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Abstract: Healthcare waste (HCW) management is an intricate issue upon which numerous factors,
such as technical, economic, environmental, and social factors, have an impact. A determination
on the best treatment method for HCW management can be viewed as a challenging multi-criteria
decision-making (MCDM) problem in which various options and evaluation criteria are considered.
One critical concern when assessing HCW treatment (HCWT) methods is the representation and
treatment of dubious data. In this paper, we present a q-rung orthopair fuzzy full consistency method
double normalization-based multi-aggregation methodology called q-ROF-FUCOM-DNMA to solve
MCDM problems with q-rung orthopair fuzzy information (q-ROFI). In the proposed approach,
criteria weights are estimated through the full consistency method (FUCOM) and a ranking of the
alternatives is obtained through the double-normalization-based multi-aggregation (DNMA) method
with q-ROFI. A HCWT method assessment issue was considered in order to clarify the relevance of the
proposed approach. Five HCWT methods, including chemical disinfection, microwave disinfection,
incineration, autoclaving (steam sterilization), and reverse polymerization, were considered as
alternatives. The results show that autoclaving (steam sterilization) is the most efficient HCWT
method. Furthermore, we performed a sensitivity analysis to determine the stability of the proposed
approach. Additionally, we compared the presented approach with existing methods.

Keywords: sustainability; healthcare waste treatment method; healthcare sustainable assessment;
q-rung orthopair fuzzy sets; FUCOM; DNMA; MCDM

1. Introduction

Due to rapid population growth and the increase in the number of healthcare facilities,
the provision of safe and proper supervision of healthcare waste (HCW) has become
a public health and ecological issue for healthcare organizations and municipalities [1].
Healthcare facilities exist to ensure human survival; however, the clinical waste produced
in healthcare centers carries different microorganisms that could contaminate the natural
environment (e.g., water, soil, and air) and spread disease to imperil human health [2,3].
According to the World Health Organization (WHO), “HCW [i]s any waste that is produced
from the detection, treatment, or prevention of ailments in humans or animals” [4,5]. To
adeptly separate hazardous from non-hazardous HCWs, precise protocols have been
implemented by several developed and emerging nations. Non-hazardous wastes can
be treated with municipal solid wastes (MSWs); however, hazardous HCWs need to be
carefully treated and disposed of in isolation. Improper waste management can cause
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environmental pollution and numerous harmful diseases in human beings. Thus, choosing
methods for the safe and effective treatment and disposal of HCW is essential for human
well-being and the environment [6,7].

The HCW management process includes the collection of waste from medical/health-
care centers, the selection of a treatment method, and the selection of a location for the
disposal of the waste. Due to their major economic, environmental, and social impacts, the
assessment of healthcare waste treatment (HCWT) methods, in terms of their effectiveness
and appropriateness, is considered an open issue of considerable research interest [8].
With the purpose of choosing the most suitable medical waste treatment method, deci-
sion experts (DEs) consider several qualitative and quantitative criteria. Each treatment
method has a different performance score for each assessment criterion. Nonetheless, no
treatment method exists that is better than all other methods when considering all of the
assessment criteria. Thus, the assessment of HCWT methods can be viewed a multi-criteria
decision-making (MCDM) problem in which different attributes/factors are considered.
Consequently, a methodology for the evaluation of HCWT methods that considers various
conflicting criteria is desirable.

Several scholars have paid attention to HCW management practices. For instance,
Dursun et al. [9,10] employed a fuzzy-logic-based decision-making framework to choose
the best method for the disposal and treatment of HCW. Ozkan [11] examined the cur-
rent state of HCW management in Turkey and selected the best treatment method from
a set of treatment methods. Voudrias [6] employed an AHP model to assess five differ-
ent methods for the treatment of infectious medical waste in terms of different criteria.
Aung et al. [4] presented a procedure for the evaluation of the medical waste management
arrangement in Myanmar. Recently, Yazdani et al. [12] assessed locations for the disposal
of HCW using an integrated best–worst model (BWM) with interval rough numbers (IRNs).
Mishra et al. [13] presented a model comprised of the complex proportional assessment
(COPRAS) method and interval-valued intuitionistic fuzzy sets (IVIFSs) for selecting an
appropriate safety and health evaluation facility (SHEH) in hazardous waste recycling
organizations. Mishra et al. [14] presented a modified evaluation based on distance from
the average solution (EDAS) method on intuitionistic fuzzy sets (IFSs) for the estimation of
the best method for the disposal of HCW. Liu et al. [15] discussed and prioritized medical
waste treatment methods using the Pythagorean fuzzy-logic-based combined compromise
solution (CoCoSo) method. When using this method, it is first necessary to obtain the
importance weights of the criteria to be considered in the selection of a waste disposal
method and then rank the alternatives. To select an appropriate HCWT method, we need
to consider more sustainability dimensions and criteria. In this study, we first use the full
consistency method (FUCOM) in the q-rung orthopair fuzzy sets (q-ROFSs) environment to
reduce the subjectivity in the decision-making procedure by determining the weights of
the criteria in an environment characterized by uncertainty.

Due to imprecise information, ambiguous human observations, time constraints, and
deficiencies in information, the selection and prioritization of appropriate HCWT method
is a significant and uncertain MCDM problem faced by hospitals and medical centers. As
the fact that the q-ROFSs have more operative capability than the IFSs and “Pythagorean
fuzzy sets (PFSs)” to treat the ambiguity and imprecision occurred in various realistic
MCDM issues. Due to this advantage, the paper is developed under q-ROFSs setting for
the assessment of HCWT methods. In this study, the authors have extended the “dou-
ble normalization-based multi-aggregation (DNMA)” method to select most appropriate
HCWT method with “q-rung orthopair fuzzy information (q-ROFI)”. This research fo-
cuses on the combination of the FUCOM and DNMA methods on q-ROFSs called “q-rung
orthopair fuzzy-full consistency method-double normalization-based multi-aggregation
(q-ROF-FUCOM-DNMA)” methodology for the first time. The novel contributions are
presented as follows:

• An integrated q-ROF-FUCOM-DNMA methodology is developed for the evaluation
of MCDM problems.
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• FUCOM is used to obtain the attributes’ weight for assessing the HCWT method.
• To reveal the practicality and usefulness of q-ROF-FUCOM-DNMA approach, a case

study of HCWT method selection is taken on q-ROFSs.
• Sensitivity investigation and comparisons are made to certify the outcomes and display

the advantage of the developed methodology.

The remaining paper is designed as follows: In Section 2, we present a brief literature
review. In Section 3, we present some important and vital concepts of q-ROFSs. In Section 4,
we develop an integrated q-ROF-FUCOM-DNMA approach. In Section 5, we discuss a case
study of HCWT method selection to implement and polish the proposed method. Section 6
shows, with sensitivity, investigation, comparison, implication, and discussion related to
the developed technique. In Section 7, we conclude the study and provide an outline of
future works.

2. Literature Review

This section presents the ample review about the study.

2.1. q-Rung Orthopair Fuzzy Sets (q-ROFSs)

Due to indeterminacy of human thinking and increasing complexity of daily life
problems, it is not possible for DEs to offer assessment information quantitatively or quali-
tatively through precise numerical values in several practical problems. To deal with this
issue, Zadeh [16] firstly invented the notion of “fuzzy sets (FSs)” theory and widely applied
for different purposes. As an extension of FSs, Atanassov [17] introduced the “intuitionistic
fuzzy sets (IFSs)” theory to portray the vagueness in accordance with “belongingness grade
(BG)” and “non-belongingness grade (NBG)”. Since IFSs was originated, copious authors
have carried out in-depth studies [18–22]. It necessitates that the sum of BG and NBG
should not exceed 1, and this limits its application in viable dynamic issues. Under this
requirement, much complex assessment data cannot be portrayed as some decision makers
may suggest some assessing criteria values that surpass the restriction. For instance, if
the BG and the NBG of an assessing criterion value presented by a DE are 0.9 and 0.6,
respectively, at that point the IFSs are not reasonable to be utilized for this sort of issue.
Further, Yager [23] introduced the concept of PFSs, where a prominent condition of PFSs
is that the squares addition of the BG and NBG is ≤1 . Consequently, PFSs can be em-
ployed to deal with various MCDM problems wherein IFSs cannot be utilized to manage
such types of issues. In this way, PFSs are more preferable in articulating fuzzy data than
IFSs. In view of the theory of PFSs, numerous broad studies have been carried out. For
instance, Rani et al. [24] employed the divergence and entropy based “vlsekriterijumska
optimizcija I kaompromisno resenje (VIKOR)” model to study the MCDM issues that has
shown to be well fit to explain the “renewable energy resources (RESs)” selection in India.
Alrasheedi et al. [25] gave a comprehensive model to assess suppliers in manufacturing
sectors under PFSs.

The main flaws of IFSs and PFSs are that they cannot offer a wider space for pref-
erence elicitation due to their bounding constraint. To cope with the concern, Yager [26]
established the notion of “q-rung orthopair fuzzy sets (q-ROFSs)” that satisfy that the qth

powers sum of BG and NBG is ≤1 , where q ≥ 1. When q = 1 and q = 2, the q-ROFSs
are generated by the IFSs and PFSs, respectively. Therefore, it is evident that q-ROFSs are
more elegant than the IFSs and PFSs. Due to the unique advantages of q-ROFSs, many
scholars have focused their studies on q-ROFSs. For example, Peng et al. [27] originated
a score function for “q-rung orthopair fuzzy numbers (q-ROFNs)”and employed for de-
veloping a novel algorithm using the “weighted distance-based approximation (WDBA)”
method. Wang et al. [28] developed a modified “multi-attributive border approximation
area comparison (MABAC)” approach on “q-rung orthopair fuzzy information (q-ROFI)”
for treating the MCDM problems. Rani and Mishra [29] studied an extended “weighted ag-
gregated sum product assessment (WASPAS)” approach with q-ROFSs for the evaluation of
multi-criteria fuel technology selection. Mishra and Rani [30] provided a q-rung orthopair
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fuzzy-“additive ratio assessment (ARAS)” model using the entropy and discrimination
measures for handling the sustainable recycling partner selection problem. Xin et al. [31]
developed a framework using the “stepwise weight assessment ratio analysis (SWARA)”
and the COPRAS approach to evaluate the challenges of sustainable supply chain 4.0
in a q-ROFSs setting. However, there are very few studies concerning the evaluation of
multi-criteria HCWT method selection process under q-ROFSs environment.

2.2. FUCOM Method

In the literature, some popular procedures which are identical to the “analytic hier-
archy process (AHP)” method [32] and the BWM [33] have been developed. According
to the doctrines of comparisons in pairs of attributes, and the outcomes validation by
defining deviation from the utmost consistency, the FUCOM [34] was established. The
main advantages of the FUCOM are: (i) minimum number of pairwise comparisons of
attributes (only n − 1 comparison), (ii) validation of the outcomes through “deviation from
full consistency (DFC)” of the comparison, and (iii) removing the concern of redundancy
of pairwise comparisons of attributes, which is presented in several subjective weighting
procedures for evaluating criteria weights [34]. Recently, Fazlollahtabar et al. [35] eval-
uated and selected a forklift in a warehouse by using integrated FUCOM and WASPAS
models. Stević and Brkovic [36] suggested a combined model by integrating FUCOM
and “measurement alternatives and ranking based on compromise solution (MARCOS)”
methods to tackle the “human resources management (HRM)” in a transport business.
Pamučar et al. [37] introduced fuzzy FUCOM for ranking the transport demand processes
in Istanbul’s urban mobility structure.

2.3. DNMA Method

With the ever-increasing intricacy and wide-ranging challenges of today’s environ-
ment, numerous MCDM approaches have been introduced by copious authors. The MCDM
models can be characterized into two ways: (i) Outranking tools such as “elimination et
choix traduisant la realité (ELECTRE)” and “preference ranking organization method for
enrichment of evaluation (PROMETHEE)”, and (ii) utility degree-based approaches such
as “technique for order performance by similarity to ideal solution (TOPSIS)”, VIKOR,
“multi-attribute multi-objective optimization by ratio analysis (MULTIMOORA)”, and
“simple multi-attribute rating technique (SMART)”. Several procedures or algorithms for
optimizing the problem have been developed using optimization, “artificial intelligence
(AI)”, and soft computing. Related study on AI is emerging in an endless stream, especially
research on uncertainty-based decision making and other methods, such as Zhao and
Zhang’s [38] development of a learning-based model to improve generalization ability.
They included a “decomposition-based many-objective optimization (MOOD)” framework
and a “learning automaton (LA)”. The LA amends the “evolutionary algorithm (EA)” to
acclimate to the problem features based on the feedback information during the optimizing
model. Pasha et al. [39] introduced a combined optimization model that addresses all the
key tactical liner shipping decisions and permits the deployment of a heterogeneous ship
fleet at each route. They also presented a decomposition-based heuristic model to tackle
large-size problem instances. Dulebenets [40] presented an “adaptive polyploid memetic
algorithm (APMA)” for the problem of scheduling “cross-docking terminal (CDT)” trucks
that can support with appropriate CDT operations planning. The APMA depends on the
polyploidy doctrine. They controlled the number of chromosome copies with the adaptive
polyploid tool using the objective function improvements achieved and computational
time changes. Pasha et al. [41] presented a “mixed-integer linear programming (MILP)”
tool, which purposes to minimize the total cost of the “factory-in-a-box” supply chain.
They utilized the CPLEX software to tackle the approach to the global optimality, while
four “metaheuristic algorithms (MAs)”, comprising the “evolutionary algorithm (EA)”,
“variable neighborhood search (VNS)”, and “simulated annealing (SA)”, are utilized to
treat the approach for large scale problem instances. Theophilus et al. [42] introduced a
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mixed-integer mathematical structure for the truck scheduling optimization at a cold-chain
CDT to improve the efficiency of perishable product distribution. The outcome of the
proposed algorithm validates an acceptable stability of the solution quality at termination.
Rabbani et al. [43] defined diverse patient groups using their needs and characteristics.
They developed an MILP model to obtain the suitable sequence of routes for each am-
bulance and minimize the latest “service completion time (SCT)” as well as the number
of patients whose condition worsens due to receiving untimely medical services. They
also used “non-dominated sorting genetic algorithm-II (NSGA-II)” and “multi-objective
particle swarm optimization (MOPSO)” to obtain high-quality solutions over a short time.
Next, the utility-based approaches only employed single normalization technique to non-
dimensionalize assessment values over diverse attributes. In this way, utilizing a predefined
normalization tool may bias the outcomes when the normalization process is not appropri-
ate. To conquer this issue, Liao and Wu [44] intended a new utility value-based approach,
namely, the “double normalization-based multi-aggregation (DNMA)” framework, which
takes the benefits of different normalization methods and aggregation functions and com-
bines them in an appropriate way. The overall integration function of DNMA approach
widely considers the subordinate utility degrees and the ranks of options, and thus the
overall priority outcome has high dependability. Nie et al. [45] proposed a multi-expert
MCDM technique by combining a DNMA approach with cardinal consensus reaching
procedure under “hesitant fuzzy linguistic term sets (HFLTSs)”. Lai et al. [46] studied a
Z-number-based DNMA methodology to treat with the form of beneficial, non-beneficial,
and target types for sustainable cloud service provider development. Wang and Rani [47]
made an extension the DNMA approach on IFSs context for the identification, ranking, and
evaluation of the sustainability risk factors in “supply chain management (SCM)”. Here,
we develop a combination of FUCOM and DNMA based method under q-ROFSs setting
for the evaluation of HCWT method selection.

2.4. Literature Summary and Contributions

In this study, we want to select the suitable HCWT method. To tackle this concern, we
have considered one of the optimization techniques based on the utility degree method of
MCDM tool, called DNMA. We have also chosen one of the weighting procedures to obtain
the attribute weights of MCDM model. From the aforementioned literature, we are inspired
to extend the MCDM methods called FUCOM and DNMA on q-ROFSs settings, because we
have observed that there is a gap at the extension of the presented approaches in q-ROFSs
settings. Here, this motivation guides us to develop the methods q-ROF-FUCOM and
q-ROF-DNMA in the decision-making process.

In this work, the implementation of the DNMA tool is discussed. This tool is very
robust compared to diverse MCDM models. The certain benefits of the DNMA tool are
that of other MCDM models (more sophisticated, stable, and with easy mathematical
calculations). Additionally, there are distinct benefits to the DNMA tool, the combination
of different normalization processes and aggregation functions to aggregate them in an
appropriate way. The overall integration function of the DNMA approach widely considers
the subordinate utility degrees and the ranks of options and, thus, the overall priority
outcome has high dependability. After analyzing the advantages and disadvantages of the
linear and vector normalization process, we make a suitable combination on two kinds of
normalized values and three types of aggregation models to derive the subordinate utility
values and ranks. It can reduce the information loss caused by one normalization technique
used in DEMATEL-MULTIMOORA [1], AHP method [6], ordered weighted averaging
(OWA)-based fuzzy measure methods [9,10], ANP-ELECTRE method [11], and IF-EDAS
method [14]. To sum up, the common flaw of the extant models is that they eliminate
the attribute dimensions only based on one normalization process, which may bias the
outcomes as all the normalization processes lose the original information more or less from
different aspects.
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In this study, the FOCUM is applied to obtain the subjective weight of attributes based
on the doctrines of pairwise comparisons of attributes and the outcomes validation by
DFC [34]. It requires a lower number of pairwise comparisons of attributes (only n − 1
comparisons), which results in more accurate, optimal weights. In Voudrias [6], the AHP
and ANP-based weighting technique is utilized to obtain the weights of the attributes.
In this procedure, the total n(n − 1)/2 pairwise comparisons of attributes are required.
In a similar way, Özkan [11] utilized the ANP to obtain the attribute weight, which is a
general form of AHP. It is very tough to execute entirely consistent pairwise comparisons
if the number of criteria is high. In Mishra et al. [14], discrimination measure-based
procedure is used to assess the criteria weights, which loses some original information
from different aspects. In Liu et al. [1], the DEMATEL tool was used to obtain the weights
of attributes. By comparing to other MCDM tools, some drawbacks of the DEMATEL
tool become apparent, such as (a) it provides the priority order of options with the use of
interdependent relationships among the options, but other aspects are not combined in
the decision-making problem, and (b) the weight values of the DEs are not considered by
combining individual decisions of DEs into group evaluations. Hence, the DEMATEL has
been combined with different decision-making tools to obtain the desired outcomes.

Corresponding to the extant literature on the HCWT management in MCDM, a few
authors have studied this application with q-ROF-DNMA. To date, there are no studies on
q-ROF-FUCOM-DNMA. To fill this research gap, we developed the q-ROF-FUCOM-DNMA
methodology. This presented weighting procedure and ranking approach give the chance
to elucidate DE’s hesitation and ambiguity when they are providing the values for choosing
the suitable option. Furthermore, the application of HCWT method selection has a lot
of hesitant and vague terms, as well as some vague attributes. When DEs provide the
degrees for attributes, they want to illustrate their views of hesitation and ambiguity, and
the q-ROFSs assist to assign the BDs in terms of q-ROFNs. Hence, application of HCWT
with q-ROFNs is considered the key motivation of this study.

3. Preliminaries

Here, we highlight on some important concepts related to the q-ROFSs.

Definition 1 [26]: Let U = {u1, u2, . . . , un} be a fixed set. Then, a q-ROFS α on U is defined as

α = {〈ui, µα(ui), γα(ui)〉 : ui ∈ U},

where µα(ui) and γα(ui) portray the BD and NBD, respectively, of ui ∈ U on q-ROFS α and
0 ≤ µα(ui), γα(ui) ≤ 1 with 0 ≤ (µα(ui))

q + (γα(ui))
q ≤ 1, (q ≥ 1). The hesitancy degree

of ui ∈ U in the q-ROFS α is δα(ui) =
(
1− (µα(ui))

q − (γα(ui))
q) 1

q and 0 ≤ δα(ui) ≤ 1.
Yager [26] gave the “q-rung orthopair fuzzy number (q-ROFN)” as a pair 〈µα(x), γα(x)〉. For
easiness, we shall apply the symbol α = 〈µα, γα〉 to signify a q-ROFN.

Definition 2 [48]: For a q-ROFN α, the score value is given by

S(α) = µα
q − γα

q,

where −1 ≤ S(α) ≤ 1. It is found that the score degree cannot be effectively utilized to distin-
guish some q-ROFNs in several particular cases. For instance, if α1 = 〈0.6138, 0.2534〉 and
α2 = 〈0.7147, 0.4453〉, then S(α1) = 0.3125 = S(α2) (take q = 2). Hence, we should not depend
exclusively on the score function to compare the q-ROFNs. To tackle this issue, Liu and Wang [48]
discussed the notion of accuracy function of a q-ROFN.

Definition 3: For α = 〈µα, γα〉, the accuracy value is given by

A(α) = µα
q + γα

q, where 0 ≤ A(α) ≤ 1.

Based on the score value and accuracy value, a comparative procedure is discussed as
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Definition 4 [48]: For any two q-ROFNs, α1 = 〈µα1 , γα1〉 and α2 = 〈µα2 , γα2〉, we have

(1) If S(α1) > S(α2), then α1 � α2;
(2) If S(α1) = S(α2), then

(i) if A(α1) > A(α2), then α1 � α2;
(ii) if A(α1) = A(α2), then α1 = α2.

Definition 5 [48]: Suppose α1 = 〈µα1 , γα1〉 and α2 = 〈µα2 , γα2〉 to be two q-ROFNs and
λ > 0. Then,

(i) α1 ⊕ α2 =

〈(
1−

(
1− µ

q
α1

)(
1− µ

q
α2

)) 1
q , γα1 γα2

〉
;

(ii) α1 ⊗ α2 =

〈
µα1 µα2 ,

(
1−

(
1− γ

q
α1

)(
1− γ

q
α2

)) 1
q
〉

;

(iii) λα1 =

〈(
1−

(
1− µ

q
α1

)λ
) 1

q
, γλ

α1

〉
;

(iv) αλ
1 =

〈
µλ

α1
,
(

1−
(

1− γ
q
α1

)λ
) 1

q
〉

.

Definition 6 [49]: For any two q-ROFNs, α1 = 〈µα1 , γα1〉 and α2 = 〈µα2 , γα2〉, the distance
measure between them is given as:

d(α1, α2) =
1
2

(∣∣∣µq
α1 − µ

q
α2

∣∣∣+ ∣∣∣γq
α1 − γ

q
α2

∣∣∣+ ∣∣∣δq
α1 − δ

q
α2

∣∣∣).

Definition 7 [49]: Suppose α1 = 〈µα1 , γα1〉 be a q-ROFN. Then, the entropy is given by

En(α1) =
1−

∣∣∣µq
α1 − γ

q
α1

∣∣∣
1 +

∣∣∣µq
α1 − γ

q
α1

∣∣∣ .

4. Proposed q-ROF-FUCOM-DNMA Methodology

To overcome the defects of the utility based methods such as MULTIMOORA, TOPSIS,
VIKOR, and SMART, the DNMA approach was initiated by Liao and Wu [38]. In DNMA
methodology, two kinds of normalization procedures, namely linear normalization and
vector normalization, are used. This method is a combination of three kinds of aggregation
processes, “complete compensatory model (CCM)”, “un-compensatory model (UCM)”,
and “incomplete compensatory model (ICM)”. The good assessment value of the option
over certain criteria for a CCM based model completely fulfills the dearth of the poor
assessment of an option over other criteria and, afterwards, with the considered criteria, the
obtained best option attains the highest assessment value. Moreover, with the considered
criteria, the worst performance of an alternative is performed by the UCM model. The
underlying issue of fulfillment of deficiency in performance for some alternatives by one
certain alternative’s good performance gives rise to the ICM model. By merging the final
outcomes of these aforesaid three aggregation models, it is possible to obtain the resultant
values of the alternatives.

To solve a MCDM problem comprising m different options H1, H2, . . . , Hm in which
these options are evaluated in q-ROFSs environment over the set of n criteria G1, G2, . . .
. . . , Gn, we develop an integrated q-ROF-FUCOM-DNMA method with the steps gained
as follows (see Figure 1):
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Step 1: Obtain the DEs’ weights.
Let D̃k = 〈µk, γk〉, 0 ≤ (µk)

2 + (γk)
2 ≤ 1 ∀ k = 1, 2, 3 be a q-ROFN signifying the

initial assessment result of kth DE. Then, the weight ϑk of kth DE Dk can be defined by

ϑk =
θ

q
k

l
∑

k=1
θ

q
k

, k = 1, 2, . . . , l, (1)

where θ
q
k = µk + (1− µk

q − γk
q)

1
q
(

γk
µk+γk

)
, k = 1, 2, . . . , l, and

l
∑

k=1
ϑk = 1.

Step 2: Assemble the assessment values of each DEs in terms of “linguistic decision
matrices (LDMs)” D̃k =

(
αij

(k)
)

m×n
=
(〈

µij
(k), γij

(k)
〉)

m×n
(k = 1, 2, . . . , l).

Step 3: Aggregate the individual decision opinions using the “q-rung orthopair fuzzy
weighted averaging (q-ROFWA)” operator.

Note that, in an aggregation process, all single matrices need to combine to form the
aggregated decision matrix.

Let D∗ =
(

α∗ij

)
m×n

=
(〈

µ∗ij, γ∗ij

〉)
m×n

be the “aggregated q-ROF-decision-matrix

(A-q-ROF-DM)”, wherein

α∗ij = qROFA
(

α
(1)
ij , α

(2)
ij , . . . , α

(l)
ij

)
.
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Thus, by definition of Liu and Wang [42], we have

q− ROFWA
(

α
(1)
ij , α

(2)
ij , . . . , α

(l)
ij

)
=

〈(
1−

l

∏
k=1

(
1−

(
µij

(k)
)q)ϑk

) 1
q

,
l

∏
k=1

(
γij

(k)
)ϑk

〉
. (2)

Step 4: Compute the criteria weights by FUCOM method.
In the framework of MCDM, it is considered that the resolution of criteria’s relative

weights is one of the tangible problems in the verge of subjectivity without loss of generality.
Due to the crucial impact of weight coefficients to the solution in some methods, this
procedure gains great importance and plays a vital character in the final result of the
MCDM settings. Here, for computing the criteria weights, we deploy FUCOM method.
Under the conviction of a definite level of hierarchy alongside the joint fulfillment of the
comparison consistency’s situations, it is possible to accurately measure the ratings of the
criteria weight coefficients by employing this method.

Here, we furnished the steps to determine the criteria weights by FUCOM method:
Step 4.1: At the very beginning, we attempt in this step the ranking of the evaluation

criteria G1, G2, G3, . . . , Gn. The preference order is obtained based on the highest impor-
tance to lowest importance of criteria. Thus, we refer that the obtained desired values of
the weight coefficients make it possible to frame the ranking of the criteria that can be
viewed as:

Gj(1) > Gj(2) > Gj(3) > . . . > Gj(σ) (3)

where σ expresses the rank of the observed criterion.
Step 4.2: In this step, we discuss a comparative study of the ranked criteria as well as the

determination of the evaluation criteria’s comparative priority
(

Θσ/(σ+1) ; σ = 1, 2, 3, . . . , n
)

.
Importantly, the preference is given to the comparative priority Θσ/(σ+1) of the evaluation
criteria related to the rank Gj(σ) while compared with that of the Gj(σ+1). In this way,
we can suggest below an expression which is responsible to vectors of the comparative
priorities associated with the corresponding evaluation criteria:

ψ =
(

Θ1/2, Θ2/3, . . . , Θσ/(σ+1)

)
(4)

where it is pursued the significance by the Θσ/(σ+1) that the criterion of the rank Gj(σ) is
assessed by the criterion of rank Gj(σ+1).

Step 4.3: In this step, it is required to compute the outcomes of the weight coefficients
of the assessment criteria (w1, w2, . . . , wn)

T . Below, we present two constraints that are
obeyed by the final results of the weight coefficients.

(I) The comparative preference among the considered criteria coincides with the ratio of
the weight coefficients, i.e., the below mentioned condition must be satisfied.

wσ

wσ+1
= Θσ/(σ+1) (5)

(II) In addition to Equation (5), the condition of mathematical transitivity, i.e., Θσ/(σ+1) ×
Θ(σ+1)/(σ+2) = Θσ/(σ+2) must be fulfilled by the overall degrees of the weight co-
efficients. As Θσ/(σ+1) =

wσ
wσ+1

and Θ(σ+1)/(σ+2) =
wσ+1
wσ+2

, so wσ
wσ+2

= wσ
wσ+1

× wσ+1
wσ+2

is
obtained; thus, showing yet another constraint that the final degrees of the weight
coefficients of the assessment criteria require an encounter and is estimated as

wσ

wσ+2
= Θσ/(σ+1) × Θ(σ+1)/(σ+2). (6)

It is important to mention here that the minimum “deviation from full consistency
(DFC)” (Ω) is fulfilled only if we successfully enter into the transitivity, i.e., when we
undertake both the conditions wσ

wσ+1
= Θσ/(σ+1) and wσ

wσ+2
= Θσ/(σ+1) × Θ(σ+1)/(σ+2). To
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implement this, the values of the weight coefficients (w1, w2, . . . , wn)
T should comply

with the conditions
∣∣∣ wσ

wσ+1
−Θσ/(σ+1)

∣∣∣ ≤ Ω and
∣∣∣ wσ

wσ+2
−Θσ/(σ+1) × Θ(σ+1)/(σ+2)

∣∣∣ ≤ Ω
with the minimization of the value Ω.

Based on the constraints and settings cited above, below we address the desired model
for calculating the final degrees of the weight coefficients of the assessment criteria:

Min Ω∣∣∣ wσ
wσ+1

−Θσ/(σ+1)

∣∣∣ ≤ Ω,
∣∣∣ wσ

wσ+2
−Θσ/(σ+1) × Θ(σ+1)/(σ+2)

∣∣∣ ≤ Ω, ∀ σ

wj ≥ 0, ∀ j,
n
∑

j=1
wj = 1.

(7)

By solving (5), the final weights (w1, w2, . . . , wn)
T of the evaluation criteria are obtained.

Step 5: Estimate the linear normalized-matrix R̃1 =
(

R̃1
ij

)
m×n

.

Corresponding to the weighted A-q-ROF-DM, we obtain the linear normalized ratings
using Equation (8).

R̃1
ij = 1−

d(α∗ij, α∗j )

max
i

d(α∗ij, α∗j )
, (8)

where
d(α∗ij, α∗j ) =

1
2

(∣∣∣(µ∗ij)q − (µ∗j )
q
∣∣∣+ ∣∣∣(γ∗ij)q − (γ∗j )

q
∣∣∣+ ∣∣∣(δ∗ij)q − (δ∗j )

q
∣∣∣) (9)

and α∗j =
〈

µ∗j , γ∗j

〉
is the normalized q-ROFN on the criterion Gj, j = 1, 2, . . . , n.

Step 6: Compute the vector normalized-matrix R̃2 =
(

R̃2
ij

)
m×n

.

Corresponding to the weighted A-q-ROF-DM, the vector normalized ratings are esti-
mated by Equation (10) by employing the entropy measures given in Equations (11) and (12).

R̃2
ij = 1−

∣∣∣En(α∗ij)− En(α∗j )
∣∣∣

m
∑

i=1

((
En(α∗ij)

)2
+
(

En(α∗j )
)2
) (10)

En(α∗ij) =
1−

∣∣∣(µ∗ij)q − (γ∗ij)
q
∣∣∣

1 +
∣∣∣(µ∗ij)q − (γ∗ij)

q
∣∣∣ (11)

En(α∗j ) =
1−

∣∣∣(µ∗j )q − (γ∗j )
q
∣∣∣

1 +
∣∣∣(µ∗j )q − (γ∗j )

q
∣∣∣ (12)

Step 7: Find adjusted weights for criteria.
The S.D. and adjusted weight coefficient of criteria are determined by

Equations (13) and (14) as follows:

σj =

√√√√√ 1
m

m

∑
i=1

 En(α∗ij)

max
i

En(α∗ij)
− 1

m

m

∑
i=1

 En(α∗ij)

max
i

En(α∗ij)

2

, j = 1, 2, . . . , n, (13)

w̃σ
j =

σj
n
∑

j=1
σj

, j = 1 , 2, . . . , n. (14)
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By combining the linear normalized ratings with diverse criteria, the criteria weights
can be adjusted as

w̃j =

√
w̃σ

j × wj

n
∑

j=1

√
w̃σ

j × wj

, j = 1 , 2, . . . , n. (15)

Step 8: Evaluate the normalized values of R̃1
ij and R̃2

ij.

To derive the comprehensive performance of each option, R̃1
ij and R̃2

ij can be
normalized as

R
1
ij =

R̃1
ij

max
i

R̃1
ij

and R
2
ij =

R̃2
ij

max
i

R̃2
ij

. (16)

Step 9: Calculate the subordinate values of the alternatives based on CCM, UCM, and
ICM models.

In particular, for determination of the subordinate values of the alternatives, we require
to utilize three aggregation models distinct in nature in accordance with the target based
normalization values of two categories.

Step 9.1: The subordinate values of the alternative Hi, i = 1, 2, . . . , m based on CCM is
computed as

S1(Hi) =
n

∑
j=1

w̃jR
1
ij, i = 1, 2, . . . , m. (17)

The alternatives Hi, i = 1, 2, . . . , m can be prioritized using S1(Hi) in decreasing order
and obtained the first-type of ranking r1(Hi).

Step 9.2: The subordinate values of the alternative Hi, i = 1, 2, . . . , m based on UCM
are computed as

S2(Hi) = max
j

w̃j

(
1− R

1
ij

)
, i = 1, 2, . . . , m. (18)

The alternatives Hi, i = 1, 2, . . . , m can be prioritized using S2(Hi) in ascending order
and obtained the second-type of ranking r2(Hi).

Step 9.3: The subordinate values of the alternative Hi, i = 1, 2, . . . , m based on ICM is
computed as

S3(Hi) =

(
n

∏
j=1

R
1
ij

)w̃j

, i = 1, 2, . . . , m. (19)

The alternatives Hi, i = 1, 2, . . . , m can be ranked using S3(Hi) in decreasing order and
obtained the third-type of ranking r2(Hi).

Step 10: Find the comprehensive performance values of the alternatives and rank
them accordingly.

The comprehensive performance values of the alternatives Hi, i = 1, 2, . . . , m can be
obtained as follows:

Ψ(Hi) = θ1

√√√√λ

(
S̃1(Hi)

max
i

S̃1(Hi)

)2

+ (1− λ)
(

m−r1(Hi)+1
m

)2
− θ2

√√√√λ

(
S̃2(Hi)

max
i

S̃2(Hi)

)2

+ (1− λ)
(

r2(Hi)
m

)2

+θ3

√√√√λ

(
S̃3(Hi)

max
i

S̃3(Hi)

)2

+ (1− λ)
(

m−r3(Hi)+1
m

)2
,

(20)

where

S̃1(Hi) =
S1(Hi)√

m
∑

i=1
(S1(Hi))

2
, S̃2(Hi) =

S2(Hi)√
m
∑

i=1
(S2(Hi))

2
, S̃3(Hi) =

S3(Hi)√
m
∑

i=1
(S3(Hi))

2
, i = 1, 2, . . . , m.
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Here, the parameter λ ∈ [0, 1] reflects the relative significance of the subordinate
values. θ1, θ2, θ3 are the weights of the CCM, UCM, and ICM models, respectively, such
that θ1 + θ2 + θ3 = 1.

5. Case Study: Healthcare Waste Treatment (HCWT) Method Selection
5.1. Problem Definition

The waste produced by the healthcare services includes ‘regulated clinical waste’,
hazardous chemical waste, recyclable solid waste, etc. To obey the medical belief ‘do not
harm’, it is their duty to ensure the implementation of waste disposal policies that include
the safety measure of workers, public health, and environmental concerns alongside the
legal and existing regulatory permission. We also require a social norm to ponder over
the disposal technologies and services regarding the waste management system followed
by the incorporation of the upstream waste management (removal or minimization of
some wastes, reuse and recycling of others) and post treatment methods facilities (such as
shredding, land filled material, incineration ash, and air and water emissions).

With development in several healthcare facilities, Delhi, Noida, and other surrounding
places collectively generate over 5900 tones medical waste per year, most of which remains
unprocessed and dumped with solid waste, thus causing severe health and environment
hazards. To choose a treatment method for HCW, generally if there is a threat of toxic
emissions or other harmful distresses, the relative threats, as well as the assimilation into
the whole procedure of comprehensive waste strategy, should consequently be prudently
considered with regard to local environments.

After initial screening, five HCWT method alternatives, chemical disinfection (H1),
microwave disinfection (H2), autoclaving (steam sterilization) (H3), incineration (H4), and
reverse polymerization (H5) are selected over the 16 criteria, and details are specified in
Table 1. Through widespread review [1,6,8,14,15,50] of the literature on HCWT method
assessment, we identified 16 attributes characterized into four key aspects, viz., economic,
environmental, technical, and social. After the literature is examined in detail, the criteria
and alternatives given in this section are used for the selection of the best HCWT method.
For the evaluation phase of waste disposal methods, a group of DEs who will carry out
the process is formed. The group of three DEs, abbreviated as D1, D2, and D3, includes a
lecturer who advises on waste management, a professor who carries out many projects and
studies in the field of MCDM, and a consultant who advises on strategies and policies in
the municipality. To choose the best alternative among these five medical waste treatment
technologies, a board was formed consisting of the three DEs. The list of considered criteria
for HCWT method assessment with literature sources is presented in Table 1.

Table 1. Details of considered criteria HCWT method assessment.

Dimensions Criteria References Type

Environmental

GHG emissions (G1) [6,50] Cost
Environmental impact of liquid

residues (G2) [6,50,51] Benefit

Environmental impact of solid
residues (G3) [6,10,50] Benefit

Energy consumption (G4) [6,50] Cost
Water consumption (G5) [6,10,50] Cost
Volume reduction (G6) [6,10,11] Benefit

Microbial inactivation (G7) [6,9,52] Benefit

Economic
Capital cost (G8) [10,11,53–55] Cost

Operation and maintenance costs (G9) [11,53–55] Cost
Disposal cost (G10) [6,50] Cost

Technical
Treatment effectiveness (G11) [9,52,55] Benefit

Automation (G12) [6,10,56] Benefit
Need for skilled operators (G13) [6,10] Benefit
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Table 1. Cont.

Dimensions Criteria References Type

Social
Technology acceptance (G14) [11,55] Benefit

Cost acceptance (G15) [11,53,54] Benefit
Public acceptance (G16) [10,14,52,55] Benefit

5.2. Implementation of Proposed q-ROF-FUCOM-DNMA Methodology

Step 1: Assume that the ratings of the three Des, D1, D2 and D3, are represented by the
q-ROFNs as (0.90, 0.20), (0.75, 0.30), (0.60, 0.50), (0.30, 0.75), and (0.20, 0.90), respectively.
Then, the weights of Des are calculated using Equation (1) and are given as w1 = 0.350,
w2 = 0.319, and w3 = 0.331.

For this, the current linguistic decision matrices are constructed using the “linguistic
values (LVs)” given in Table 2, obtained from Krishankumar et al. [57], to evaluate the
alternatives in terms of criteria according to DEs’ opinions. After, the current linguistic
decision matrices are transformed to their corresponding q-ROFNs.

Table 2. Ratings of options and criteria in terms of LVs.

LVs q-ROFNs

Absolutely Significant (AS) (0.95, 0.20)
Very Significant (VS) (0.90, 0.40)

Significant (S) (0.80, 0.60)
Moderately Significant (MS) (0.75, 0.65)

Average (A) (0.60, 0.70)
Moderately Insignificant (MI) (0.50, 0.75)

Insignificant (I) (0.40, 0.80)
Very Insignificant (VI) (0.30, 0.90)

Absolutely Insignificant (AI) (0.20, 0.95)

Step 2: Using the intuitionistic fuzzy linguistic scale given in Table 2, the DE group
evaluates the alternatives in terms of the main criteria and the sub-criteria. The current
LDMs created according to the evaluations of the DEs in the form of (D1, D2, D3) are
given in Table 3. The types of the criteria are also presented in Table 1. The linguistic
evaluations of each DE are converted to their corresponding q-ROFNs using the scale
given in Table 2. For instance, the initial assessment results of the DEs in the form of
LDMs D̃k =

(
αij

(k)
)

5×16
=
(〈

µji
(k), γji

(k)
〉)

16×5
, k = 1, 2, 3, based on the main criteria, is

presented in Table 3.

Table 3. Linguistic decision matrix based on main criteria to assess the HCWT for each DE.

H1 H2 H3 H4 H5

G1 (S, A, AS) (S, MI, I) (MI, MS, A) (I, MS, A) (A, MI, S)
G2 (MI, A, MS) (AI, AI, S) (VI, MI, MI) (VS, VI, I) (MS, MI, MS)
G3 (A, VS, A) (MI, S, MI) (MI, I, MI) (MI, I, MI) (I, S, I)
G4 (AS, A, MI) (I, A, MS) (MS, MS, VI) (A, MS, S) (S, A, MI)
G5 (VI, I, MI) (MI, AS, VS) (AS, I, S) (MI, AI, A) (AI, I, VS)
G6 (AI, S, MI) (MS, VI, AI) (VI, A, VI) (MS, AS, VS) (MI, A, MS)
G7 (MI, AS, A) (VS, I, MS) (S, MS, VI) (A, A, A) (VS, S, MS)
G8 (A, VI, A) (MI, MI, AI) (MS, VS, MI) (MS, MI, VI) (MI, AI, MI)
G9 (I, A, VI) (AS, MS, I) (I, VI, MI) (AI, A, AI) (I, MS, VS)
G10 (S, MI, I) (VI, VS, AS (A, S, I) (AS, A, AI) (A, VS, I)
G11 (A, AI, VI) (MS, MS, MI) (VI, VI, AS) (A, MS, MI) (MS, MI, AI)
G12 (A, VI, A) (AI, I, A) (MI, MI, MS) (VI, AI, MS) (MI, VS, A)
G13 (VS, MI, A) (S, MS, MI) (I, VI, MS) (I, S, MS) (S, MI, MI)
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Table 3. Cont.

H1 H2 H3 H4 H5

G14 (A, MS, AI) (A, S, MS) (MS, MI, VI) (MS, I, MS) (A, MS, MI)
G15 (VI, MI, S) (I, AI, VI) (MI, VI, A) (AI, VS, AS) (VS, MS, A)
G16 (MI, A, VS) (MS, MI, S) (VI, MI, I) (S, MI, I) (MI, I, S)

Step 3: The A-q-ROF-DM R̃ =
(

R̃ij

)
5×16

=
(

R̃ji

)
16×5

is obtained using Equation (2)

and Table 3, and mentioned in Table 4.

Table 4. The A-q-ROF-DM for HCWT method assessment.

H1 H2 H3 H4 H5

G1
〈0.790064822,
0.484516642〉

〈0.662237401,
0.73349173〉

〈0.65327846,
0.551088146〉

〈0.603790046,
0.628757526〉

〈0.708914052,
0.492211331〉

G2
〈0.618073698,
0.657171213〉

〈0.633399171,
0.865587596〉

〈0.457497196,
0.726338754〉

〈0.751763561,
0.623522039〉

〈0.65798676,
0.556653376〉

G3
〈0.770668319,
0.556653376〉

〈0.661151683,
0.527203323〉

〈0.474945467,
0.682848504〉

〈0.474945467,
0.630241905〉

〈0.641666565,
0.633929306〉

G4
〈0.772147575,
0.385389603〉

〈0.605386825,
0.553727917〉

〈0.642152316,
0.540275425〉

〈0.718823162,
0.442352602〉

〈0.685842444,
0.516915886〉

G5
〈0.422815226,
0.697004905〉

〈0.845687491,
0.369541624〉

〈0.808205763,
0.403929754〉

〈0.508221673,
0.755184243〉

〈0.742426296,
0.625626843〉

G6
〈0.644982966,
0.63939534〉

〈0.554385084,
0.705633967〉

〈0.469515799,
0.715990397〉

〈0.859648797,
0.346696875〉

〈0.618073698,
0.624699007〉

G7
〈0.761185579,
0.422619537〉

〈0.783433855,
0.478177491〉

〈0.700080383,
0.54402571〉

〈0.6,
0.5933327〉

〈0.827449397,
0.454959106〉

G8
〈0.551564473,
0.653475171〉

〈0.454749221,
0.724217197〉

〈0.778562405,
0.469397026〉

〈0.579182639,
0.705633967〉

〈0.456658343,
0.718594269〉

G9
〈0.483180128,
0.696526026〉

〈0.782463746,
0.377698349〉

〈0.424570519,
0.730461736〉

〈0.458917758,
0.746123262〉

〈0.775860799,
0.662754128〉

G10
〈0.662237401,
0.547871485〉

〈0.841632502,
0.40530276〉

〈0.67015198,
0.558905501〉

〈0.76467169,
0.467137807〉

〈0.756843755,
0.550058511〉

G11
〈0.473968153,
0.751067697〉

〈0.656179829,
0.491202414〉

〈0.740976867,
0.505601239〉

〈0.617876284,
0.58416256〉

〈0.576695095,
0.831804895〉,

G12
〈0.551564473,
0.580877131〉

〈0.480495214,
0.726338754〉

〈0.59515106,
0.626223931〉

〈0.547623984,
0.688129373〉

〈0.761185579,
0.523842249〉

G13
〈0.772459167,
0.666410781〉

〈0.710102896,
0.481399445〉

〈0.558750146,
0.797623674〉

〈0.696353668,
0.477908842〉

〈0.670893588,
0.494477777〉

G14
〈0.597866623,
0.705633967〉

〈0.717321915,
0.61915262〉

〈0.579182639,
0.619145237〉

〈0.648966993,
0.51483296〉

〈0.617876284,
0.58416256〉

G15
〈0.65091397,
0.609466203〉

〈0.332375746,
0.792702924〉

〈0.511881594,
0.678495147〉

〈0.841153895,
0.422360158〉

〈0.794161981,
0.491202414〉

G16
〈0.765324432,
0.595733223〉

〈0.708914052,
0.455232336〉

〈0.421323781,
0.758867607〉

〈0.662237401,
0.495393312〉

〈0.656348994,
0.572947475〉

Step 4: The procedure of FUCOM method for computing the criteria weights is
as follows:

Step 4.1: The ranking of the criteria using g Equation (3): G8 > G7 > G6 > G16 > G15 >
G1 > G13 > G2 > G11 > G3 > G14 > G9 > G5 >G4 > G10 > G12.
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Step 4.2: The comparison is made over the first-ranked G8 criterion using the scale [1,9].
Therefore, the prioritization of criteria (wGj(k)

), prioritized in Step 4.1, are estimated using
Equation (4) and presented in Table 5.

Table 5. Priorities of criteria for HCWT method assessment.

Criteria G8 G7 G6 G16 G15 G1 G13 G2 G11 G3 G14 G9 G5 G4 G10 G12

wGj(k)
1 1.2 1.6 1.8 2 2.1 2.3 3 3.4 3.8 4 4.5 4.7 5 5.8 7

On the basis of Table 4 and Equations (5) and (6), the comparative ratings of criteria
are determined as

ϕG8/G7 = 1.2/1 = 1.2, ϕG7/G6 = 1.6/1.2 = 1.33, ϕG6/G16 = 1.8/1.6 = 1.13, ϕG16/G15 =
2/1.8 = 1.11, . . . , ϕG12/G10 = 7/5.8 = 1.21.

Step 4.3: The Model (7) for determining the weight coefficients are given by

minχ

s.t.



∣∣∣w8
w7
− 1.2

∣∣∣ ≤ χ,
∣∣∣w7

w6
− 1.33

∣∣∣ ≤ χ,
∣∣∣ w6

w16
− 1.13

∣∣∣ ≤ χ,
∣∣∣w16

w15
− 1.05

∣∣∣ ≤ χ,
∣∣∣w15

w1
− 1.1

∣∣∣ ≤ χ,
∣∣∣ w1

w13
− 1.1

∣∣∣ ≤ χ,∣∣∣w13
w12
− 1.3

∣∣∣ ≤ χ,
∣∣∣ w2

w11
− 1.8

∣∣∣ ≤ χ,
∣∣∣w11

w3
− 1.12

∣∣∣ ≤ χ,
∣∣∣ w3

w14
− 1.05

∣∣∣ ≤ χ,
∣∣∣w14

w9
− 1.13

∣∣∣ ≤ χ,
∣∣∣w9

w5
− 1.04

∣∣∣ ≤ χ,
. . . . . . . . .∣∣∣w11

w14
− 1.18

∣∣∣ ≤ χ,
∣∣∣w3

w9
− 1.18

∣∣∣ ≤ χ,
∣∣∣w14

w5
− 1.8

∣∣∣ ≤ χ,
∣∣∣w9

w4
− 1.11

∣∣∣ ≤ χ,
∣∣∣ w5

w10
− 1.23

∣∣∣ ≤ χ,
∣∣∣ w4

w12
− 1.4

∣∣∣ ≤ χ,
16
∑

j=1
wj = 1, wj ≥ 0, ∀j

Simplifying the model with Lingo 17.0 tool, DFC of the results χ = 0.00 are computed
and the overall weight of criteria is obtained as

(0.730,0.0511, 0.0404, 0.0309, 0.0327, 0.0962, 0.1279, 0.1535, 0.0340, 0.0266, 0.0452,
0.0220, 0.0664, 0.0384, 0.0767, 0.0851).

Step 5: The targeted ratings are obtained and presented in Table 6. Corresponding to
these targeted ratings and distance measures obtained by Equation (10), we compute the
linear normalized ratings mentioned in Table 7.

Table 6. Target values of criteria for HCWT method assessment.

Criteria α*
j Criteria α*

j Criteria α*
j Criteria α*

j

G1 〈0.6,0.6〉 G5 〈0.3, 0.8〉 G9 〈0.3, 0.9〉 G13 〈0.6, 0.5〉
G2 〈0.5, 0.6〉 G6 〈0.8, 0.3〉 G10 〈0.2, 0.9〉 G14 〈0.4, 0.7〉
G3 〈0.4, 0.8〉 G7 〈0.8, 0.4〉 G11 〈0.5, 0.7〉 G15 〈0.7, 0.4〉
G4 〈0.3, 0.8〉 G8 〈0.9, 0.2〉 G12 〈0.2, 0.9〉 G16 〈0.7, 0.4〉

Table 7. Linear normalized ratings for HCWT method assessment.

H1 H2 H3 H4 H5

G1 0 0.156172 0.750799 0.884389 0.455332
G2 0.273844 1 0.269558 0.518134 0.265427
G3 1 0.868182 0.41315 0.543156 0.638728
G4 0 0.320018 0.275089 0.096894 0.209972
G5 0.742332 0 0.118634 0.821173 0.351867
G6 0.615567 0.860463 1 0.285717 0.667959
G7 0.222656 0.163003 0.58735 1 0.265694
G8 0.137169 0 0.60505 0.142536 0.005203
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Table 7. Cont.

H1 H2 H3 H4 H5

G9 0.475057 0 0.550101 0.573067 0.311701
G10 0.216536 0 0.224239 0.087009 0.169778
G11 0.248385 0.779847 1 0.509372 0.930054
G12 0.811811 0.538295 0.766868 0.638654 1
G13 1 0.326705 0.9239 0.282246 0.192921
G14 0.464278 1 0.478209 0.805256 0.635239
G15 0.34403 1 0.591146 0.512509 0.406876
G16 0.568715 0.093282 1 0.162138 0.310717

Step 6: Based on the entropy measures given by Equations (11) and (12), vector
normalized ratings are estimated by Equation (10) and presented in Table 8.

Table 8. Vector normalized matrix for HCWT method assessment.

H1 H2 H3 H4 H5

G1 0.80268071 0.932305 0.9280728 0.9801543 0.862545
G2 0.031171814 0.164126 0.115087 0.0583323 0.014502
G3 0.092863682 0.196101 0.1433161 0.1955079 0.318579
G4 0.954839273 0.681548 0.7358205 0.8794498 0.803649
G5 0.831156714 0.95713 0.9848942 0.8627881 0.735423
G6 0.345300765 0.187229 0.1274614 0.0495622 0.34449
G7 0.050458817 0.046608 0.1879791 0.3658436 0.013827
G8 0.56465804 0.731462 0.79564 0.6133019 0.723165
G9 0.653982316 0.827343 0.7368382 0.7416376 0.602327
G10 0.565926708 0.897208 0.5663731 0.7705143 0.705755
G11 0.06014693 0.037038 0.037245 0.1398038 0.09565
G12 0.449371247 0.235232 0.4422808 0.3211602 0.217827
G13 0.049739952 0.097732 0.1422278 0.0876913 0.05974
G14 0.086596819 0.09068 0.1576518 0.0871378 0.16302
G15 0.187451431 0.106932 0.0732797 0.1357487 0.064058
G16 0.027632447 0.010966 0.0495299 0.076396 0.136512

Step 7: The S.D. adjustment factors and weights for criteria are calculated using
Equations (13)–(15). The obtained results are provided in Table 9.

Table 9. S.D. adjustment factors and weights of criteria for HCWT method assessment.

Criteria σj
~
w

σ
j

~
wj

G1 0.182516 0.06286526 0.071
G2 0.185925 0.064039312 0.0599
G3 0.144187 0.049663176 0.0469
G4 0.188928 0.065073636 0.0470
G5 0.21479 0.073981454 0.0515
G6 0.277607 0.09561779 0.1005
G7 0.228535 0.078715786 0.1051
G8 0.154269 0.053135975 0.0946
G9 0.146585 0.050489275 0.0434
G10 0.230144 0.079269934 0.0481
G11 0.185125 0.063763689 0.0563
G12 0.18148 0.062508155 0.0389
G13 0.10625 0.036596201 0.0517
G14 0.085544 0.02946434 0.0352
G15 0.245202 0.084456397 0.0843
G16 0.146209 0.050359619 0.0686



Sustainability 2022, 14, 4171 17 of 28

Steps 8–11: Compute the normalized values of R̃1
ij and R̃2

ij with the use of Equation (16).
On the basis of Equations (17)–(19), the sub-ordinate values of options Hi corresponding
to CCM, UCM, and ICM, respectively, are computed. The comprehensive performance
values Ψ(Hi) of the alternatives Hi are obtained by Equation (20) (taking λ = 0.3 and
θ1 = θ2 = θ3 = 1/3). All these outcomes are summarized in Table 10.

Table 10. Sub-ordinate values and comprehensive performance values of the HCWT alternatives.

HCWT Options S1(Hi) S2(Hi) S3(Hi) Ψ(Hi) Rank

H1 0.480651 0.081723 0.5030717 0.192003 3
H2 0.471437 0.094627 0.5016037 0.049504 4
H3 0.759356 0.044090 0.608262 0.508051 1
H4 0.562273 0.072335 0.634754 0.386916 2
H5 0.470400 0.093813 0.4764161 0.036246 5

Based on the values of Ψ(Hi) (i = 1, 2, . . . , 5), the preference order of the HCWT
methods is given by H3 � H4 � H1 � H2 � H5, where the symbol “�” means “superior
to”. Thus, the best HCWT method is H3, i.e., autoclaving (steam sterilization) for treating
the HCWs.

Regardless of assuming θ1 = θ2 = θ3 = 1/3, the weights can be chosen as per the
preferences of DEs on the basis of the comprehensive accomplishment by the alternatives or
of their poor performances. CCM is preferred if attention of the alternatives’ comprehensive
abilities can be drawn from DEs. If the DEs are not interested to take risks, then a large
weight can be attached to the UCM. It is pertinent to mention that ICM can be endowed by
a large weight in cases when the DEs focus solely upon the comprehensive performance
as well as the decision risks. Furthermore, when we preserve the property that linear
normalization is much more efficient than vector normalization, then it can genuinely
be possible to attribute a large weight to both the CCM and UCM models, failing which
inculcates complicity with a big weight to ICM.

6. Sensitivity Investigation and Comparisons with Extant Methods

Here, we show the different types of analyses related to the proposed methodology to
show the usefulness.

6.1. Sensitivity Investigation (SI) of Criteria Weights

Here, we make an investigation to illustrate the impact of the diverse criterion consid-
ered and assessed by the introduced method. By FUCOM, the “most significant criterion”
is recognized among a set of 16 criteria. A criterion chosen as “most significant criterion”
means it has the highest weight value. Kahraman [58] provided the procedure to discuss
the weights proportionality through the analysis in Equation (21) as

wc = (1− ws)×
wc

0

Wc0 = wc
0 − αc × ∆x, (21)

where wc = variation in of attribute weights during SI, ws = most significant attribute
weight, wc

0 = original criteria weights, and Wc
0 = sum of the original criteria weight and

weights that are changed,

αc =
wc

0

Wc0 = weight coefficient of flexibility. (22)

From Equation (21), it is observed that the variation degree utilized to a weight
coefficient is signified by ∆x based on their weight flexibility coefficients. The positive
and negative ratings of parameter ∆x may specify the increment and decrement in relative
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importance. The major variation in the most important attribute’s weight in both directions
is computed with the limits for ∆x. Now, we can define the limit of parameter ∆x as

− ws
0 ≤ ∆x ≤ min

{
wc

0

αc

}
. (23)

Next, we define the limits for ∆x and then the new values of criteria weights are
estimated as per the pre-set parameters for the SI. A set of new values of weight coefficients
is computed through the use of Equations (24) and (25).

ws = ws
0 + αs × ∆x (24)

wc = wc
0 − αc × ∆x (25)

where ws
0 = original weight of the most important attribute subjected to the SI, wc

0 = original
weight value, and ∑ ws + ∑ wc = 1 is taken. The priority of the options is obtained by
considering the latest values of the attribute weights.

In this analysis, the uppermost rating of weight coefficient w7 = 0.1051, the G7 cri-
terion, can be considered as the most important criterion. Afterward, the coefficients
of weight flexibility (Table 11) are estimated, and the limits of parameter (∆x) are ob-
tained as −0.1051 ≤ ∆x ≤ 0.8979. Corresponding to the limits of parameter (∆x), several
criteria weight sets (SET-1, SET-2, . . . , SET-16) for the SI are considered. The interval
−0.1051 ≤ ∆x ≤ 0.8979 is partitioned into 16 weight sets. For each set, new values of the
weight coefficients are obtained using Equations (24) and (25) and are presented in Table 12.
Now, the comprehensive values of the HCWT options are obtained for diverse weight sets
and are presented in Figure 2; their corresponding priority orders are given in Table 13.
The outcomes (Figure 2 and Table 13) indicate that the assignment of the different criteria
weights is being reflected into the changes occurred in ranking order of alternatives, which
ensures the significant sensitivity of the proposed model with regards to the variations
of weight coefficients. Next, the “Spearman rank correlation coefficient (SRCC)” values
(rA) [59,60] are estimated in the results through various weight sets characterized by sev-
eral criteria elicited in Table 13. We have noticed in Table 13 that the average SRCC (rA)
value is 0.994, which expresses a very strong association [59,60] of the ranks of the alter-
natives. Thus, with these results, it is concluded that the priority of options obtained by
q-ROF-FUCOM-DNMA method are accurate and reliable.

Table 11. Weight coefficient of flexibility for each criterion.

Criteria αc Criteria αc Criteria αc Criteria αc

G1 0.079073393 G5 0.057356053 G9 0.048335004 G13 0.057578795
G2 0.066711215 G6 0.111927832 G10 0.05356944 G14 0.039202584
G3 0.052232988 G7 1 G11 0.06270186 G15 0.093885733
G4 0.052344359 G8 0.105356944 G12 0.04332331 G16 0.07640049

Table 12. Sixteen sets of criteria weights for sensitivity investigation.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

G1 0.079 0.0216 0.0179 0.0141 0.0104 0.0067 0.0625 0.0587 0.055 0.0513 0.0476 0.0439 0.0402 0.0364 0.0327 0.029
G2 0.0667 0.0182 0.0151 0.0119 0.0088 0.0057 0.0527 0.0496 0.0464 0.0433 0.0401 0.037 0.0339 0.0307 0.0276 0.0245
G3 0.0522 0.0142 0.0118 0.0093 0.0069 0.0044 0.0413 0.0388 0.0363 0.0339 0.0314 0.029 0.0265 0.0241 0.0216 0.0192
G4 0.0523 0.0143 0.0118 0.0094 0.0069 0.0044 0.0413 0.0389 0.0364 0.034 0.0315 0.029 0.0266 0.0241 0.0217 0.0192
G5 0.0574 0.0156 0.013 0.0103 0.0076 0.0049 0.0453 0.0426 0.0399 0.0372 0.0345 0.0318 0.0291 0.0264 0.0237 0.021
G6 0.1119 0.0305 0.0253 0.02 0.0148 0.0095 0.0884 0.0831 0.0779 0.0726 0.0674 0.0621 0.0568 0.0516 0.0463 0.0411
G7 0 0.7272 0.7742 0.8212 0.8682 0.9152 0.2102 0.2572 0.3042 0.3512 0.3982 0.4452 0.4922 0.5392 0.5862 0.6332
G8 0.1054 0.0287 0.0238 0.0188 0.0139 0.0089 0.0832 0.0783 0.0733 0.0684 0.0634 0.0585 0.0535 0.0485 0.0436 0.0386
G9 0.0483 0.0132 0.0109 0.0086 0.0064 0.0041 0.0382 0.0359 0.0336 0.0314 0.0291 0.0268 0.0245 0.0223 0.02 0.0177
G10 0.0536 0.0146 0.0121 0.0096 0.0071 0.0045 0.0423 0.0398 0.0373 0.0348 0.0322 0.0297 0.0272 0.0247 0.0222 0.0196
G11 0.0627 0.0171 0.0142 0.0112 0.0083 0.0053 0.0495 0.0466 0.0436 0.0407 0.0377 0.0348 0.0318 0.0289 0.0259 0.023
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Table 12. Cont.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

G12 0.0433 0.0118 0.0098 0.0077 0.0057 0.0037 0.0342 0.0322 0.0301 0.0281 0.0261 0.024 0.022 0.02 0.0179 0.0159
G13 0.0576 0.0157 0.013 0.0103 0.0076 0.0049 0.0455 0.0428 0.0401 0.0374 0.0347 0.0319 0.0292 0.0265 0.0238 0.0211
G14 0.0392 0.0107 0.0089 0.007 0.0052 0.0033 0.031 0.0291 0.0273 0.0254 0.0236 0.0217 0.0199 0.0181 0.0162 0.0144
G15 0.0939 0.0256 0.0212 0.0168 0.0124 0.008 0.0742 0.0697 0.0653 0.0609 0.0565 0.0521 0.0477 0.0433 0.0388 0.0344
G16 0.0764 0.0208 0.0173 0.0137 0.0101 0.0065 0.0603 0.0568 0.0532 0.0496 0.046 0.0424 0.0388 0.0352 0.0316 0.028

Table 13. Priority order of option with diverse criteria weights and SRCC values (rA).

HCWT S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 Final Ranking

H1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
H2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
H4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

SRCC
values 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -Sustainability 2022, 14, x FOR PEER REVIEW 20 of 30 
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Figure 2. The comprehensive values of the alternatives for different criteria weight sets.

6.2. Comparative Discussion

To certify results, we make a comparison of the developed q-ROF-FUCOM-DNMA
method with q-ROF-FUCOM-MULTIMOORA method.

The MULTIMOORA model contains of three models, namely the “ratio system (RS)”,
the “reference point (RP)”, and the “full multiplicative form (FMF)” procedure. In compari-
son with various extant models (such as “AHP, TOPSIS, VIKOR, PROMETHEE, and ELEC-
TRE”), the MULTIMOORA method has more advantages, easier mathematical procedure,
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lower computation time, and stronger robustness (Brauers and Zavadskas [61]). Owing
to these benefits, extended MULTIMOORA (q-ROF-FUCOM-MULTIMOORA) method
has been considered in this work for comparison purpose. The steps of q-ROF-FOCUM-
MULTIMOORA method are given as

Steps 1 to 4: Same as the steps 1 to 4 discussed in Section 5.
Step 5: We normalize the A-q-ROF-DM

(
α∗ij

)
m×n

=
(〈

µ∗ij, γ∗ij

〉)
m×n

by target-based

vector normalization, supposing the aggregated target-based vector normalized decision-
matrix is R̃N

ij =
(

α′ij

)
m×n

.

Step 6: Estimate the utility degrees of options by RS method as

S1
i =

n

∑
j=1

wj × α′ ij, i = 1, 2, . . . , m.

Step 7: Find the utility degrees of the options by RP method as

S2
i = max

j
wj × (1− α′ ij), i = 1, 2, . . . , m.

Step 8: Evaluate the utility values of the alternatives by FMF method as:

S3
i =

n

∏
j=1

(α′ ij)
wj , i = 1, 2, . . . , m.

Step 9: Determine the final priority order of options.
The final assessment degree of option is obtained by

I(Hi) = S1
i ×

m− ρ
(
S1

i
)
+ 1

(m(m + 1)/2)
− S2

i ×
ρ
(
S2

i
)

(m(m + 1)/2)
+ S3

i ×
m− ρ

(
S3

i
)
+ 1

(m(m + 1)/2)
, i = 1, 2, . . . , m.

where ρ
(
S1

i
)
, ρ
(
S2

i
)

and ρ
(
S3

i
)

are the final rankings of options by RS, RP, and FMF models,
respectively. The best alternative has the maximum value of I(Hi).

We utilize these steps in the case study and the outcomes obtained are depicted in
Table 14.

Table 14. Outcomes of the case study by q-ROF-FUCOM-MULTIMOORA method.

HCWT
RS Method RP Method FM Method Final Assessment Value

Final Rank
S1

i ρ(S1
i ) S2

i ρ(S2
i ) S3

i ρ(S3
i ) I(Hi)

H1 0.320221 5 0.121446 3 0.170327 3 0.031124 5

H2 0.350929 3 0.121939 2 0.170312 4 0.076636 3

H3 0.369663 1 0.103857 4 0.223078 2 0.155013 1

H4 0.368698 2 0.091432 5 0.229361 1 0.144296 2

H5 0.346498 4 0.126131 1 0.166448 5 0.048888 4

From Table 14, it follows that the final ranking by method is H3 � H4 � H2 � H5 � H1,
where the symbol “�” means “superior to”. Hence, the best HCWT method is H3, i.e.,
autoclaving (steam sterilization) which coincides with the best choice obtained through
proposed q-ROF-FUCOM-DNMA method.

The proposed q-ROF-FUCOM-DNMA methodology has the following advantages:

(a) As q-ROFSs are generalizations of IFSs and PFSs, they can treat more uncertain
complex information that exists in practical decision-making problems. The intro-
duced approach develops the model using the q-ROFSs, unlike [9,10,14,15], in which
FSs/IFSs/PFSs have been applied. Thus, our developed method is more general.
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(b) The proposed integrated MCDM approach permits efficient treatment of uncertain
information, as well as handling of complex information in the circumstances of group
expert assessment of HCWT method.

(c) The proposed methodology estimates the criteria weights with the use of FUCOM,
which is a subjective weighting model. Similar to the AHP and BWM methods,
FUCOM is also defined on the doctrines of comparison in pairs of attributes and
validation of outcomes through deviation from maximum consistency. Hence, in
contrast to the extant subjective tools, FUCOM considers smaller deviations of the
achieved values of the criteria from the most favorable values (Pamucar et al. [34]).

(d) The proposed methodology is applied to the q-ROF-DNMA method to increase the
robustness of the fuzzy-DNMA model. Compared to the extant utility-based ranking
methods (namely MULTIMOORA, VIKOR, TOPSIS, and others), the key benefit of
DNMA approach is that it is considered by two normalization procedures (namely
target-based linear and vector normalization). Moreover, the DNMA approach enables
the DEs to adjust the weight of subordinate models (namely CCM, UCM, and ICM)
to reveal their preferences on the “group utility” values and the “individual regret”
values of options. Thus, the proposed hybrid DNMA approach is fulfilling the existing
gap in the study of HCWT method assessment.

In Figure 3, it is noticed that the introduced methodology is consistent with existing
models. To preserve uniformity in the technique-related comparison, various appraisal mea-
sures and existing q-ROF-MULTIMOORA methods are considered. The Spearman rank
correlation coefficient (SRCC) [59,60] degrees of different model CCM, UCM, ICM, and extant
methods with comprehensive performance values are presented by (1.00, 0.9, 0.30, and 0.70),
respectively. From Figure 3, the SRCCs are higher than 0.6, except ICM. Additionally, the
WS coefficients (Sałabun and Urbaniak [62]) of the different models and extant methods with
comprehensive performance values are presented by (1.00, 0.9714, 0.625, 0.8464), respectively,
which are each higher than 0.6. The outcomes of the WS coefficient state that it is an appropri-
ate way to associate the similarity of prioritizations, which signifies the similarity of priority
order of HCWT methods is high. Thus, it is concluded that the developed methodology has
resilient association between preference outcomes. Hence, the developed approach is more
reliable and has stability with the extant approaches.
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6.3. Implication and Discussion

The outcomes of the developed q-ROF-FUCOM-DNMA method shows that microbial
inactivation (G7) is the most significant attribute with a weight of 0.1051, volume reduction
(G6) is the second most significant attribute with a weight of 0.1005, and capital cost (G8) is
the third most important criterion with a weight of 0.0946. The other attributes have less
significant values. The results show that microbial inactivation (G7), volume reduction (G6),
and capital cost (G8) should be given more consideration in the evaluation of the desirable
HCW waste treatment technology alternative.

From Table 10, we observe that autoclaving (steam sterilization) (H3) is considered
the optimal treatment technology. Incineration (H4) is in the second position, chemical
disinfection (H1) is in the third position, microwave disinfection (H2) is in the fourth
position, and reverse polymerization (H5) is in the fifth position. Among the five medical
waste treatment technologies, the decision-making implications of autoclaving (steam
sterilization) are provided as follows: (1) it is visualized that through keeping the perilous
medical waste within the particular healthcare regions, the risk can be minimized, (2) the
socio-economic, environmental, and technical oriented performances are viewed to occur
in better ways, and the same can be observed in cases of their corresponding criteria, and
(3) operational cost is minimum.

Autoclaving (steam sterilization) (H3) is considered to be the best performing treat-
ment technology during discussion of results in this study. At the time of nurturing the
previous works related to this case study, it is found that a fuzzy MCDM procedure framed
by TOPSIS can be utilized to assess incineration, steam sterilization, microwave disinfection,
and land filling, which has been presented in the research work of Dursun et al. [9,10], and
were able to certify steam sterilization to be the best treatment. Ozkan [11], in his work,
performs a comparative study that includes incineration, microwave disinfection, off site
steam sterilization, on site steam sterilization, and land filling by applying the MCDM
approach, and inferred off site steam sterilization as the best suited technology. Afterwards,
it was shown by Voudrias [6] that, while we consider an additional two technologies,
namely chemical disinfection and reverse polymerization, with the previous set in the
AHP method steam sterilization comes out to be the best one. In the subsequent study, Liu
et al. [1] outlined that the most suitable HCWT method is the steam sterilization through
joint venture of the 2-tuple “decision making trial and evaluation laboratory (DEMATEL)”
method and fuzzy-MULTIMOORA approach that facilitates the selection procedure of
HCW treatment technology. Mishra et al. [14] considered the microwave disinfection, incin-
eration, steam sterilization, and landfill disposal as the four HCW treatment alternatives,
and concluded a remark based on the results in their study that steam sterilization must be
suggested as the most suitable HCW treatment technology.

From the above discussion, it is clear that few authors have utilized fuzzy TOPSIS, AHP,
MULTIMOORA, and DEMATEL methods for selection of best HCWT method. However,
each of these methods has some disadvantages, presented below:

(a) For measuring the distance between each alternative and corresponding reference
points, the TOPSIS [63] plays a key role in providing the optimal solution. Subse-
quently, the guarantee of non-exactness of the solution achieved through TOPSIS with
ideal solution has been put forth by Opricovic and Tzeng [64].

(b) MULTIMOORA [65] applies three aggregation models to derive three kinds of sub-
ordinate utility values based on the vector normalization, and the final rankings
are determined by aggregating the subordinate ranks. Liao and Wu [44] contended
that it is unreasonable to consider the subordinate ranks only for the purpose of
final selection, as MULTIMOORA does not take into consideration the matching of
normalization and aggregation techniques.

(c) The application of AHP becomes complicated when it adopts lots of comparisons [32].
Zhu et al. [66] have proven that in the AHP strategy it is much easier to perform
pair-wise comparisons with a complete, consistent manner if we restrict the criteria to
nine; it becomes truly hard to perform when criteria limit exceeds nine.
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(d) The DEMATEL [67] method cannot approve the outcomes acquired. In other words,
it is missing from consistency measure.

As the developed integrated q-ROF-FUCOM-DNMA method is free from the above
mentioned difficulties, it imparts the best performance compared to other existing tools for
selection of best HCW treatment technology.

7. Conclusions

Due to rapid urbanization and population growth, the HCWT has become a primary
concern for healthcare experts and municipalities. Over the last few decades, it has gained
emergent attention all over the globe. Selection of the most sustainable treatment method
for HCW can be regarded as a complex, uncertain MCDM problem, as it often contains
multiple incompatible criteria and various stakeholders. The aim of the paper is to propose
a decision-making framework for the assessment of HCWT methods. For this, we have
developed an integrated methodology by the hybridization of FUCOM and DNMA tech-
niques with q-ROFSs. Considering the sensitivity of increasing complexity and ambiguity
of realistic MCDM problems, we represent the criteria values in terms of q-ROFNs to the
formulation of proposed decision-making method. In this proposed methodology, criteria
weights are estimated through FUCOM, and final ranks of the alternatives are obtained
through DNMA method. Further, to exemplify the practicality and usefulness of the de-
veloped methodology, a case study on HCWT method selection is considered. In this case
study, the assessment index procedure for treatment technologies has been developed,
which includes four dimensions of sustainability, namely environmental, economical, tech-
nical, and social. Those four dimensions consist of seven, three, three, and three sub-criteria,
respectively, which are extensively considered in accordance with the existing literature.
Later, the corresponding results are compared with extant approaches, which reveals its
effectiveness and advantages. Moreover, the proposed methodology not only provides the
rankings of the treatment technologies, but also explores the criteria performances in the
medical waste treatment technology assessment.

The developed methods have been applied to the HCWT method selection, and the
advantages, such as stability and precision of the developed methods, have been utilized.
The developed methods, which have a very flexible structure, can also be used for many
problems in the field of HCWT method selection. Thus, with the importance given to
urbanization in recent years, the contribution of municipalities to the city management
can be increased by ensuring that DEs or policymakers make investments in the right
HCWT method selection of waste management, which includes constantly developing and
changing conditions. The contributions and advantages of the study can be summarized
as follows:

• As the MCDM methods found in the literature only take into account the current
situation and do not consider future trends, there is a need to develop new tools to
make more efficient and reliable decisions. This study has developed a new decision
methodology integrating q-ROF-FUCOM and q-ROF-DNMA in order to obtain the
best solutions among contradictory and proportional criteria that must be evaluated
simultaneously in an uncertain environment.

• The q-ROF-FUCOM method allows us to consider the subjective nature of the decision
process by using the objective weights of the criteria. The presented method computes
the attribute weights by the FUCOM. It belongs to the group of subjective procedures
for computing attribute weights, as well as the AHP tool [32] and the BWM [33].
Like the AHP and BWM methods, FUCOM is based on the pairwise comparison
of attributes doctrine and validates the outcomes with DFC. However, in contrast
to different subjective procedures, FUCOM shows smaller DFC while obtaining the
degree of the attributes from the optimal degrees [34].

• As the developed q-ROF-DNMA method takes into account future trends as well
as current evaluations, it enables the decision model to be handled in a dynamic
structure [41]. The developed methods have the ability to handle uncertain information
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more flexibly and better deal with uncertainties than ordinary fuzzy sets. Through
q-ROFSs, not only are the uncertainties caused by the incomplete knowledge of the
DEs dealt with, but so too are the hesitations of the decision makers reflected in
their choices.

• The q-ROF-DNMA method utilizes the benefits of different normalization methods
and aggregation functions and combines them in an appropriate way [38]. The overall
integration function of DNMA approach widely considers the subordinate utility
degrees and the ranks of options and, thus, the overall priority outcome has high
dependability. In the q-ROF-DNMA method, the obtained results are more logical
because double normalization procedures are used to obtain the ranking order.

• The study presents a real case study to prove the effectiveness, robustness, and reliabil-
ity of the presented method and to determine the most HCWT method for the region
of Delhi, India.

• The application of the developed methods to the HCWT method selection problem
has been tested with sensitivity and comparison analyses, and it has been proven that
the alternatives are ranked correctly and the best one is selected.

• This study provides an important contribution to the literature for both the HCWT
method selection and the selection process in other realistic problems involving uncer-
tainty by extending the DNMA method with q-ROFSs. The developed method con-
tributes to meet the needs of both DEs and policymakers in the field of
waste management.

From the point of view of our own understanding, it can be stated that there is a
possibility to explore some elegant research issues such as financial analysis, image classifi-
cation, environment assessment, and others in the vicinity of the q-ROF-FUCOM-DNMA
framework due to its development, and to do so in more realistic ways in comparison
to other existing approaches. For further study, the developed method can be applied to
various decision-making problems such as energy investment evaluation, project selection,
and risk assessment. It may be beneficial to consider different criteria and alternatives for
waste disposal location evaluation for a more comprehensive solution. The developed
methods can be extended by hesitant fuzzy soft sets, neutrosophic sets, picture fuzzy sets,
spherical fuzzy sets, and an intuitionistic 2-tuple fuzzy linguistic environment [68]. In
addition, the developed q-ROF-FUCOM-DNMA method can be used with other criterion
weighting methods such as AHP, BWM [69], “criteria importance through intercriteria
correlation (CRITIC)”, “method based on the removal effects of criteria (MEREC)”, and
similarity measures-based approaches.
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Abbreviations

AHP Analytic hierarchy process
ANP Analytic network process
APMA Adaptive polyploid memetic algorithm
A-q-ROF-DM Aggregated q-ROF-decision-matrix
ARAS Additive ratio assessment
BG Belongingness grade
BWM Best-worst model
CCM Complete compensatory model
CDT Cross-docking terminal
COPRAS Complex proportional assessment
CoCoSo Combined compromise solution
CRITIC Criteria importance through intercriteria correlation
DEs Decision experts
DEMATEL Decision making trial and evaluation laboratory
DFC Deviation from full consistency
DNMA Double normalization-based multi-aggregation
EA Evolutionary algorithm
EDAS Evaluation based on distance from average solution
ELECTRE Elimination et choix traduisant la realité
FMF Full multiplicative form
FUCOM Full consistency method
FSs Fuzzy sets
HCW Healthcare waste
HCWT HCW treatment
HFLTSs Hesitant fuzzy linguistic term sets
ICM Incomplete compensatory model
IFSs Intuitionistic fuzzy sets
IRNs Interval rough numbers
IVIFSs Interval-valued intuitionistic fuzzy sets
LA Learning automaton
LDMs Linguistic decision matrices
LVs Linguistic values
MABAC Multi-attributive border approximation area comparison
MARCOS Measurement alternatives and ranking based on compromise solution
MCDM Multi-criteria decision-making
MEREC Method based on the removal effects of criteria
MAs Metaheuristic algorithms
MILP Mixed-integer linear programming
MOPSO Multi-objective particle swarm optimization
MULTIMOORA Multi-attribute multi-objective optimization by ratio analysis
MSWs Municipal solid wastes
NBG Non-belongingness grade
NSGA-II Non-dominated sorting genetic algorithm-II
OWA Ordered weighted averaging
PFSs Pythagorean fuzzy sets
PROMETHEE Preference ranking organization method for enrichment of evaluation
q-ROFNs q-rung orthopair fuzzy numbers
q-ROFSs q-rung orthopair fuzzy sets

q-ROF-FUCOM-DNMA
q-rung orthopair fuzzy-full consistency method-double
normalization-based multi-aggregation

q-ROFI q-rung orthopair fuzzy information
q-ROFWA q-rung orthopair fuzzy weighted averaging
RS Ratio system
RP Reference point
SA Simulated annealing
SCM Supply chain management
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SCT Service completion time
SHEH Safety and health evaluation facility
SI Sensitivity investigation
SMART Simple multi-attribute rating technique
SRCC Spearman rank correlation coefficient
SWARA Stepwise weight assessment ratio analysis
TOPSIS Technique for order performance by similarity to ideal solution
UCM Un-compensatory model
VIKOR Vlsekriterijumska optimizcija I kaompromisno resenje
VNS Variable neighborhood search
WASPAS Weighted aggregated sum product assessment
WDBA Weighted distance-based approximation
WHO World Health Organization
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