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Abstract. Triangulation of a three-dimensional point from n ≥ 2 two-
dimensional images can be formulated as a quadratically constrained
quadratic program. We propose an algorithm to extract candidate solu-
tions to this problem from its semidefinite programming relaxations. We
then describe a sufficient condition and a polynomial time test for cer-
tifying when such a solution is optimal. This test has no false positives.
Experiments indicate that false negatives are rare, and the algorithm has
excellent performance in practice. We explain this phenomenon in terms
of the geometry of the triangulation problem.

1 Introduction

We consider the problem of triangulating a point X ∈ R
3 from n ≥ 2 noisy

image projections. This is a fundamental problem in multi-view geometry and
is a crucial subroutine in all structure-from-motion systems [4].

Formally, let the point X ∈ R
3 be visible in n ≥ 2 images. Also let Pi ∈ R

3×4

be a projective camera and xi ∈ R
2 be the projection of X in image i, i.e,

xi = ΠPiX̃, ∀ i = 1, . . . , n, (1)

where, using MATLAB notation, X̃ =
[
X ; 1

]
and Π

[
u; v;w

]
=

[
u/w; v/w

]
.

Given the set {xi} of noise free projections, it is easy to determine X using a
linear algorithm based on singular value decomposition (SVD) [4]. However, in
practice we are given x̂i = xi+ ηi, where ηi is noise, and there are no guarantees
on the quality of the solution returned by the linear algorithm.

For simplicity, we assume that ηi ∼ N (0, σI). Then the triangulation problem
is to find the maximum likelihood estimate of X given the noisy observations
{x̂i}. Assuming such a point X always exists, this is equivalent to solving:

argmin
X

n∑

i

‖ΠPiX̃ − x̂i‖2. (2)

Here and in the rest of the paper we will ignore the constraint that the point X
has positive depth in each image. The above optimization problem is an instance
of fractional programming which is in general hard [1]. An efficient and optimal
solution of (2) is the subject of this paper.

For n = 2, Hartley & Sturm showed that (2) can be solved optimally in poly-
nomial time [3]. For n = 3, a Gröbner basis based algorithm for (2) was proposed
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in [20]. This algorithm relies on the observation that generically, the optimal so-
lution to (2) is one among the 47 solutions to a certain system of polynomial
equations. This Gröbner basis method is not usefully extendable to higher n
and efficient optimal triangulation for n ≥ 4 views has remained an unsolved
problem. Other approaches either use the linear SVD based algorithm as initial-
ization followed by non-linear refinement which lead to locally optimal solutions
with no guarantees on the run time complexity [4], or optimal algorithms whose
worst case complexity is exponential in n [7,8,13].

We present a new triangulation algorithm for n ≥ 2 views. Based on semidefi-
nite programming, the algorithm in polynomial time either determines a globally
optimal solution to (2) or informs the user that it is unable to do so. Theoreti-
cally, the operating range (in terms of image noise) of the algorithm is limited
and depends on the particular configuration of the cameras. In practice our
method computes the optimal solution in the vast majority of test cases. In the
rare case that optimality cannot be certified, the algorithm returns a solution
which can be used as an initializer for nonlinear least squares iteration.

The paper is organized as follows. In Section 2 we formulate triangulation as a
constrained quadratic optimization problem. We present semidefinite relaxations
to this problem in Section 3. We propose our triangulation algorithm in Section 4
and analyze its performance. We also provide theoretical explanation for why
the algorithm works. Section 5 presents experiments on synthetic and real data
and we conclude in Section 6 with a discussion.

Notation. We will use MATLAB notation to manipulate matrices and vectors,
e.g., A[1 : 2, 2 : 3] refers to a 2 × 2 submatrix of A. P = {P1, . . . , Pn} denotes
the set of cameras. x = [x1; . . . ;xn] denotes a vector of image points, one in each
camera, and x̂ = [x̂1; . . . ; x̂n] denotes the vector of image observations. Both
x and x̂ lie in R

2n. If y ∈ R
m is a vector, then ỹ =

[
y; 1

]
is the homogenized

version of y. The inner product space of k×k real symmetric matrices is denoted
Sk with the inner product 〈A,B〉 = ∑

1≤i,j≤k AijBij . The set Sk
+ ⊆ Sk denotes

the closed convex cone of positive semidefinite matrices. We write A 
 0 (resp.
A � 0) to mean that A is positive definite (resp. positive semidefinite).

2 Triangulation as Polynomial Optimization

With an eye towards the future, let us re-state the triangulation problem (2) as
the constrained optimization problem

argmin
x1,...,xn,X

∑

i

‖xi − x̂i‖2, s.t. xi = ΠPiX̃, ∀i = 1, . . . , n. (3)

In this formulation, the constraints state that each xi is the projection of X in
image i. Let us now denote the feasible region for this optimization problem by

VP =
{
x ∈ R

2n | ∃X ∈ R
3 s.t. xi = ΠPiX̃, ∀i = 1, . . . , n

}
. (4)
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For any x ∈ VP , we can recover the corresponding X using the SVD based
algorithm [4]. Now we can re-state (3) purely in terms of x

argmin
x

‖x− x̂‖2, s.t. x ∈ VP . (5)

Let V P ⊇ VP be the closure of VP , meaning that V P contains all the limit points
of VP . Then consider the following optimization problem:

argmin
x

‖x− x̂‖2, s.t. x ∈ V P . (6)

The objective function in these two optimization problems is the squared dis-
tance from x̂ to the sets VP and V P respectively. Since V P is the topological
closure of VP it can be shown that any solution x∗ to (6) which is not in VP is ar-
bitrarily close to a point in VP , and the optimal objective function values for (5)
and (6) are the same. Thus, solving (6) is essentially equivalent to solving (5).

The set VP is a quasi-projective variety. A variety is the zero set of a finite
set of polynomials, and a quasi-projective variety is the set difference of two
varieties. Therefore, V P is also a variety [18]. Heyden & Åström [5] show that

V P =

{
x ∈ R

2n fij(x) = 0, 1 ≤ i < j ≤ n
ti,j,k(x) = 0, 1 ≤ i < j < k ≤ n

}
. (7)

Here fij(x) = x̃�
i Fij x̃j = 0 are the bilinear/quadratic epipolar constraints, where

Fij ∈ R
3×3 is the fundamental matrix for images i and j. The second set of

constraints tijk(xi, xj , xk) = 0 are the the trilinear/cubic constraints defined by
the trifocal tensor on images i, j and k.

At the risk of a mild abuse of notation, we will also use Fij to denote a
(2n+ 1)× (2n+ 1) matrix such that fij(x) = x̃�Fij x̃. The construction of this
matrix involves embedding two copies of the 3 × 3 fundamental matrix (with
suitable reordering of the entries) in an all zero (2n+ 1)× (2n+ 1) matrix.

Now, let WP be the quadratic variety

WP =
{
x ∈ R

2n | x̃�Fij x̃ = 0, 1 ≤ i < j ≤ n
}
. (8)

For n = 2, since there are no trilinear constraints WP = V P but for n ≥ 3, in
general WP ⊇ V P . For n ≥ 4, Heyden & Åström show that if the camera centers
are not co-planar then WP = V P [5]. Note that for n = 3, the camera centers are
always co-planar. Therefore, for n = 2, and for n ≥ 4 when the camera centers
are non-co-planar, we can just optimize over the quadratic variety WP :

argmin
x

‖x− x̂‖2 s.t. x ∈ WP . (9)

However, we cannot just ignore the co-planar case as a degeneracy since it is a
common enough occurrence, e.g., an object rotating on a turntable in front of a
fixed camera. If all the camera centers lie on a plane πP , then solving (9) instead
of (6) can result in spurious solutions, i.e. a projection vector x∗ for which there
is no single point X∗ ∈ R

3 that projects to x∗
i for each image i. This can happen
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if each x∗
i lies on the image of the plane πP in image i. It is easy to reject such

a spurious x∗ by checking if it satisfies the trilinear constraints.
From here on, we will focus our attention on solving (9) and in Section 5 we

will show that solving (9) instead of (6) is not a significant source of failures.
Let us now define the polynomial

g(x) = ‖x− x̂‖2 = x̃�
[

I −x̂
−x̂� ‖x̂‖2

]
x̃ = x̃�Gx̃, (10)

where I is the 2n×2n identity matrix. Observe that G ∈ S2n+1
+ , and the Hessian

of g is ∇2g = 2I. Similarly, let Fij =

[
Hij bij
b�ij βij

]
, where Hij ∈ S2n, bij ∈ R

2n, and

βij ∈ R. Then ∇2fij = 2Hij . We re-write (9) as the quadratically constrained
quadratic program (QCQP)

arg min
x∈R2n

x̃�Gx̃ s.t. x̃�Fij x̃ = 0, 1 ≤ i < j ≤ n. (11)

3 Semidefinite Relaxation

We re-write (11) as the following rank constrained semidefinite program (SDP).

argmin
Y

〈G, Y 〉
s.t. 〈Fij , Y 〉 = 0, 1 ≤ i < j ≤ n,

〈E, Y 〉 = 1,
Y ∈ S2n+1

+ ,
rank(Y ) = 1.

(12)

Here E ∈ S2n+1 is an all zero matrix except for its bottom right entry which
equals one. The problems (11) and (12) are equivalent: x is feasible (optimal)
for (11) if and only if Y = x̃x̃� is feasible (optimal) for (12).

Solving rank constrained semidefinite programs is NP-hard [22]. Dropping the
rank constraint gives the primal semidefinite program

argmin
Y

〈G, Y 〉
s.t. 〈Fij , Y 〉 = 0, 1 ≤ i < j ≤ n,

〈E, Y 〉 = 1,
Y ∈ S2n+1

+ .

(13)

The dual of this primal semidefinite program is

argmax
λij ,ρ

ρ

subject to G+
∑

λijFij − ρE � 0,
λij , ρ ∈ R, 1 ≤ i < j ≤ n.

(14)

The primal SDP (13) is also known as the first moment relaxation and its dual
SDP (14) is known as the first sum of squares relaxation. They are instances



658 C. Aholt, S. Agarwal, and R. Thomas

of a general hierarchy of semidefinite relaxations for polynomial optimization
problems [10]. Problem (14) is also the Lagrangian dual of (11).

The remainder of this paper is dedicated to the possibility that solving the
triangulation problem is equivalent to solving these semidefinite relaxations. Let
us denote by g∗, gquad, gmom, gsos, the optimal solutions to the optimization prob-
lems (6), (11), (13), (14) respectively. Then the following lemmas hold.

Lemma 1. For all n, g∗ ≥ gquad. For n = 2, or n ≥ 4 with non-co-planar
cameras, g∗ = gquad.

Proof. The claim follows from the discussion in Section 2 after the definition of
WP . ��
Lemma 2. gquad ≥ gmom.

Proof. This is true because (13) is a relaxation of (11). ��
Lemma 3. For all n, gmom = gsos. Moreover, there exist optimal Y ∗, λ∗

ij and
ρ∗ that achieve these values.

Proof. The inequality gmom ≥ gsos follows from weak duality. Equality, and the
existence of Y ∗, λ∗

ij and ρ∗ which attain the optimal values follow if we can show
that the feasible regions of both the primal and dual problems have nonempty
interiors [22, Theorem 3.1] (also known as Slater’s constraint qualification).

For the primal problem, let x ∈ R
2n be any feasible point for the triangulation

problem (9) (such a feasible point always exists) and let D = diag(1, . . . , 1, 0) ∈
S2n+1. It is easy to show that Y = x̃x̃� + D is positive definite and primal
feasible. For the dual problem, take λij = 0 and ρ = −1 and verify G+ E 
 0.

��

4 The Algorithm and Its Analysis

We propose Algorithm 1 as a method for triangulation.

4.1 Correctness

Theorem 1. Algorithm 1 terminates in time polynomial in n.

Proof. The proof is based on three facts. One, the primal (13) and dual (14)
have descriptions of size polynomial in n, the number of images. Two, SDPs
can be solved to arbitrary precision in time which is polynomial in the size of
their descriptions [22]. Three, the eigenvalue decomposition of a matrix can be
computed in polynomial time. ��
Before moving forward, we need the following definition.

Definition 1. A triangulation problem is SDP-EXACT if gquad = gsos = gmom,
i.e., the relaxations are tight.
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Algorithm 1. Triangulation

Require: Image observation vector x̂ ∈ R
2n and the set of cameras P = {P1, . . . , Pn}.

1: Solve the primal (13) and dual (14) SDPs to optimal Y ∗, λ∗
ij and ρ∗.

2: x = Y ∗[1 : 2n, 2n+ 1] (i.e., x is the last column of Y ∗ without its last entry)
3: Use the SVD algorithm to determine a world point X ∈ R

3 from x.
4: if I +

∑

λ∗
ijHij � 0 then

5: if n = 2, or n ≥ 4 and the cameras P are non-co-planar, then
6: Return (OPTIMAL, X).
7: end if
8: if xi = ΠPiX̃ ∀i = 1, . . . , n then
9: Return (OPTIMAL, X )
10: end if
11: end if
12: Return (SUBOPTIMAL, X ).

We will first describe the conditions under which a triangulation problem is
SDP-EXACT. We will then show that if Algorithm 1 returns OPTIMAL then tri-
angulation is SDP-EXACT, and further, the solutionX returned by the algorithm
is indeed optimal for triangulation.

Theorem 2. Let x∗ be an optimal solution to the quadratic program (11). The
triangulation problem is SDP-EXACT if and only if there exist λij ∈ R such that

(i) ∇g(x∗) +
∑

λij∇fij(x
∗) = 0 and (ii) I +

∑
λijHij � 0. (15)

Before proving this theorem, we observe that it is not immediately useful from
a computational perspective. Indeed, a priori verifying condition (i) requires
knowledge of the optimal solution x∗. However, the theorem will help us under-
stand why the triangulation problem is so often SDP-EXACT in Section 4.3.

Let L(x, λij , ρ) = g(x) +
∑

ij λijfij(x) − ρ = x̃� (G+
∑

λijFij − ρE) x̃. Ob-

serve that ∇xL(x, λij , ρ) = ∇g(x) +
∑

λij∇fij(x) and ∇2
xL(x, λij , ρ) = 2(I +∑

λijHij). We require that the following two simple lemmas, the proofs of which
can be found in the Appendix.

Lemma 4. If x∗ is the optimal solution to (11) and λij satisfy condition (i),

then L(x, λij , g(x
∗)) = (x− x∗)� (I +

∑
λijHij) (x− x∗). Further, if condition

(ii) is satisfied as well, then L(x, λij , g(x
∗)) ≥ 0, ∀x ∈ R

2n.

Lemma 5. If x�Ax+ 2b�x+ c ≥ 0, ∀x, then
[
A b
b� c

]
� 0.

Proof (Theorem 2). For the if direction, let λij satisfy conditions (i) and (ii).
Then from Lemma 4 we have L(x, λij , g(x

∗)) ≥ 0 ∀x ∈ R
2n, which combined

with Lemma 5 gives G +
∑

λijFij − g(x∗)E � 0. Therefore λij and ρ = g(x∗)
are dual feasible, which in turn means that gsos ≥ ρ = g(x∗) = gquad. Lemmas 2
and 3 give the reverse inequality, thus gsos = gmom = gquad = g(x∗).
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For the only if direction, let ρ∗ and λ∗
ij be the optimal solution to the dual (14).

If the problem is SDP-EXACT we have the equality ρ∗ = g(x∗) = gquad and from
the dual feasibility of λ∗

ij and ρ∗ we have that G +
∑

λ∗
ijFij − ρ∗E � 0. Taken

together, these two facts imply that L(x, λ∗
ij , g(x

∗)) ≥ 0, ∀x ∈ R
2n.

Since L(x∗, λ∗
ij , g(x

∗)) = 0, L(x, λ∗
ij , g(x

∗)) is a non-negative quadratic poly-
nomial that vanishes at x∗. Non-negativity implies condition (ii) (that the Hes-
sian of the polynomial is positive semidefinite) and the fact that zero is the
minimum possible value of a non-negative polynomial implies that its gradient
vanishes at x∗ which is exactly condition (i). ��
Condition (ii) of Theorem 2 is automatically satisfied by any feasible λij for the
dual (14). Hence, verifying SDP exactness using the dual optimal λ∗

ij reduces
to checking condition (i) of Theorem 2. Checking this condition is not compu-
tationally practical, since it requires knowledge of the optimum x∗. By slightly
tightening condition (ii) we can bypass condition (i).

Theorem 3. If {Y ∗, λ∗
ij , ρ∗} are primal-dual optimal and I +

∑
λ∗
ijHij 
 0,

then rank(Y ∗) = 1, and triangulation is SDP-EXACT.

Proof. Notice that I +
∑

λ∗
ijHij is the top left (2n) × (2n) block in the larger

(2n+1)×(2n+1) positive semidefinite matrix G+
∑

λ∗
ijFij−ρ∗E. By hypothesis,

I +
∑

λ∗
ijHij is nonsingular and thus has full rank equal to 2n, which implies

rank
(
G+

∑
λ∗
ijFij − ρ∗E

)
≥ 2n. (16)

The dual and the primal SDP solutions satisfy complementary slackness, which
means that

〈
G+

∑
λ∗
ijFij − ρ∗E, Y ∗〉 = 0. In particular it implies that

rank(G+
∑

λ∗
ijFij − ρ∗E) + rank(Y ∗) ≤ 2n+ 1, (17)

where we use the standard fact that whenever 〈A,B〉 = 0 for A,B ∈ SN
+ , then

rank(A) + rank(B) ≤ N . From (16) and (17) we have rank(Y ∗) ≤ 1. Since
〈E, Y 〉 = 1, we have Y ∗ �= 0 and hence rank(Y ∗) = 1. ��
Line 4 of Algorithm 1 uses Theorem 3 to establish that we have solved (11).
Lines 5–10 of the algorithm are then devoted to making sure that the solution
actually lies in V P . Thus, Algorithm 1 is correct.

4.2 Implications

Theorem 4. If the image observations are noise free, i.e. there exists X∗ ∈ R
3

such that x̂i = ΠPiX
∗, ∀i = 1, . . . , n, then Algorithm 1 returns OPTIMAL

Proof. Setting λij = 0 satisfies the hypothesis for Theorems 2 and 3. ��
Theorem 5. Two view triangulation is SDP-EXACT.
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Proof. For n = 2 the triangulation problem (11) involves minimizing a quadratic
objective over a single quadratic equality constraint f12(x) = 0. The conditions
of Theorem 2 in this case reduce to finding λ ∈ R satisfying

∇g(x∗) + λ∇f12(x
∗) = 0 and I + λH12 � 0. (18)

The existence of such a λ follows directly from [14, Theorem 3.2]. ��
Theorems 3 and 5 nearly imply that two-view triangulation can be solved in
polynomial time. We say nearly because, despite Theorem 5, it is possible that
the matrix I + λ∗H12 is singular for the dual optimal λ∗ (see Appendix for
an example). This is not a contradiction, since Theorem 3 is only a sufficient
condition for optimality. Despite such pathologies, we shall see in Section 5 that
in practice Algorithm 1 usually returns OPTIMAL for two-view triangulation.

4.3 Geometry of the Algorithm

Recall that the optimization problem (11) can be interpreted as determining the
closest point x∗ to x̂ in the variety WP . This viewpoint gives geometric intuition
for why Algorithm 1 can be expected to perform well in practice.

Lemma 6. Given x̂, and assuming appropriate regularity conditions at the op-
timal solution x∗ to (11), there exist λij ∈ R such that

x̂ = x∗ +
∑ λij

2
∇fij(x

∗) (19)

Proof. It follows from Lagrange multiplier theory [15] that there exist Lagrange
multipliers λij ∈ R such that ∇g(x∗)+

∑
λij∇fij(x

∗) = 0. Observe that for (11)
∇g(x∗) = 2(x∗ − x̂), which finishes the proof. ��
If ‖x∗ − x̂‖ is small, i.e. x̂ is close to the variety WP , then there must exist
some λij satisfying (19) such that ‖λ‖ is small and hence I +

∑
λijHij is a

small perturbation of the positive definite identity matrix I. Since I lies in the
interior of the positive semidefinite cone, these small perturbations also lie in
the interior, that is I +

∑
λijHij 
 0.

This, coupled with the fact that λij are Lagrange multipliers at x∗, yields
the sufficient conditions in Theorem 2 for a triangulation problem to be SDP-
EXACT. Thus, if the amount of noise in the observations is small, Algorithm 1
can be expected to recover the optimal solution to the triangulation problem.
Since Hij depends only on the cameras Pi and not on x̂, the amount of noise
which Algorithm 1 will tolerate depends only on Pi. We summarize this formally
in the following theorem.

Theorem 6. Let N(x∗) = {x∗ +
∑ λij

2 ∇fij(x
∗) | I +

∑
λijHij 
 0}. For any

x̂ ∈ R
2n, if Algorithm 1 returns OPTIMAL and x∗ is the optimal image projection

vector then x̂ ∈ N(x∗). Conversely, if x̂ ∈ N(x∗) and x∗ is the closest point in
WP to x̂, then Algorithm 1 will return OPTIMAL.

Proof. The proof is a straightforward application of Lemma 6 and Theorem 3.
��
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5 Experiments

Algorithm 1 was implemented using YALMIP [12], SeDuMi [21] and MATLAB. These
tools allow for easy implementation and the timings below are for completeness
and should not be used to judge the runtime performance of the algorithm.

Fundamental matrices and epipolar constraints are specified only up to scale
and badly scaled fundamental matrices lead to poorly conditioned SDPs. This
was easily fixed by dividing each Fij by its largest singular value.

Algorithm 1 verifies optimality by checking the positive definiteness of I +∑
λ∗
ijHij 
 0, which requires that its smallest eigenvalue be greater than some

δ > 0. In all our experiments we set δ = 0.05.
Either Algorithm 1 returns OPTIMAL and the solution is guaranteed to be

optimal, or it returns SUBOPTIMAL in which case we cannot say anything about
the quality of the solution, even though it could still be optimal or at least serve
as a good guess for non-linear iteration. Thus, we run Algorithm 1 on a number
of synthetic and real-world datasets and report the fraction of cases in which the
algorithm certifies optimality.

5.1 Synthetic Data

To test the performance of the algorithm as a function of camera configura-
tion and image noise we first tested Algorithm 1 on three synthetic data sets.
Following [16], we created instances of the triangulation problem by randomly
generating points inside the unit cube in R

3.
For the first experiment, a varying number of cameras (2, 3, 5 and 7) were

placed uniformly at random on a sphere of radius 2. In the second experiment,
the same number of cameras were uniformly distributed on a circle of radius
2 in the xy-plane. In the third experiment they were restricted to the x-axis
and were placed at a distance of 3, 5, 7, and 9 units. These setups result in
image measurements with an approximate square length of 2 units. Gaussian
noise of varying standard deviation was added to the image measurements. The
maximum standard deviation was 0.2, which corresponds to about 10% of the
image size. For each noise level we ran the experiment 375 times. Figures 1(a), (b)
and (c) show the fraction of test cases for which Algorithm 1 returned OPTIMAL
as a function of the the standard deviation of perturbation noise.

We first note that for n = 2 cameras, in all three cases, independent of camera
geometry and noise, we are able to solve the triangulation problem optimally
100% of the time. This experimentally validates Theorem 5 and provides strong
evidence that for n = 2 there is no gap between Theorems 2 and 3 in practice.

Observe that for cameras on a sphere (Figure 1(a)), the algorithm performs
very well, and while the performance drops as the noise is increased, the drop is
not significant for practical noise levels. Another interesting feature of this graph
is that finding and certifying optimality becomes easier with increasing number
of cameras. The reason for this increase in robustness is not clear and we plan
to further pursue this intriguing observation in future research.
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(a) Cameras on a sphere. (b) Cameras on a circle. (c) Cameras on a line.

Fig. 1. Fraction of synthetic experiments in which Algorithm 1 returned OPTIMAL
versus the standard deviation of the noise level added to the images. (a) Cameras
placed randomly on the sphere of radius 2. (b) Three cameras all placed on the xy-
plane. (c) Three cameras placed along the x-axis.

Cameras on a circle (Figure 1(b)) is one of the degenerate cases of our algo-
rithm where V P �= WP . We expect a higher rate of failure here and indeed this
is the case. It is however worth noting that the algorithm does not immediately
breakdown and shows a steady decline in performance as a function of noise like
the previous experiment. Unlike cameras on a sphere, increasing the number of
cameras does not increase the performance of the algorithm, which points to the
non-trivial gap between V P and WP for co-planar cameras.

Finally let us consider the hard problem of triangulating a point when the
camera is moving on a line. This case is hard geometrically and algorithmically
as the cameras are co-planar, and this difficulty is reflected in the performance
of the algorithm. In contrast to the previous experiments, we observe rapid
degradation with increasing noise.

5.2 Real Data

We tested Algorithm 1 on four real-world data sets: the Model House, Corridor,
and Dinosaur from Oxford University and the Notre Dame data set [19]. Our
results are summarized in Table 1.

Table 1. Performance of Algorithm 1 on real data. The column OPTIMAL reports the
fraction of triangulation problems which were certified optimal.

Data set # images # points OPTIMAL Time (sec)

Model House 10 672 1.000 143
Corridor 11 737 0.999 193
Dinosaur 36 4983 1.000 960
Notre Dame 48 16,288 0.984 7200
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Model house is a simple data set where the camera moves laterally in front of
the model house. Global optimality was achieved in all cases.

Corridor is a geometrically hard sequence where most of the camera motion
is forward, straight down a corridor. This is similar to the synthetic experiment
where the cameras were all on the x-axis. The algorithm returned OPTIMAL in
all but one case.

Dinosaur consists of images of a (fake) dinosaur rotating on a turntable in
front of a fixed camera. Even though the camera configuration is hard for our
algorithm (cameras are co-planar), global optimality was achieved in all cases.

The three Oxford datasets are custom captures from the same camera. Notre
Dame consists of images of the Notre Dame cathedral downloaded from Flickr.
The data set comes with estimates of the radial distortion for each camera,
which we ignore as we are only considering projective cameras in this paper.
Algorithm 1 returned OPTIMAL in 98.36% of cases.

It is worth noting here that the synthetic datasets were designed to test the
limits of the algorithm as a function of noise. A standard deviation equal to 0.2
translates to image noise of approximately 10% of the image size. In practice such
high levels of noise rarely occur, and when they do, they typically correspond
to outliers. The results in Table 1 indicate that the algorithm has excellent
performance in practice.

6 Discussion

We have presented a semidefinite programming algorithm for triangulation. In
practice it usually returns a global optimum and a certificate of optimality in
polynomial time. Of course there are downsides which must be taken into consid-
eration. Solving SDPs is not nearly as fast as gradient descent methods. More-
over, what happens in the rare cases that global optimality is not certifiable?
Regardless, the lure of a polynomial time algorithm and a better understand-
ing of the geometry of the triangulation problem is far too great to allow these
hiccups to close the door on SDPs.

Hartley and Sturm [3] show that two-view triangulation can be solved by find-
ing the roots of a degree 6 univariate polynomial. For n = 3, [20] gives a Gröbner
basis based algorithm for triangulation by finding all solutions to a polynomial
system with 47 roots. These methods do not extend in a computationally useful
manner to n ≥ 4. Our algorithm solves the triangulation problem for all values
of n ≥ 2 under the conditions of Theorem 3 when the camera centers are not
co-planar.

Similar to our setup, Kanatani et al. also frame triangulation as finding the
closest point on a variety from noisy observations [9]. Unlike our work, they use
both epipolar and trifocal constraints, which makes the constraint set much more
complicated. Further, they do not prove finite convergence or the optimality of
their procedure. Our work answers their question of analyzing the shape of the
variety to obtain a noise threshold for optimality guarantees.

Semidefinite relaxations for optimization problems in multi-view geometry
were first studied by Kahl & Henrion in [8]. They formulate triangulation as an
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optimization problem over quartic inequalities and study its moment relaxations.
Kahl & Henrion observe that good solutions can be obtained from the first few
relaxations. In our method the very first relaxation already yields high quality
solutions. Further, the quadratic equality based formulation has nice theoretical
properties that explain the empirical performance of our algorithm.

Hartley & Seo proposed a method for verifying global optimality of a given
solution to the triangulation problem [2]. The relation between their test and
the definiteness test of Theorem 3 is a fascinating direction for future research.

The study of QCQPs has a long history. There is a wide body of work devoted
to verifying optimality of a given solution for various classes of QCQPs and using
semidefinite programming to solve them. Thus it is natural that statements
similar to Theorems 2 and 3 for various subclasses of QCQPs have appeared
several times in the past e.g. [6,11,17].

The astute reader will notice that even though Theorems 2 and 3 are pre-
sented for triangulation, the proofs apply to any QCQPwith equality constraints,
and can be interpreted in terms of the Karush-Kuhn-Tucker (KKT) conditions
for (11). More recently, and independently from us, Zheng et al. have proved
versions of Theorems 2 and 3 for the more general case of inequality-constrained
QCQPs [23]. Our formulation of triangulation as minimizing distance to a va-
riety allows for a geometric interpretation of these optimality conditions, which
in turn explains the performance of our algorithm.

Finally, we use the general purpose SDP solver SeDuMi for our experiments.
Much improvement can be expected from a custom SDP solver which makes use
of the explicit symmetry and sparsity of the triangulation problem (e.g. for all n
the linear matrix constraints in the primal semidefinite program (13) are sparse
and have rank at most five).
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Appendix

Failure of Theorem 3 for Two-View Triangulation

Consider the cameras

A1 =

⎡

⎣
0 0 1 0
0 1 0 0
−1 0 0 a

⎤

⎦ A2 =

⎡

⎣
0 0 1 0
0 1 0 0
−1 0 0 b

⎤

⎦ , (20)

where 0 < a < b. This models the situation in which two cameras are placed
on the x-axis at (a, 0, 0) and (b, 0, 0), respectively, both facing the origin (i.e.
viewing down the x-axis).
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We can show that, given ε > 0 and x̂ = (x̂1, x̂2) =
([
0; ε

]
,
[
ε; 0

])
, the mini-

mum value of the QCQP (11) is ε2 and all points of the form

x∗
1 =

[√
μ(ε− μ); μ

]
(21)

x∗
2 =

[
ε− μ;

√
μ(ε− μ)

]
(22)

where 0 ≤ μ ≤ ε are optimal.
The non-uniqueness of the minimizer implies that the verification matrix I +

λH12 cannot be positive definite. So in this case, the hypothesis of Theorem 3
is not satisfied, although Theorem 5 still holds.

The proof of these facts is a straight-forward application of the KKT condi-
tions. The minimum distance ε2 can be attained by setting one of the image
points equal to the epipole, but not both. However, the minimum distance is
also attained at points which correspond to neither image being the epipole.

Proof of Lemma 4

Recall conditions (i) ∇g(x∗) +
∑

λij∇fij(x
∗) = 0, and (ii) I +

∑
λijHij � 0.

Let H =
∑

λijHij , b =
∑

λijbij , and β =
∑

λijβij . Then

L(x, λij , g(x
∗)) = g(x) +

∑
λijfij(x)− g(x∗) (23)

= x� (I +H)x+ 2 (b− x̂)
�
x+ x̂�x̂+ β − g(x∗). (24)

We wish to show that (24) is equal to (x− x∗)� (I +H) (x− x∗). The fact that
L(x, λij , g(x

∗)) ≥ 0 is then immediate because I + H � 0. Looking at the
quadratic, linear, and constant terms separately, it suffices to prove

(a) (I +H)x∗ = x̂− b and (b) x∗� (I +H)x∗ = x̂�x̂+ β − g(x∗). (25)

Indeed, (a) is just a restatement of condition (i), since ∇g(x) = 2(x − x̂) and
∇fij(x) = 2(Hijx + bij). To prove (b), first recall that since x∗ is feasible for

problem (11), fij(x
∗) = 0 for all i, j. In particular, β = −2b�x∗−x∗�Hx∗. Using

this and part (a), one can verify (b) through straightforward manipulations. ��

Proof of Lemma 5

Suppose the matrix M =
[
A, b ; b�, c

]
is not positive semidefinite, i.e. there

exists y such that y�My < 0. Write y = [y′; γ] for some γ ∈ R. If γ = 0,

then 0 > y�My = y′�Ay′. But then we arrive at a contradiction by considering
x = μy′ for a scalar μ ∈ R, since for μ large enough, x�Ax+ 2b�x+ c < 0.

Now if γ �= 0, setting x = y′/γ gives

x�Ax+ 2b�x+ c =
1

γ2

(
y�My

)
< 0, (26)

which again contradicts the hypothesis. ��
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