

)

, then

(a) If �
(

�1

)

> �
(

�2

)

, then �1 > �2;

(b) If �
(

�1

)

= �
(

�2

)

, then �
1
= �

2
.

Definition 3.5 (Liu et al. 2019a). The distance measure 

between two q-ROFNs �1 =

(

�
�1

, �
�1

)

 and �2 =

(

�
�2

, �
�2

)

 

is defined by

Definition 3.6 (Peng and Liu 2019). Let B, C ∈ q

−ROFSs(Θ). A real-valued mapping E ∶ q − ROFS(Θ) → [0, 1] 

is known as a q-ROF entropy measure if it holds the given 

postulates:

(a1).0 ≤ E(B) ≤ 1;

(a2). E(B) = 0 ⇔ B is a crisp set;

(a3).E(B) = 1 ⇔�
B

(

v
i

)

= �
B

(

v
i

)

;

(a4). E(B) = E(Bc);

(a5).E(B) ≤ E(C) if  B is  less fuzzy than C, 

i . e . , �
B

(

v
i

)
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C

(

v
i

)

≤ �
C

(

v
i

)

≤ �
B

(

v
i

)

 o r 

�
B

(

v
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(
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(
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(
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i

)

.
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q
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q
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− �
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;
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q

�2
− �

q

�1
�

q

�2
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;

(4) � � =
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q

√
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1 − �
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�

)

, � > 0;
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(

��

�
,

q

√

1 −
(

1 − �
q

�

)�

)

, � > 0.

(1)

ℵ(�) =
1

2
(�(�) + 1) and �(�)

= 1 − ℏ(�) such that ℵ(�), �(�) ∈ [0, 1].

(2)

d
(
�1, �2

)
=

1

2

(
|||
�

q
�1

− �
q
�2

|
|
|
+
|
|
|
�

q
�1

− �
q
�2

|
|
|
+
|
|
|
�

q
�1

− �
q
�2

|
|
|

)
.

Definition 3.7 (Verma 2020). Let B, C, H ∈ q − ROFSs(Θ). 

A q-ROF discrimination measure is a real-valued function 

D ∶ q − ROFSs(Θ) × q − ROFSs(Θ) → ℝ which fulfills 

the following assumptions:

(p1).D(B, C) ≥ 0 and D(B, C) = 0 iff B = C ;

(p2). D(B, C) = D(C, B);

(p3). D(B ∩ H, C ∩ H) ≤ D(B, C), ∀H ∈ q − ROFS(Θ);

(p4). D(B ∪ H, C ∪ H) ≤ D(B, C), ∀H ∈ q − ROFS(Θ).

4  Proposed entropy and discrimination 
measures within q‑ROFSs

In the realistic applications, we have many circumstances 

wherein we need to quantify the uncertainty present in the 

data to make most favorable judgments. Information meas-

ures are significant ways for handling uncertain information 

occur in our daily life problems. Different information meas-

ures, namely entropy and discrimination measures process 

the uncertain information and facilitate us to reach some 

conclusions. In recent times, these measures have received 

huge interest from several investigators owing to their exten-

sive applications for several purposes namely decision-

making, feature selection, image segmentation, disease 

diagnosis, information technology etc. In FS, entropy is an 

elegant way to quantity the uncertainty of fuzzy information. 

Corresponding to Shannon entropy, De Luca and Termini 

(1972) initially gave the notion of entropy on FSs. Later, 

Burillo and Bustince (1996) initiated the idea of entropy 

on IFSs. To date, copious entropies have been proposed for 

different purposes. For instance, Hu et al. (2018) studied a 

few entropy measures for hesitant fuzzy set (HFS). Yuan and 

Luo (2019) developed an innovative entropy measure for 

IFS and its application in MCDM. Alrasheedi et al. (2021) 

presented a novel Pythagorean fuzzy entropy measure-based 

hybrid method for sustainable supplier selection. Alipour 

et al. (2021) introduced a new entropy measure for PFS and 

further, applied to derive the criteria weights in the assess-

ment of fuel cell and hydrogen components suppliers.

Discrimination measure is an imperious tool to quantify 

the deviation between two sets. Firstly, Bhandari and Pal 

(1993) originated the concept of fuzzy discrimination meas-

ure. After a while, Vlachos and Sergiadis (2007) studied the 

concept of intuitionistic fuzzy discrimination measure and 

its application. Currently, many research efforts have been 

made to propose new discrimination measures for different 

fuzzy sets. In order to measure the similarity and discrimina-

tion between IFSs, Liu et al. (2019b) proposed a new type 

of measure, named as similarity-divergence measure. In a 

study, Xiao and Ding (2019) presented a new Jensen-Shan-

non discrimination measure between PFSs. By means of 

new discrimation and possibility measures, Wang and Wan 

(2020) initiated a hybrid decision support system to solve the 



A q‑rung orthopair fuzzy ARAS method based on entropy and discrimination measures: an application…

1 3

MCDM problems under interval-valued IFS environment. 

Kadian and Kumar (2020) studied a new fuzzy discrimina-

tion measure and its applicability in pattern recognition and 

fault detection. Although, very few authors (Liu et al. 2018b; 

Peng and Liu 2019; Verma 2020) have paid their attention in 

the expansion of novel entropy and discrimination measures 

for q-ROFSs. Because of the complexity of the situation and 

the subjectivity of the DEs’ judgments, the decision analysis 

procedure is always vague and the weights information is 

partially or fully unidentified. When we deal such concerns, 

entropy and discrimination measures developed in this study 

can be more valuable in dealing with MCDM applications.

As information measures show great significance in 

the field of FS and q-ROFS theories and widely applied to 

model the uncertainty arises in feature selection, MCDM 

and others. Thus, in the current section, we develop novel 

entropy and discrimination measures for q-ROFSs.

4.1  New entropy for q‑ROFSs

Let B ∈ q − ROFS(Θ). Next, we develop new entropy for 

q-ROFS, which as

Theorem 3.1: The function E(B), presented by Eq. (3), is 

an entropy for q-ROFS (Θ).

E(B) =
1

n (1 − exp (−1∕2))

n
∑

i=1

[{

1 − exp

(

−

(

�
q

B

(

vi

)

+ 1 − �
q

B

(

vi

)

2

))}

I[�q

B(vi)≥ �
q

B(vi)]

(3)

+

{

1 − exp

(

−

(

�
q

B

(

vi

)

+ 1 − �
q

B

(

vi

)

2

))}

I[�
q

B(vi)<�
q

B(vi)]

]

.

Proof: To validate the theorem, Eq. (3) must have to 

assure the properties (a1)-(a5) given in Definition 3.6.

(a1). In q-ROFSs, we have 0 ≤ �
q

B

(

vi

)

+ �
q

B

(

vi

)

≤ 1, 

therefore, 0 ≤ E(B) ≤ 1.

(a2). Assume that B be a crisp set, i.e., �
B

(

v
i

)

= 1,

�
B

(

v
i

)

= 0 or �
B

(

v
i

)

= 0,�
B

(

v
i

)

= 1. Then, we obtain 

E(B) = 0. Conversely, assume that E(B) = 0.

Also, let

Using Eq. (4) in Eq. (3), we obtain

Equation (5) becomes zero iff �
B
(x

i
) = 0 or 1, i.e.,

or

In the q-ROFSs, 0 ≤ �
q

B

(

vi

)

+ �
q

B

(

vi

)

≤ 1. Now, solv-

ing Eq.  (6) and Eq.  (7), we have �
q

B

(

vi

)

= 0 = �B

(

vi

)

,

�
q

B

(

vi

)

= 1 = �B

(

vi

)

 or �
q

B

(

vi

)

= 1 = �B

(

vi

)

, �
q

B

(

vi

)

= 0

= �
B

(

v
i

)

, ∀ v
i
∈ Θ, which gives that B is a crisp set.

(a3). It is evident that if �
B
(v

i
) = �

B
(v

i
), ∀ v

i
∈ Θ, then 

E(B) = 1.

Conversely, if E(B) = 1, then we obtain

(4)
�

q

B

(

vi

)

+ 1 − �
q

B

(

vi

)

2
= �B(vi).

(5)E(B) =
1

n

(

1− exp

(

−1∕2

))

n
∑

i=1

[

{

1 − exp
(

−
(

1 − �
B

(

v
i

)))}

I[

�
B(vi) ≥

1

2

] +
{

1 − exp
(

−�
B

(

v
i

))}

I[

�
B(vi) <

1

2

]

]

.

(6)
�

q

B

(

vi

)

+ 1 − �
q

B

(

vi

)

2
= 0

(7)
�

q

B

(

vi

)

+ 1 − �
q

B

(

vi

)

2
= 1.

E(B) =
1

n

(

1− exp

(

−1∕2

))

n
∑

i=1

[

{

1 − exp
(

−
(

1 − �
B

(

v
i

)))}

I[

�
B(vi) ≥

1

2

] +
{

1 − exp
(

−�
B

(

v
i

))}

I[

�
B(vi) <

1

2

]

]

= 1,

⇒ �
B

(

v
i

)

=
1

2
, ∀ v

i
∈ Θ,
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(a4). Obviously,E(B) = E(Bc).

(a5). From Eq. (3) and Eq. (4), we have

which is similar to fuzzy entropy measure given 

by Hung and Yang (2008). Thus, it satisfies the 

property E(B) ≤ E(C) if B is less fuzzy than C, 

t h a t  i s ,  �
B

(

v
i

)

≤ �
C

(

v
i

)

≤ �
C

(

v
i

)

≤ �
B

(

v
i

)

 o r 

�
B

(

v
i

)

≤ �
C

(

v
i

)

≤ �
C

(

v
i

)

≤ �
B

(

v
i

)

, ∀ v
i
∈ Θ. Hence, 

the function E(B), given by Eq. (3), is an entropy measure 

for q-ROFSs.

4.1.1  Comparative study

For comparative discussion, we firstly recall previously 

introduced entropy measures for q-ROFS, which are shown 

as follows:

Liu et al. (2018b)

Peng and Liu (2019)

⇒

�
q

B

(

vi

)

+ 1 − �
q

B

(

vi

)

2
=

1

2
, ∀ vi ∈ Θ.

⇒ �
q

B

(

vi

)

= �
q

B

(

vi

)

, ∀ vi ∈ Θ,

⇒ �
B

(

v
i

)

= �
B

(

v
i

)

, ∀ v
i
∈ Θ.

E(B) =
1

n

(

1− exp

(

−1∕2

))

n
∑

i=1

[

{

1 − exp
(

−
(

1 − �
B

(

v
i

)))}

I[

�
B(vi) ≥

1

2

] +
{

1 − exp
(

−�
B

(

v
i

))}

I[

�
B(vi) <

1

2

]

]

,

EL1
(B) = 1 −

1

n
√

2

n
�

i=1

�

�

�
q

B

�

vi

��2

+
�

�
q

B

�

vi

��2

+
�

�
q

B

�

vi

�

− 1
�2

.

EP1
(B) = 1 −

1

n

n∑

i=1

|||
�

q

B

(
vi

)
− �

q

B

(
vi

)|
|
|
.

Khan et al. (2020)

Liu et al. (2020)

Verma (2020)

where � ∈ (0, 1).

EP2
(B) =

1

n

n�
i=1

⎛⎜⎜⎝

�
q

B

�
vi

�
+ 1 −

����
q

B

�
vi

�
− �

q

B

�
vi

����
�

q

B

�
vi

�
+ 1 +

����
q

B

�
vi

�
− �

q

B

�
vi

����

⎞
⎟⎟⎠
.

EK(B) = 1 −
1

n

n
∑

i=1

[

1 −
1

2

(

1 −

(

�
2q

B
(vi) + �

2q

B
(vi)

))

+
4

�
tan

−1

{

(

1 − �
q

B
(vi) − �

q

B
(vi)

)2
}]

.

EL2
(B) =

1

n

n∑

i=1

[
1 −

(
�

q

B
(vi) + �

q

B
(vi)

) |
|
|
�

q

B
(vi) − �

q

B
(vi)

|
|
|

]
.

q

1
E
�
(B) =

1

n (1 − �)

n
∑

i=1

log2

[((

�
q

B
(vi)

)�

+
(

�
q

B
(vi)

)�)

(

�
q

B
(vi) + �

q

B
(vi)

)1−�
+ 21−�

�
q

B
(vi)

]

,

q

2
E
�
(B) =

1

n (exp(1) − exp (2�−1))
n
∑

i=1

[

exp
(

2�−1
(((

�
q

B
(vi)

)�

+
(

�
q

B
(vi)

)�)

(

�
q

B
(vi) + �

q

B
(vi)

)1−�
+ 21−�

�
q

B
(vi)

))

− exp
(

2�−1
)

]

,

Table 1  Results obtained by the proposed and existing measures

“Bold” denotes counter intuitive results

Case I:

B1 = ⟨1, 0⟩

Case II:

B2 = ⟨0, 1⟩

Case III:

B3 = ⟨0, 0⟩

Case IV:

B4 = ⟨0.5, 0.5⟩

Case V:

B5 = ⟨0.8, 0.4⟩

Case VI:

B6 = ⟨0.7, 0.5⟩

Case VII:

B7 = ⟨0.6, 0.3⟩

E
L
(.) 0.0000 0.0000 1.0000 0.8593 0.5950 0.7091 0.8338

E
P1
(.) 0.0000 0.0000 1.0000 1.0000 0.5520 0.7820 0.8110

E
P2
(.) 0.0000 0.0000 1.0000 1.0000 0.5926 0.7850 0.8200

E
K
(.) 0.0000 0.0000 − 0.5000 − 0.1680 0.1404 0.0822  − 0.1862

E
L
(.) 0.0000 0.0000 0.0000 0.0000 0.1900 0.1160 0.1431

q

1
E
�
(.) 0.0000 0.0000 1.0000 1.2654 1.4558 1.4300 1.2325

q

2
E
�
(.) 0.0000 0.0000 1.0000 1.4957 1.9611 1.8915 1.4256

E(.) 0.0000 0.0000 1.0000 1.0000 0.6130 0.8225 0.8472
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Table 1 presents the results obtained by the developed 

and previously introduced entropy measures. By analyzing 

the outcomes, we obtain various interesting outcomes, given 

as follows:

• As compared the results obtained by different measures 

under Case I and Case II, we observe that all the entropy 

measures perform very well.

• Compared the entropy outcomes under Case III, we 

obtain that the entropy formulae EK
(.) and EL2

(.) gener-

ate some counter intuitive result, which are marked as 

bold in Table 1.

• In Case IV, when compared the entropy values at 

B = (0.5, 0.5), we can easily observe that the formulae 

E
L1(.), EK

(.), EL2(.), 
q

1
E
�
(.) and 

q

2
E
�
(.) are failed to satisfy 

the postulate (a3) of Definition 3.6 (Peng and Liu 2019).

• When compared the entropy measures under Case V, 

Case VI and Case VII, we obtain that the entropy for-

mulae EK
(.), 

q

1
E
�
(.) and 

q

2
E
�
(.) are unable to assure the 

postulate (a1) of Definition 3.6.

• At last, it is worth mentioned that the developed entropy 

formula and measures given by Peng and Liu (2019) pre-

sent no unreasonable results under given cases, while 

extant measures generates some counter intuitive results, 

as given in Table 1. Moreover, the proposed entropy for-

mula is based on an exponential function, therefore, it is 

more reasonable and effective than Peng and Liu (2019) 

measures.

4.2  New discrimination measure for q‑ROFSs

For B, C ∈ q − ROFSs(Θ), we discuss a new discrimination 

measure for q-ROFSs B and C, given as

(8)D(B, C) =
1

n

�√
2 − 1

�
n�

i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��
�

q

B

�
vi

��2
+

�
�

q

C

�
vi

��2

2
−

�
q

B

�
vi

�
+ �

q

C

�
vi

�
2

+

��
�

q

B

�
vi

��2
+

�
�

q

C

�
vi

��2

2
−

�
q

B

�
vi

�
+ �

q

C

�
vi

�
2

+

��
�

q

B

�
vi

��2
+

�
�

q

C

�
vi

��2

2
−

�
q

B

�
vi

�
+ �

q

C

�
vi

�
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Table 2  Results obtained by different measures

“Bold” denotes counter intuitive results

Case B C d
1

PL
(B, C) d

2

PL
(B, C) d

3

PL
(B, C) d

4

PL
(B, C) D

1

R
(B, C) D

2

R
(B, C) D(B, C)

I ⟨v1, 0.5, 0.6⟩ ⟨v1, 0.0, 0.5⟩ 0.2160 0.0170 0.1250 0.6334 0.0309 0.0395 0.0952

II ⟨v1, 0.2, 0.7⟩ ⟨v1, 0.7, 0.8⟩ 0.5040 0.0830 0.3350 0.5895 0.2414 0.2915 0.3588

III ⟨v1, 0.5, 0.4⟩ ⟨v1, 0.8, 0.6⟩ 0.5390 0.1175 0.3870 0.7404 0.1501 0.1857 0.3303

IV ⟨v1, 0.2, 0.5⟩ ⟨v1, 0.5, 0.6⟩ 0.2080 0.0130 0.1170 0.6100 0.0582 0.0739 0.0847

V ⟨v1, 0.3, 0.3⟩ ⟨v1, 0.4, 0.4⟩ 0.0740 0.0000 0.0370 0.5781 0.0088 0.0113 0.0193

VI ⟨v1, 0.3, 0.4⟩ ⟨v1, 0.4, 0.3⟩ 0.0370 0.0370 0.0370 0.5781 0.0068 0.0088 0.0175

Theoorem 3.2: The function D(B, C), given by Eq. (8), 

is a valid q-ROF-discrimination measure, and fulfills the 

following axioms:

(s1). D(B, C) = D(C, B);

(s2). 0 ≤ D(B, C) ≤ 1 and D(B, C) = 0 iff B = C;

(s3). D(Bc
, C) = D(B, C

c);

(s4).D(B, C) = D(Bc
, C

c);

(s5).D(B ∪ C, B ∩ C) = D(B, C);

(s6).D(B ∪ C, H) ≤ D(B, H) + D(C, H), ∀H ∈ q − ROFS(Θ);

(s7).D(B ∩ C, H) ≤ D(B, H) + D(C, H), ∀H ∈ q − ROFS(Θ).

Proof: Properties (s1)–(s7) are effortlessly verified. 

Hence, we have omitted the proof.

(s8).D(B ∩ H, C ∩ H) ≤ D(B, C), ∀H ∈ q − ROFS(Θ).

(s9).D(B ∪ H, C ∪ H) ≤ D(B, C), ∀H ∈ q − ROFS(Θ).

Proof: To verify (s8) and (s9), the discourse set Θ is sepa-

rated into eight given subsets:

Θ =
{

v
i
∈ Θ|B

(
v

i

)
≤ C

(
v

i

)
= H

(
v

i

)}
∪
{

v
i
∈ Θ|B

(
v

i

)
= H

(
v

i

)
≤ C

(
v

i

)}

∪
{

v
i
∈ Θ|B

(
v

i

)
≤ C

(
v

i

)
< H

(
v

i

)}
∪
{

v
i
∈ Θ|B

(
v

i

)
≤ H

(
v

i

)
< C

(
v

i

)}
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which are denoted by Δ1, Δ2, ...,Δ8. For each 

Δj; j = 1(1)8, based on Montes et al. (2015), we get.
||
|
(B ∪ H)

(
v

i

)
− (C ∪ H)

(
v

i

)||
|
≤
||
|
B
(
v

i

)
− C

(
v

i

)||
|
 and ||

|
(B ∩ H)

(
v

i

)

−(C ∩ H)
(
v

i

)|
|
|
≤
||
|
B
(
v

i

)
− C

(
v

i

)|
|
|
.

Therefore, from (s5), we get

D(B ∪ H, C ∪ H) ≤ D(B, C)  a n d 

D(B ∩ H, C ∩ H) ≤ D(B, C), ∀H ∈ q − ROFS(Θ).

4.2.1  Comparison with other measures

To confirm the effectiveness of introduced divergence meas-

ure, we compare the present measure with some of the extant 

distance and divergence measures (Peng and Liu 2019; 

Verma 2020) given in Table 2 on some common data sets.

For this, firstly recall the existing q-ROF distance and 

divergence measures, which are as follows:

Peng and Liu (2019)

Verma (2020)

∪
{

v
i
∈ Θ|C

(
v

i

)
< B

(
v

i

)
≤ H

(
v

i

)}

∪
{

v
i
∈ Θ|C

(
v

i

)
≤ H

(
v

i

)
< B

(
v

i

)}

∪
{

v
i
∈ Θ|H

(
v

i

)
< B

(
v

i

)
≤ C

(
v

i

)}
∪
{

v
i
∈ Θ|H

(
v

i

)
< C

(
v

i

)
< B

(
v

i

)}
,

d1

PL
(B, C) =

1

2n

n∑

i=1

(
|
|
|
�

q

B
(vi) − �

q

C
(vi)

|
|
|
−
|
|
|
�

q

B
(vi) − �

q

C
(vi)

|||
−
|
|
|
�

q

B
(vi) − �

q

C
(vi)

|||

)

d2

PL
(B, C) =

1

2n

n∑

i=1

(
|
|
|
�

q

B
(vi) − �

q

C
(vi) −

(
�

q

B
(vi) − �

q

C
(vi)

)|
|
|

)

d3

PL
(B, C) =

1

n

n∑

i=1

(
|
|
|
�

q

B
(vi) − �

q

C
(vi)

|
|
|
∨
|
|
|
�

q

B
(vi) − �

q

C
(vi)

|||

)

d4

PL
(B, C) = 1 −

1

n

n
∑

i=1

(

�
q

B
(vi) ∧ �

q

C
(vi)

)

+
(

�
q

B
(vi) ∧ �

q

C
(vi)

)

(

�
q

B
(vi) ∨ �

q

C
(vi)

)

+
(

�
q

B
(vi) ∨ �

q

C
(vi)

)

where � ∈ [0, 1].

The outcomes evaluated by proposed discrimination 

measure and existing distance and discrimination measures 

(Peng and Liu 2019; Verma 2020) are shown in Table 2.

In Table 2, some problematic values are marked in bold. 

For instance, in Case V, the distance measure d2

PL
(B, C) pre-

sents a counter intuitive result as B ≠ C but d2

PL
(B, C) = 0 . 

From Table 2, we can observe that the extant distance measure 

d
3

PL
(B, C) derives the same value 0.0370 for Case V and Case 

VI. In addition, the measure d4

PL
(B, C) computes the same 

result 0.5781 for Case V and Case VI. However, the developed 

discrimination measure can effectively quantify the divergence 

between two q-ROFNs. Thus, our developed measure is more 

valuable and reasonable than other existing measures.

5  q‑ROF‑ARAS method

This section proposes a new integrated decision-making 

framework, named as q-ROF-ARAS, to cope with the com-

plex MCDM problems under q-ROFSs perspective. To do 

so, the concepts of the q-ROFNs, entropy and discrimina-

tion measures are utilized under q-ROFSs environment and 

further, apply to select the desirable SRP candidate. The pro-

posed q-ROF-ARAS approach employs the coherent com-

parison in the ratio of the weighted sum of criteria values to 

obtain the optimality degree of an alternative. This approach 

q
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D�
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is incorporated into the evaluations to diminish bias and 

favoritism. The steps of the proposed approach are prear-

ranged as follows (graphical framework is given in Fig. 1):

Step 1: Create a decision matrix.

In MCDM process, let P =

{

P1, P2, ..., P
m

}

 be a set of 

options and R =

{

R1, R2, ..., R
n

}

 be a criterion set. Let a 

team of DEs 
{

I1, I2, ..., I
l

}

 evaluates the given m options 

concerning the preferred n criteria in forms of q-ROFNs. Let 

Ω =

(

�
(k)

ij

)

m× n
, i = 1(1)m, j = 1(1)n be a q-ROF evalua-

tion matrix, in which �
(k)

ij
 denotes the evaluation information 

of an option P
i
 by means of the criteria Rj (j = 1(1)n) given 

by the kth DE.

Step 2: Find out the DEs weights 
(

�
k

)

.

Evaluation of DEs’ weights is a significant issue in 

MCDM practice. For this purpose, assume 
(

�
k
, �

k

)

 be a 

q-ROFN that shows the significance degree of kth DE. Then, 

the weight value is estimated by

Step 3: Create the aggregated q-rung orthopair fuzzy 

decision-matrix (A-q-ROF-DM).

Let ℕ =

(

�̃ij

)

m× n
 be an A-q-ROF-DM obtained by using 

q-ROF weighted averaging operator (Liu and Wang 2018), 

where

(9)

�k =

�
q

k

�

2 − �
q

k
− �

q

k

�

�
∑

k=1

�

�
q

k

�

2 − �
q

k
− �

q

k

��

, where �k ≥ 0 and

�
�

k=1

�k = 1.

(10)�̃ij = q − ROFWA�

�
�
(1)

ij
, �

(2)

ij
, ..., �

(�)

ij

�
=

⎛⎜⎜⎝
q

����
1 −

��
k= 1

�
1 − �

q

k

��k
,

��
k=1

�
�k

��k

⎞⎟⎟⎠
.

Fig. 1  Implementation flowchart of q-ROF-ARAS methodology
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Step 4: Calculate the criteria weights.

Suppose all the criteria have different significances. Let 

w =

(

w1, w2, ..., w
n

)T

, wherein 
∑n

j=1
wj = 1,wj ∈ [0, 1], be 

the importance degree for a criteria set. The criteria weights 

are obtained by using the following steps:

Case I: Evaluate the objective weight wo
j
 for each crite-

rion using the following approach:

Here, D
(

�̃ij, �̃kj

)

 indicates the discrimination between �̃ij 

and �̃kj, and E
(

�̃ij

)

 signifies the entropy measure of �̃ij.

Case II: Calculate the subjective weight ws
j
.

For this, create the subjective weighted matrix 
(

ws
j

)

 for 

kth DE by using the process

where ws
j(k)

 is the weight value of criterion Rj given by kth 

expert. To assess the subjective weight, we get

Let ws
j(k)

=
(

pijk

)

 be the decision weight, where 

pijk =

(

�ijk, �ijk

)

,k = 1(1)� is a q-ROFN. Then, the proce-

dure for the determining the overall subjective weight is 

given:

Here, Ws
j
=

(

�ij∗, �ij∗

)

 is a q-ROFN.

Then, the subjective criteria weight is computed as below:

where ℵ
(

Ws
j

)

 denotes the score value of Ws
j
.

Case III: Determine the combined weight.

With the use of using Eqs. (11)–(15), the combined cri-

terion weight is calculated as

(11)wo
j
=

m
∑

i= 1

�

1

m−1

m
∑

k=1, k≠i

D(�̃ij, �̃kj)+(1−E(�̃ij))

�

n
∑

j= 1

m
∑

i= 1

�

1

m−1

m
∑

k=1, k≠i

D(�̃ij, �̃kj)+(1−E(�̃ij))

� .

(12)ws
j
=

�
ws

j(k)

�
n×1

=

⎡
⎢⎢⎢⎢⎣

ws
1(k)

ws
2(k)

⋮

ws
n(k)

⎤
⎥⎥⎥⎥⎦
,

(13)Ws
j
= �ij = q − ROFWA�

(

ws
j(1)

, ws
j(2)

, ..., ws
j(�)

)

.

(14)

Ws
j
=

�
�ij∗, �ij∗

�
=

⎛
⎜⎜⎝

q

����
1 −

��
k=1

�
1 − �

q

ijk

��k

,

��
k=1

�
�ijk

��k

⎞⎟⎟⎠
.

(15)ws
j
=

ℵ

�

Ws
j

�

∑n

j=1
ℵ

�

Ws
j

� ; j = 1(1)n,

(16)wj = �ws
j
+ (1 − �)wo

j
,

where � ∈ [0, 1] is the aggregating decision precision 

parameter.

Step 5: Evaluate the optimal assessment value.

The optimal assessment value 
(

ℝ
0

)

 is estimated as 

follows:

where R
b
 and R

n
 are the benefit and cost types of criteria 

sets, respectively.

Step 6: Normalize the A-q-ROF-DM.

To normalize the A-q-ROF-DM, the evaluation informa-

tion regarding the cost-type criteria should be changed into 

the benefit-type in order to get the normalized A-q-ROF-DM 
⌢

ℕ =

(

�ij

)

m× n
, wherein

Step 7: Generate weighted form of normalized 

A-q-ROF-DM.

The weighted form of normalized A-q-ROF-DM 
⌢

ℕw =

(

�̃ij

)

m× n
 is assembled as below:

Step 8: Evaluate the score values.

In this step, the score values of weighted decision matrix 

ℕw =

(

�̃ij

)

m× n
 are computed by

Step 9: Determine the overall assessment index for each 

option.

The overall assessment index is computed as

Step 10: Determine the utility index. To evaluate the 

options, it is not only significant to find out the optimal alter-

native but also important to determine the relative assessment 

indices of obtained choices with regard to the most desirable 

candidate. For this reason, the utility index is utilized as

Clearly, ℚ
i
∈ [0, 1] can be preferred in increasing 

sequence.

(17)ℝ0 =

{

max �̃ij, j ∈ Rb

min �̃ij, j ∈ Rn

,

(18)�ij =

(

⌢

�ij,
⌢

�ij

)

=

{

�̃ij =

(

�ij, �ij

)

, j ∈ Rb
(

�̃ij

)c
=

(

�ij,�ij

)

, j ∈ Rn

,

(19)

�̃ij =

n

⊕
j=1

wj �ij =

⎛⎜⎜⎝

����1 −

n�
j= 1

�
1 −

⌢

�
q

ij

�wj

,

n�
j=1

�
⌢

�ij

�wj
⎞
⎟⎟⎠
.

(20)ℵ
(

�̃ij

)

=
1

2

((

�̃
q

ij
− �̃

q

ij

)

+ 1

)

; ∀i, j.

(21)Υi =

n
∑

j=1

ℵ
(

�̃ij

)

, i = 1(1)m.

(22)ℚ
i
=

Υ
i

ℝ0

; i = 1(1)m.
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Step 11: Prioritize the options.

The given options are prioritized based on the increasing 

indices of ℚ
i
 . Then, the most desirable option is considered 

as follows:

6  An application of sustainable recycling 
partner (SRP) selection

To depict the applicability of q-ROF-ARAS approach in 

realistic decision-analysis problems, this section shows an 

empirical study of Indian recycling organization (XYZ) situ-

ated in western zone of India. The organization has been 

functioning for past 25 years. Despite of its sustained success 

in the marketplace, the organization doesn’t have any solid 

structure for an enviable recycling network selection. Pres-

ently, the organization has started employing sustainability 

initiatives in their sustainable SCM processes to reduce the 

influence on environmental degradation. The study intro-

duces a robust structure for organization’s stakeholders who 

will support them to assess and choose the best SRP candi-

date. In this case study, we have considered three organiza-

tions P1, P2 and P3 who are engaged in the recycling activi-

ties of the products like as EOL vehicles, scraped metals 

(23)Υ∗ =

{
Υ

i
| max

i

ℚ
i
; i = 1(1)m

}
,

and papers recycling, and dismasting processes. To choose 

the most favorable SRP, a panel of four DEs (I1, I2, I3, I4) 

has been formed which involves of one production and two 

supply chain managers, respectively, and a professor with 

having minimum 15 years of knowledge in this field. All 

DEs are proficient in decision-analysis practice with durable 

expertise in several organizational events, which are plan-

ning, quality control, supply chain and environmental man-

aging events, and others. These SRP options are assessed 

based on ten criteria which are Pollution and waste produc-

tion (R1), Resource use efficiency (R2), Environmental MIS 

(R3), Environmental equipment facilities (R4), Operation 

cost per unit (R5), Quality utility value (R6), Profitability 

(R7), Local influence degree (R8), Customer satisfaction (R9) 

and Brand reputation (R10). The list of selected criteria given 

in this section is considered from several sources to distin-

guish many aspects such as economic, environmental, and 

social facets and their characteristics for recycling partner 

evaluation. The details about these criteria are depicted in 

Table 3. Here, R1 and R5 are non-beneficial type and others 

are beneficial type criteria.

The steps of q-ROF-ARAS approach for the assessment 

of most optimal recycling partner are given as below:

Assume that the significance degrees of the DEs  

are q-ROFNs and are given as {(0.85, 0.45, 0.6655), (0.80, 

0.50, 0.7133), (0.70, 0.65, 0.7258), (0.75, 0.60, 0.7128)}. 

Table 3  Details of the criteria for the present case study

Dimension Criteria Type Description

Environmental Pollution and waste production 
(

R
1

)

Cost Refers the average degree of pollutant and waste materials

Resource use efficiency 
(

R
2

)

Benefit Consuming the accessible assets like raw material and labor, operating 

efficiency

Environmental MIS 
(

R
3

)

Benefit Refers the gradation catering to ISO standard, and the company has environ-

mental credentials

Environmental equipment services 
(

R
4

)

Benefit Considers the quantity of device and equipment, using the authorized treat-

ment facility, ecological management resources

Economic Operation cost 
(

R
5

)

Cost Considers the per-unit cost containing operational activities, like as trans-

porting, recovery, recycling, and so on

Quality utility value 
(

R
6

)

Benefit Refers the mean worth of a unit EOL product (reuse and recycling processes)

Profitability 
(

R
7

)

Benefit Refers the profit margin, profit per unit of recycling business

Social Local influence degree 
(

R
8

)

Benefit Refers the renowned degree and brand impact in the peer business and soci-

ety, culture and compatibility

Customer satisfaction 
(

R
9

)

Benefit Considers the perceived amount of conformance between appraised service 

and practical one

Brand reputation 
(

R
10

)

Benefit Refers the assistances to local sustainability growth, public developments, 

local policy formation
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Based on the DEs’ opinions,  the q-ROF-DM 

M(k) =

(

�
(k)

ij

)

m× n
, k = 1(1)4 is specified in Table 4.

By means of Eq. (9), crisp form of DEs’ weights are 

{ �
1
= 0.3127, �

2
= 0.2746, �

3
= 0.1866, �

4
= 0.2261}. To 

find the A-q-ROF-DM using the decisions of all experts, 

the aggregation process, given in Eq. (10), is executed on 

Table 4, shown in Table 5.

Next, Table 6 represents the linguistic terms (LTs) to 

measure the significance degree of considered criteria for 

SRP assessment.

To evaluate the objective weights of the criteria, utilize 

Eq. (3) and Eq. (8) in Eq. (11), therefore, we have

wo
j
=(0.1982, 0.1086, 0.1361, 0.0776, 0.1173, 0.0734, 

0.0891, 0.0889, 0.0727, 0.0381).

In accordance with Eqs. (12)–(15), the subjective criteria 

weights are as below (Last column of Table 7):

ws
j
=(0.1471, 0.1279, 0.1374, 0.0985, 0.1261, 0.0727, 

0.1065, 0.1078, 0.0504, 0.0256).

The final criteria weights ( � = 0.5 ) using Eq.  (16) is 

obtained as

wj = (0.1727, 0.1183, 0.1367, 0.0881, 0.1217, 0.0731, 

0.0978, 0.0984, 0.0616, 0.0319).

With the use of Eq. (17), we calculate optimal perfor-

mance ratings of SRP candidates, given as

Table 4  Assessment ratings of competitive SRP selection

P
1

P
2

P
3

R
1

I1: (0.48, 0.80) I1: (0.80, 0.45) I1: (0.78, 0.55)

I2: (0.50, 0.75) I2: (0.82, 0.50) I2: (0.75, 0.60)

I3: (0.55, 0.70) I3: (0.75, 0.60) I3: (0.70, 0.55)

I4: (0.55, 0.65) I4: (0.65, 0.75) I4: (0.65, 0.70)

R
2

I1: (0.50, 0.75) I1: (0.62, 0.75) I1: (0.70, 0.58)

I2: (0.60, 0.70) I2: (0.72, 0.65) I2: (0.74, 0.58)

I3: (0.50, 0.78) I3: (0.65, 0.72) I3: (0.68, 0.55)

I4: (0.52, 0.72) I4: (0.58, 0.78) I4: (0.65, 0.70)

R
3

I1: (0.55, 0.75) I1: (0.70, 0.58) I1: (0.74, 0.55)

I2: (0.56, 0.80) I2: (0.70, 0.54) I2: (0.65, 0.68)

I3: (0.58, 0.75) I3: (0.78, 0.55) I3: (0.75, 0.65)

I4: (0.55, 0.70) I4: (0.65, 0.72) I4: (0.75, 0.68)

R
4

I1: (0.60, 0.70) I1: (0.68, 0.75) I1: (0.62, 0.70)

I2: (0.65, 0.75) I2: (0.60, 0.78) I2: (0.75, 0.68)

I3: (0.60, 0.75) I3: (0.58, 0.72) I3: (0.58, 0.77)

I4: (0.58, 0.72) I4: (0.56, 0.73) I4: (0.60, 0.74)

R
5

I1: (0.60, 0.65) I1: (0.72, 0.58) I1: (0.73, 0.58)

I2: (0.65, 0.68) I2: (0.70, 0.55) I2: (0.78, 0.52)

I3: (0.64, 0.72) I3: (0.75, 0.58) I3: (0.77, 0.60)

I4: (0.57, 0.78) I4: (0.68, 0.76) I4: (0.70, 0.64)

R
6

I1: (0.72, 0.55) I1: (0.72, 0.68) I1: (0.78, 0.52)

I2: (0.63, 0.78) I2: (0.65, 0.72) I2: (0.72, 0.56)

I3: (0.57, 0.73) I3: (0.64, 0.75) I3: (0.78, 0.58)

I4: (0.65, 0.72) I4: (0.58, 0.75) I4: (0.68, 0.77)

R
7

I1: (0.58, 0.72) I1: (0.68, 0.70) I1: (0.65, 0.72)

I2: (0.62, 0.78) I2: (0.64, 0.75) I2: (0.68, 0.74)

I3: (0.59, 0.72) I3: (0.54, 0.78) I3: (0.66, 0.74)

I4: (0.60, 0.74) I4: (0.62, 0.75) I4: (0.60, 0.77)

R
8

I1: (0.64, 0.70) I1: (0.67, 0.75) I1: (0.68, 0.75)

I2: (0.72, 0.64) I2: (0.62, 0.67) I2: (0.65, 0.70)

I3: (0.70, 0.52) I3: (0.60, 0.70) I3: (0.60, 0.72)

I4: (0.68, 0.70) I4: (0.55, 0.72) I4: (0.65, 0.74)

R
9

I1: (0.62, 0.73) I1: (0.67, 0.78) I1: (0.68, 0.75)

I2: (0.75, 0.48) I2: (0.62, 0.77) I2: (0.65, 0.70)

I3: (0.70, 0.64) I3: (0.64, 0.72) I3: (0.72, 0.62)

I4: (0.65, 0.72) I4: (0.58, 0.76) I4: (0.64, 0.76)

R
10

I1: (0.67, 0.66) I1: (0.58, 0.76) I1: (0.78, 0.75)

I2: (0.64, 0.75) I2: (0.72, 0.56) I2: (0.65, 0.74)

I3: (0.60, 0.78) I3: (0.70, 0.66) I3: (0.62, 0.76)

I4: (0.58, 0.74) I4: (0.64, 0.78) I4: (0.66, 0.72)

Table 5  A-q-ROF-DM for SRP selection

P
1

P
2

P
3

R
1

(0.522, 0.723, 0.782) (0.782, 0.534, 0.718) (0.741, 0.583, 0.733)

R
2

(0.545, 0.725, 0.770) (0.661, 0.710, 0.707) (0.707, 0.587, 0.763)

R
3

(0.565, 0.745, 0.740) (0.715, 0.578, 0.761) (0.729, 0.622, 0.720)

R
4

(0.619, 0.719, 0.731) (0.624, 0.741, 0.705) (0.667, 0.705, 0.706)

R
5

(0.625, 0.689, 0.754) (0.719, 0.594, 0.748) (0.755, 0.565, 0.730)

R
6

(0.664, 0.672, 0.739) (0.667, 0.710, 0.701) (0.752, 0.579, 0.725)

R
7

(0.605, 0.734, 0.726) (0.642, 0.731, 0.701) (0.659, 0.732, 0.685)

R
8

(0.693, 0.541, 0.798) (0.627, 0.700, 0.743) (0.659, 0.718, 0.700)

R
9

(0.694, 0.615, 0.756) (0.639, 0.754, 0.677) (0.678, 0.703, 0.698)

R
10

(0.638, 0.716, 0.720) (0.672, 0.670, 0.735) (0.704, 0.734, 0.635)

Table 6  LTs for significance degree of considered criteria to 

q-ROFNs

LTs q-ROFNs

Absolutely high (AH) (0.95,0.10, 0.5213)

Very high (VH) (0.90,0.40, 0.5915)

High (H) (0.80, 0.50, 0.7133)

Medium high (MH) (0.75, 0.60, 0.7128)

Average (A) (0.60, 0.70, 0.7612)

Medium low (ML) (0.45, 0.80, 0.7349)

Low (L) (0.30, 0.90, 0.6249)

Very low (VL) (0.20, 0.95, 0.5125)

Absolutely low (AL) (0.10,0.98, 0.3867)
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ℝ
0
={(0.522, 0.723, 0.782), (0.707, 0.587, 0.763), (0.715, 

0.578, 0.761), (0.667, 0.705, 0.706), (0.625, 0.689, 0.754), 

(0.752, 0.579, 0.725), (0.659, 0.732, 0.685), (0.693, 0.541, 

0.798), (0.694, 0.615, 0.756), (0.672, 0.670, 0.735)}.

Step 6–7. Since the criteria R
1
 and R

5
 are of non-beneficial 

type, and others are beneficial type, so, it is required to find 

the normalized A-q-ROF evaluation matrix 
⌢

ℕ =

(

�ij

)

m× n
 by 

using Eq. (18) and shown in Table 8. Further, by means 

of Eq. (19), the weighted decision matrix is computed in 

Table 9.

By employing Table 9 and Eq. (20), the score values 

ℵ
(

�̃ij

)

 of q-ROFNs are determined. In accordance with 

Eq. (21), overall assessment index 
(

Υ
i

)

 of each SRP option is 

calculated and presented in Table 10. By means of Eq. (22), 

utility degree 
(

ℚ
i

)

 is assessed as follows: ℚ1 = 0.841, 

ℚ2 = 0.700, ℚ
3
= 0.781. On the basis of utility degree, the 

preference ordering of the SRP candidates is ℚ
1
≻ ℚ

3
≻ ℚ

2
. 

Based on Eq. (23), the desirable SRP option is P
1
. The com-

putational outcomes are shown in Table 10.

Table 7  Criteria weights 

evaluated by the DEs for SRP 

selection

Criteria DEs
Aggregated q-ROFNs 

(

Ws
j

)

�
∗

(

Ws
j

)

ws
j

i1 i2 i3 i4

R
1

H MH MH H (0.785, 0.533, 0.715) 0.666 0.1471

R
2

A H A MH (0.721, 0.600, 0.742) 0.579 0.1279

R
3

H MH A MH (0.756, 0.572, 0.725) 0.622 0.1374

R
4

ML MH ML A (0.621, 0.703, 0.744) 0.446 0.0985

R
5

MH A MH MH (0.723, 0.617, 0.729) 0.571 0.1261

R
6

ML L A A (0.506, 0.779, 0.735) 0.329 0.0727

R
7

A A MH A (0.643, 0.671, 0.756) 0.482 0.1065

R
8

ML H A ML (0.650, 0.668, 0.753) 0.488 0.1078

R
9

L ML ML L (0.393, 0.845, 0.695) 0.228 0.0504

R
10

L VL L VL (0.261, 0.923, 0.581) 0.116 0.0256

Table 8  Normalized A-q-ROF 

evaluation matrix for SRP 

selection

ℝ
0

P
1

P
2

P
3

R
1

(0.723, 0.522, 0.782) (0.723, 0.522, 0.782) (0.534, 0.782, 0.718) (0.583, 0.741, 0.733)

R
2

(0.707, 0.587, 0.763) (0.545, 0.725, 0.770) (0.661, 0.710, 0.707) (0.707, 0.587, 0.763)

R
3

(0.715, 0.578, 0.761) (0.565, 0.745, 0.740) (0.715, 0.578, 0.761) (0.729, 0.622, 0.720)

R
4

(0.667, 0.705, 0.706) (0.619, 0.719, 0.731) (0.624, 0.741, 0.705) (0.667, 0.705, 0.706)

R
5

(0.689, 0.625, 0.754) (0.689, 0.625, 0.754) (0.594, 0.719, 0.748) (0.565, 0.755, 0.730)

R
6

(0.752, 0.579, 0.725) (0.664, 0.672, 0.739) (0.667, 0.710, 0.701) (0.752, 0.579, 0.725)

R
7

(0.659, 0.732, 0.685) (0.605, 0.734, 0.726) (0.642, 0.731, 0.701) (0.659, 0.732, 0.685)

R
8

(0.693, 0.541, 0.798) (0.693, 0.541, 0.798) (0.627, 0.700, 0.743) (0.659, 0.718, 0.700)

R
9

(0.694, 0.615, 0.756) (0.694, 0.615, 0.756) (0.639, 0.754, 0.677) (0.678, 0.703, 0.698)

R
10

(0.672, 0.670, 0.735) (0.638, 0.716, 0.720) (0.672, 0.670, 0.735) (0.704, 0.734, 0.635)

Table 9  Weighted normalized 

q-ROF-DM for SRP selection
ℝ

0
P

1
P

2
P

3

R
1

(0.429, 0.894, 0.592) (0.429, 0.894, 0.592) (0.304, 0.958, 0.451) (0.334, 0.950, 0.474)

R
2

(0.369, 0.939, 0.496) (0.274, 0.963, 0.443) (0.341, 0.960, 0.422) (0.369, 0.939, 0.496)

R
3

(0.392, 0.928, 0.521) (0.299, 0.961, 0.443) (0.392, 0.928, 0.521) (0.402, 0.937, 0.482)

R
4

(0.313, 0.970, 0.386) (0.287, 0.971, 0.391) (0.289, 0.974, 0.373) (0.313, 0.970, 0.386)

R
5

(0.361, 0.944, 0.480) (0.361, 0.944, 0.480) (0.304, 0.961, 0.440) (0.288, 0.966, 0.419)

R
6

(0.341, 0.961, 0.418) (0.292, 0.971, 0.388) (0.294, 0.975, 0.361) (0.341, 0.961, 0.418)

R
7

(0.319, 0.970, 0.380) (0.289, 0.970, 0.397) (0.309, 0.970, 0.388) (0.319, 0.970, 0.380)

R
8

(0.339, 0.941, 0.502) (0.339, 0.941, 0.502) (0.302, 0.966, 0.417) (0.319, 0.968, 0.393)

R
9

(0.291, 0.971, 0.394) (0.291, 0.971, 0.394) (0.264, 0.983, 0.319) (0.283, 0.979, 0.343)

R
10

(0.225, 0.987, 0.297) (0.212, 0.989, 0.280) (0.225, 0.987, 0.297) (0.239, 0.990, 0.250)
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6.1  Sensitivity investigation (SI)

In the current section, the influence of the change in the 

weight values of the criteria is tested through sensitivity 

investigation. Firstly, 11 diverse sets of weight values are 

taken and shown in Table 11. From Table 11 and Fig. 2, one 

of the criteria has higher significance value and remaining 

have lesser significance values in each set. Using this proce-

dure, an elegant choice of considered attributes’ weights are 

obtained to study the SI of q-ROF-ARAS approach.

The results, shown in Table 12 and Fig. 3, represent that 

the degree of utility ℚ
i
∈ [0, 1], (i = 1(1)3) with respect to 

parameter � can be changed under various criteria weight 

sets but the ranking of the SRP candidates is same in each 

criterion set. Thus, it is found that the SRP evaluation pro-

cess is reliant on and delicate to considered sets of criteria 

weights. Therefore, the present q-ROF-ARAS methodol-

ogy is vastly flexible to cope with different circumstances 

in practice.

6.2  Comparative study

To validate the outcomes of the q-ROF-ARAS approach, this 

section displays a comparative study. In this regard, we have 

chosen some previous approaches, namely, the q-ROF-TOP-

SIS method (Liu et al. 2019a) q-ROF-WASPAS (Rani and 

Mishra 2020b) and q-ROF-COPRAS (Krishankumar et al. 

2019) approaches. The results of the comparative study are 

graphically depicted in Fig. 4.

6.2.1  q‑ROF‑TOPSIS method

Steps 1–5: Same as q-ROF-ARAS technique.

Step 6: Assess the ideal solution (IS) and anti-ideal solu-

tion (A-IS) by using

Step 7: Derive the degree of discriminations from IS and 

A-IS:

and

(24)

�+ =

⎧
⎪
⎨
⎪
⎩

max
i

�ij, for benefit criterion Rb

min
i

�ij, for cost criterion Rn

for j = 1(1)n,

(25)

�− =

⎧
⎪
⎨
⎪
⎩

min
i

�ij, for benefit criterion Rb

max
i

�ij, for cost criterion Rn

for j = 1(1)n.

(26)

d
(
Pi, �

+
)
=

1

2

n∑

j=1

[

wj

(
|
|
||
�q
�ij
− �

q

�+

j

|
|
||
+

||
|
|
�q
�ij
− �

q

�+

j

|
|
||
+

||
|
|
�q
�ij
− �

q

�+

j

|
|
||

)]

,

(27)

d
(
Pi, �

−
)
=

1

2

n∑

j=1

[

wj

(
|
|
|
|
�q
�ij
− �

q

�−

j

|
|
|
|
+

||
||
�q
�ij
− �

q

�−

j

||
||
+

|
|
||
�q
�ij
− �

q

�−

j

|
|
||

)]

.

Table 10  Computational results of q-ROF-ARAS approach for SRPs 

assessment

Criteria ℝ
0

P
1

P
2

P
3

R
1

0.182 0.182 0.074 0.091

R
2

0.111 0.064 0.077 0.111

R
3

0.131 0.070 0.131 0.121

R
4

0.059 0.054 0.050 0.059

R
5

0.102 0.102 0.071 0.061

R
6

0.076 0.054 0.049 0.076

R
7

0.060 0.055 0.059 0.060

R
8

0.102 0.102 0.064 0.063

R
9

0.055 0.055 0.035 0.043

R
10

0.020 0.024 0.024 0.021

Overall perfor-

mance rating

0.905 0.761 0.633 0.706

Utility degree – 0.841 0.700 0.781

Ranking 1 3 2

Table 11  Various criteria 

weight sets for SRP selection
� 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
1

0.1982 0.1931 0.1880 0.1829 0.1778 0.1727 0.1675 0.1624 0.1573 0.1522 0.1471

R
2

0.1086 0.1105 0.1125 0.1144 0.1163 0.1183 0.1202 0.1221 0.1240 0.1260 0.1279

R
3

0.1361 0.1362 0.1364 0.1365 0.1366 0.1367 0.1369 0.1370 0.1371 0.1373 0.1374

R
4

0.0776 0.0797 0.0818 0.0839 0.0860 0.0881 0.0901 0.0922 0.0943 0.0964 0.0985

R
5

0.1173 0.1182 0.1191 0.1199 0.1208 0.1217 0.1226 0.1235 0.1243 0.1252 0.1261

R
6

0.0734 0.0733 0.0733 0.0732 0.0731 0.0731 0.0730 0.0729 0.0728 0.0728 0.0727

R
7

0.0891 0.0908 0.0926 0.0943 0.0961 0.0978 0.0995 0.1013 0.1030 0.1048 0.1065

R
8

0.0889 0.0908 0.0927 0.0946 0.0965 0.0984 0.1002 0.1021 0.1040 0.1059 0.1078

R
9

0.0727 0.0705 0.0682 0.0660 0.0638 0.0616 0.0593 0.0571 0.0549 0.0526 0.0504

R
10

0.0381 0.0369 0.0356 0.0343 0.0331 0.0319 0.0306 0.0294 0.0281 0.0268 0.0256
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Fig. 2  Variation of criteria weight values over the parameter (�) for SRP selection

Table 12  The utility index 

of SRP option over different 

criteria weight sets

� 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
1

0.846 0.845 0.844 0.843 0.842 0.841 0.840 0.839 0.838 0.837 0.836

P
2

0.692 0.694 0.695 0.697 0.698 0.700 0.702 0.703 0.705 0.707 0.708

P
3

0.772 0.774 0.776 0.777 0.779 0.781 0.782 0.784 0.786 0.788 0.790

Fig. 3  The variation in the utility measure values over the parameter (�)
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Step 8: Assess the closeness index (CI) utilizing the 

expression

After the evaluation of ℂ
(

P
i

)

, the SRP candidates are 

ranked. However, in many applications, this process is una-

ble to find the optimal ranking. To overcome this drawback, 

Hadi-Vencheh and Mirjaberi (2014) presented the revised 

formula for CI, which as

(28)ℂ
(

P
i

)

=
d
(

P
i
, �−

)

d
(

P
i
, �+

)

+ d
(

P
i
, �−

) , i = 1(1)m. Step 9: Using the closeness indices, the SRP alternatives 

are prioritized.

For the above case study, the IS and A-IS are determined 

using Eqs. (24)–(25) and are given as

�+
={(0.723, 0.522, 0.782), (0.707, 0.587, 0.763), (0.715, 

0.578, 0.761), (0.667, 0.705, 0.706), (0.689, 0.625, 0.754), 

(0.752, 0.579, 0.725), (0.659, 0.732, 0.685), (0.693, 0.541, 

0.798), (0.694, 0.615, 0.756), (0.672, 0.670, 0.735)},

(29)Ψ
(

P
i

)

=
d
(

P
i
, �−

)

dmax

(

P
i
, �−

) −
d
(

P
i
, �+

)

dmin

(

P
i
, �+

) , i = 1(1)m.

Fig. 4  Significance degree of 

SRP candidates with various 

approaches

Table 13  Overall results 

of q-ROF-TOPSIS for SRP 

selection

SRPs d
(

P
i
, �+

)

d
(

P
i
, �−

)

ℂ
(

P
i

)

Ranking ℝ
(

P
i

)

Ranking

P1 0.076 0.119 0.609 1 0.0000 1

P2 0.141 0.059 0.293 3  − 1.3595 3

P3 0.110 0.102 0.480 2  − 0.5902 2

Table 14  Results of q-ROF-

WASPAS model
Options WSM WPM WASPAS �

i
(�) Ranking

�
(1)

i ℵ

(

�
(1)

i

)

�
(2)

i ℵ

(

�
(2)

i

)

P1 (0.653, 0.646, 0.767) 0.5044 (0.668, 0.641, 0.760) 0.5178 0.5111 1

P2 (0.636, 0.708, 0.729) 0.4514 (0.719, 0.627, 0.726) 0.5627 0.5070 3

P3 (0.669, 0.684, 0.725) 0.4892 (0.697, 0.657, 0.723) 0.5275 0.5084 2
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�−

={(0.534, 0.782, 0.718), (0.545, 0.725, 0.770), (0.565, 

0.745, 0.740), (0.624, 0.741, 0.705), (0.565, 0.755, 0.730), 

(0.667, 0.710, 0.701), (0.605, 0.734, 0.726), (0.627, 0.700, 

0.743), (0.639, 0.754, 0.677), (0.638, 0.716, 0.720)}.

Using Eqs. (26)–(29), the whole computational outcomes 

and preference order of the SRPs are offered in Table 13. 

Consequently, the most appropriate SRP candidate is P
1
.

6.2.2  q‑ROF‑WASPAS method

Steps 1–5: Same as proposed technique.

Step 6: Assess the weighted sum measure (WSM) and 

weighted product measure (WPM) for each alternative, 

given as

Step 7: For each alternative, compute the aggregated 

measure of WASPAS with the use of Eq. (32):

wherein � stands for the coefficient of the decision mecha-

nism. It is proposed with the aim of estimating the WASPAS 

accuracy level based on the initial attributes precision and 

when � ∈ [0, 1]. It is already proved that the aggregating 

methods outperform the single models in terms of accuracy.

Step 8: Prioritize the candidates in accordance with the 

increasing degrees (i.e., score values) of �
i
.

Steps 5–8: Applying Eq. (30), Eq. (31) and Eq. (32), the 

WSM 
(

�
(1)

i

)

, WPM 
(

�
(2)

i

)

 and WASPAS measure 
(

�
i

)

 for 

each SRP candidate, and their q-ROF-score values ℵ
(

�
(1)

i

)

 

and ℵ
(

�
(2)

i

)

 are determined in Table 14. Therefore, the pri-

oritization of the SRPs is assessed as P
1
≻ P

3
≻ P

2
 and P1 

is the most desirable option.

6.2.3  q‑ROF‑COPRAS method

Steps 1–4: Same as q-ROF-ARAS technique.

Step 5: Since R1 and R5 are of non-benefit-type and 

remaining is benefit-type, therefore, we analyze the follow-

ing for each candidate to maximize the benefit and minimize 

the cost  preferences �i =
q

⊕
j=1

wj �̃ij, i = 1(1)m and 

�i =
n

⊕
j=q+1

wj �̃ij, i = 1(1)m, respectively. Also, the index 

value is the same as the relative degree of each option.

(30)�
(1)

i
=

n

⊕
j=1

wj �ij.

(31)�
(2)

i
=

n

⊗
j=1

wj �ij.

(32)�
i
= � �

(1)

i
+ (1 − �) �

(2)

i
,

Step 6: Compare the relative degrees of the SRP candi-

dates based on TR
i
= �ℵ

�

�
i

�

+ (1 − �)

m
∑

i=1

ℵ(�i)

ℵ(�i)
m
∑

i=1

1

ℵ(�i)

, i = 1(1)m, 

where parameter � denotes the strategy value of the DE in a 

unit interval. Therefore, we get TR1 = 0.480, TR2 = 0.598 and 

TR5 = 0.628, and get the preference order of the SRP candi-

dates as TR
3
≻ TR

2
≻ TR

1
. The ranking reflects that the 

option P3 is the optimum SRP candidate among the others.

Step 7: Derive the “utility degree” ℏ
i
=

TR
i

TRmax

× 100%, 

which reflects the degree of utility between each option and 

the optimum option. Then, we obtain ℏ1 = 76.43%, 

ℏ2 = 95.22% , and ℏ3 = 100.00% .

In the following, the vital advantages of the presented 

method are listed:

• The q-ROFSs enhance the concentration of linguistic 

knowledge when DEs hesitate among various values to 

evaluate the SRP selection problem. The use of q-ROFSs 

offers a more flexible and effective process to portray 

DEs’ opinions. Therefore, the developed q-ROF-ARAS 

approach is a structured framework to integrate DEs’ 

knowledge and experiences for choosing the desirable 

SRP option.

• In the q-ROF-ARAS framework, the cost-type and the 

benefit-type criteria are taken. Consideration of both 

types of criteria with intricate proportion involves more 

exact information in comparison with just managing 

the cost or benefit types of criteria. Thus, it enhances 

both the comprehensibility of initial information and the 

exactness of the results.

• The proposed model only evaluates q-ROF-IS, whereas 

q-ROF-TOPSIS needs to obtain both q-ROF-IS and 

q-ROF-AIS. Thus, it can be said that the q-ROF-ARAS 

has less computation with a higher operability than TOP-

SIS model in handling the MCDM methods with more 

criteria or options.

• The proposed criteria weighting procedure is based on 

the combination of objective and subjective weighting 

techniques, which makes the proposed method more 

practical and flexible. In addition, there is no threat of 

loss of information as it considers the entropy of attrib-

utes as well as the discrimination between the options, 

while q-ROF-TOPSIS and q-ROF-COPRAS methods are 

randomly provided by DEs.

• As the significance degrees of the DEs are evaluated 

in the introduced approach, therefore, the method pro-

posed in this study can provide more precise decisions 

for decision-making problems, while in q-ROF-COPRAS 

method, significance degree of the DEs is assumed.
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6.3  Implications

The concept of sustainability has become a buzzword in 

today’s business marketplace. In the field of SCM, organiza-

tions are increasingly considering the sustainability in their 

long and short term decisions. As per the literature, there 

are many sustainable practices accomplished to improve 

the sustainability of the supply chain, but there is a lack 

of SRP evaluation practices. As a consequence, the evalu-

ation of recycling partners from sustainability perspective 

will become a significant topic for supply chain managers. 

In order to assess the recycling partners from sustainability 

viewpoint, the present study covers two main aims which 

have certain implications for supply chain managers. The 

first one is to suggest a list of sustainability dimensions of 

criteria, and the second one is to introduce a new decision-

making model for SMEs to execute sustainable recycling 

practices under highly uncertain environment.

The results of the study suggest several important insights 

over the considered evaluation criteria and suitable recy-

cling partners for SMEs. The weight-determining model 

developed in this study can help the supply chain managers 

to decide the significance ratings of specific sustainability 

criteria. An integrated model based on objective and sub-

jective weights of sustainability criteria makes the decision 

outcomes more consistent. The weights display that Pollu-

tion and waste production (0.1471) was the most important 

criterion, followed by the Environmental MIS (0.1374), 

Resource use efficiency (0.1279), and others, whereas the 

criterion with minimum significant value is Brand reputation 

(0.0256). In the present study, the q-ROF-ARAS technique 

is used to select the optimum recycling partner from sustain-

ability point of view. Moreover, from a practical applications 

viewpoint, the developed approach is easy to use. The results 

of the present study will assist the SMEs in understanding 

the influence of diverse sustainability factors on the perfor-

mance of the recycling partners and providing a clear picture 

of how to make proper decisions.

7  Conclusions

The assessment and selection of the SRP for SMEs are sig-

nificant issue in SSCM. Due to increased environmental 

issues, uncertainty of human mind and involvement of sev-

eral influencing factors, the SRP selection procedure can be 

treated as an uncertain MCDM problem. Since q-ROFSs are 

more flexible and significant way to express the uncertain 

information, therefore, this study has been developed a new 

MCDM model for assessing SRP options under q-ROFSs 

environment. This model has been introduced with the inte-

gration of classical ARAS approach, basic operational laws 

of q-ROFSs, and q-ROF-information measures within the 

perspective of q-ROFSs. Next, the criteria weights have been 

estimated by integrating the subjective weights uttered by 

DEs and the objective ones obtained by proposed informa-

tion measures-based procedure. To evaluate the objective 

weights, novel entropy and discrimination measures have 

been proposed under q-ROFS context.

Further, the introduced ARAS methodology has been 

applied to evaluate the best SRP on q-ROFSs settings, which 

displays the practicality and feasibility of q-ROF-ARAS 

approach. To validate the results, a comparison with exist-

ing method has been conferred. To verify the stability of 

the presented methodology, SI has also been revealed. The 

outcomes obtained by the q-ROF-ARAS model prove that 

the introduced model has a well-mannered effectiveness and 

steadiness, and is well consistent with the extant models.

On the other hand, there are some limitations that must 

be addressed in future research, given as

• The approach proposed herein cannot deal with the cor-

relative MCDM problems.

• This study has limitation in handling the uncertain, 

imprecise, indeterminate and inconsistent information.

• More aspects of sustainability factors should be consid-

ered in the assessment SRPs.

In further study, we will try to address the aforesaid limi-

tations. In addition, future investigation must be undertaken 

for more alternatives. Furthermore, the developed ARAS 

model can be generalized using interval-valued q-ROFSs, 

hesitant q-ROFSs, dual hesitant q-ROFSs and cubic 

q-ROFSs to evaluate the SRP candidates. Also, we will use 

the q-ROF-ARAS model to solve various problems, namely 

WEEE recycling partner selection, low carbon supplier 

selection, e-commerce service design and others.
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