
A QoS-Aware Data Aggregation in
Wireless Sensor Networks

Jongsoo Jeong†*, Jaeseok Kim†*, Haeyong Kim*, Sangcheol Kim*, and Pyeongsoo Mah*
†Computer Software and Engineering, University of Science and Technology,

113 Gwahak-ro Yuseong-gu Daejeon, Republic of Korea
*ETRI, 161 Gajeong-dong Yuseong-gu Daejeon, Republic of Korea

jsjeong@etri.re.kr, jaeseok@etri.re.kr, haekim@etri.re.kr, sheart@etri.re.kr, pmah@etri.re.kr

Abstract— Data aggregation has been one of important key
techniques to increase energy efficiency and bandwidth
utilization in wireless sensor networks. There were many
research works in this area, but most of them have a
disadvantage that cannot optimally meet practical requirements,
such as the heterogeneity of application data and latency
requirements. In this paper, we propose a novel and simple data
aggregation protocol, referred to as Lump, which enables to
support QoS requirements of applications. For this purpose, it
prioritizes packets for differentiated services and facilitates
aggregation decision. Its architecture has a cross-layered design
that mitigates overheads of in-network processing, and it is
completely an independent module residing on between data-
link layer and network layer so that it can be applicable to a
variety of applications. Our experiments show that, when an
intermediate node has four neighbors, Lump can reduce radio
traffic up to 30% while satisfying QoS requirements.

Keywords— wireless sensor networks, in-network processing,
data aggregation, QoS, MAC protocol

I. INTRODUCTION
Wireless Sensor Networks (WSNs) have been widely used

for various kinds of applications including environmental
and habitat monitoring [1], underwater monitoring [2], and
surveillance system [3]. Recent advances in low-power
design and small micro sensor nodes enabled the exploration
of such applications, however the resource constrained
nature of sensor nodes is still the most challenging feature.
Developers have been trying to maximize energy efficiency
so as to increase network lifetime and decrease the cost of
deployment. Since each application differs in features and
requirements, (e.g., the frequency of data reporting or the
number of sensor nodes) the system design of a WSN
depends significantly on the application.

Data aggregation [4] has been a key technique that
minimizes energy consumption by reducing radio
communication while maximizing network utilization by
combining data coming from different sources into a single
frame. Since the computation cost is much lower than the
communication cost [5], it is worth exploring such in-

network processing which resorts to tradeoff between energy
and latency. The more packets are aggregated, the more energy
will be conserved while increasing delay. In this respect, it is
quite important to consider how much the tradeoff will impact
the Quality of Service (QoS). The characteristics of data are
mostly not identical in realistic field. Rather, there are more
than at least two types. For example, consider a forest-
monitoring application. In this case, there may be three types of
packets - network maintaining messages, periodical reports of
temperature and humidity values, and notification of fire. Each
type can be classified as delay-tolerable, delay-bounded, and
delay-critical, respectively. Both application developers and
users may expect these properties to be ensured. Thus, in this
sense, when data aggregation scheme is used, differentiated
services need be provided to users.

To provide the QoS services in WSNs, it is necessary to
analyse the application requirements [6]. Since packets are of
many types, it is impossible to analyse their QoS requirements
individually without the help of the application.

There are some difficulties for supporting QoS in WSNs. 1)
Sensor nodes have severe resource constraints, which implies
that computation speed should be as fast as possible. This
requires that a running protocol on a sensor node must be
simply designed. 2) It should be able to support different QoS
levels associated with various properties of network: multiple
sinks, multiple traffic types, and packet priority. 3) Practical
features of WSNs such as dynamic network topology, mobility
of nodes, and large scale of deployment increase both
complexity and uncertainty. Consequently, it can exacerbate
the system performance, which in turn will result degradation
of QoS. The entire design of our protocol has been prototyped
with careful consideration of the above-mentioned challenges
for QoS support.

In this paper, we introduce a QoS-aware data aggregation
protocol, which we call Lump. Lump protocol aggregates MAC
headers into a single common header and concatenates
application-data of each packet. In order to eliminate
application specific context, it does not fuse application-data.
This lossless aggregation scheme enables Lump to aggregate
packets, irrespective of their types. Lump utilizes various
properties of packets not only to support QoS, but also to

maximize degree of aggregation (DOA). In order to make
overall mechanism simple, we take advantage of cross-layer
design [8][9] which provides upper layer to specify service
requirements on each packet, i.e., Lump protocol gives
authority to the application. Therefore, our protocol
accurately understands various QoS requirements. It can also
keep simplicity since it does not need additional computation
to select priority level of packet.

The remainder of this paper is structured as follows. We
begin a discussion of related work in Section II, then present
the design of Lump Protocol in Section III. We describe our
prototype implementation and experimental results in
Section IV, and future work in Section V. We give
conclusions in Section VI.

II. RELATED WORK
Data aggregation has been a challenge issue in WSNs.

There were a lot of efforts in facilitating data aggregation.
The aggregation functions relied on manipulating data to
some extent, needing semantic information on what the
actual aggregation function is. In this sense, these are all
application-dependent aggregation operations. The
Application-Independent Data Aggregation [7] that isolates
aggregation decisions from the application context, and uses
dynamic feedback scheme compared with fixed- and on-
demand-data aggregation scheme. It is generalized to be
utilized over a wide range of applications without incurring
the costs of rewriting other components to support
application-specific logic. Although AIDA efficiently
conserves energy as well as minimizing average end-to-end
delay, the feedback scheme is too complex for severely
resource constrained sensor node. Specifically, it does not
take into account the diversity of packets.

Another researcher considered involving the collection of
both real-time and non-real-time data [10]. The suggested
schemes have taken into account some applications of
energy-efficient delay-constrained data aggregation include
real-time target tracking in battle environments and critical
relaying of after-shock events in disaster management
environments. To balance energy saving and queuing, a
scheduling algorithm that is based on weighted fair queuing
(WFQ), is employed. However, this algorithm has
application-dependency since they manipulate application
data while processing aggregation. Moreover, as they strive
to derive condition which is denoted as acceptable longest
path, for on-time packet delivery over an aggregation tree, it
results in longer delivery latency.

Data aggregation is a method to conserve energy by
tradeoff between energy and latency. For WSNs, two
primary service differentiation parameters are reliability and
latency. Wireless links as communication medium of WSNs
are more error prone than wired links are. In AFS [11], not
only the reaching probability of packet but also latency can
be affected by this medium property. In order to satisfy both
of them, QoS mechanisms should provide differentiated
service such as more acknowledgements, more transmission
of packets, and stronger FEC for higher priority packets.

However, this end-to-end reliability is a responsibility of
transport layer thus beyond our scope in this paper. We assume
that the reliability can be supported enough from hop-by-hop
error control mechanisms, e.g., CRC, retransmission of data-
link layer.

III. PROTOCOL DESIGN

A. Goals of Lump Protocol
The goals of Lump Protocols are as followings:
· Supporting QoS according to the priority of packet
· Supporting multiple sinks and multiple traffic types
· Maximizing degree of aggregation

We examined some requirements to achieve these goals.

1) Prioritization: In order to support QoS, Lump protocol
must recognize packet priority. Sensor nodes are too resource
constrained to decide packet priority statistically e.g., meter and
marker mechanisms of DiffServ [14]. Thus, it is necessary to
take simpler approach.

2) Multiple Sinks: Traditional data aggregation protocols are
not only limited to support multiple sinks but also expected to
decrease DOA, since they operate on top of network layer and
do not aggregate packets destined for different nodes.
Considering supporting multiple sinks as an essential paradigm,
we need Lump layer to aggregate packets that share a route
even instantly.

3) Multiple Traffic Types: To support multiple traffic types,
aggregation mechanism must not fuse or manipulate
application data. Traditional mechanisms perform system-level
fusion of the collected data for a certain command. This
strategy is only for some possible situation, i.e., it is application
dependent, and not able to support multiple traffic types. In
other applications, it may be more desirable to deliver
application data to the sink node. Thus, we need to perform
lossless aggregation.

4) Maximization of DOA: In order to maximize DOA, each
sensor node needs to adjust waiting time for aggregation based
on its position or role in the network. If a node is a leaf node
located at the end of network, it does not relay any packet.
Thus, there is no need to wait but to send packet generated by
itself immediately. On the other hand, if a node is a router, it
must wait for the other packets to aggregate. We need to
classify such condition to adjust waiting time. Taking into
account the above requirements, we designed Lump protocol as
a QoS-aware mechanism.

B. Packet Priority
Lump layer receives packets with their priorities from upper

layer directly. This cross-layer design is the simplest approach
to recognize packet priority. The priority represents tolerable
end-to-end latency of its packet. For example, if a priority
value is '5', end-to-end latency of the packet is tolerable during
'5' time units. Accordingly, the highest value '0' means that the
packet must be sent immediately. The priority is raised toward
the highest value as time goes by. On every router node on the
path, Lump protocol decides the waiting time of the packet

corresponding to its priority, which is included in the packet
until the arrival at the final destination. With this manner,
Lump protocol provides differentiated services for each
packet, i.e., it makes delay-tolerable packets to yield network
band-width to more delay-critical ones.

C. Data Aggregation
As we previously discussed, supporting QoS is

challenging in WSNs, particularly because of various traffic
properties and dynamic circumstances of network.
Employing data aggregation scheme in such QoS constrained
environment has led us to make two decisions.

First, in order to maximize DOA, it is important to decide
how long a packet should wait for being aggregated with
others. As mentioned above, delay-tolerable packets can be
deferred for a certain amount of time. Lump protocol utilizes
that time quantum for aggregating packets. This intuitive
strategy enables Lump protocol to be lightweight so that little
overhead is added to the baseline system.

Second, we designed Lump layer to reside between
network layer and data link layer, meaning that the data
aggregation scheme is not only independent to the dynamic
circumstances of network layer but also able to maintain per-
route flow. When packets are being delivered to multiple
sinks, routers should maintain per-route flow rather than per-
sink flow. If routers aggregate packets based on their sink
address, packets destined for different sinks will not be
aggregated, which in turn causes reduction of DOA. On the
other hand, maintaining per-route flow enables efficient data
aggregation even when the packets share the same next-hop
in transit. Thus, it is able to support multiple sinks without
decreasing DOA.

However, there still exists another problem. Packets
destined for different sinks may have different values and
different format. Conventional data aggregation mechanisms
manipulate application data, using certain operators such as
averaging, to reduce data redundancy. This is limited to
certain types of data and also not able to aggregate distinct
data types. Instead, in order to support multiple traffic types,
we design our protocol to aggregate MAC headers and
concatenate each application data into MAC payload without
data loss. Generally, packets in WSNs contain small sensing
data. Relatively, MAC headers consume significant energy
as a fixed overhead on every single transmission. Our

protocol aggregates their MAC headers into common MAC
header so that the transmission rate is decreased.

D. Architectural Design
Fig. 1 shows the architectural design of Lump protocol.

Arrows represent the flow of both packets and their priorities.
Sender module is designated to intercept all outgoing packets
from network layer and responsible for concatenating them into
a frame. When the system receives an aggregated frame,
receiver module verifies if it contains multiple packets or not,
and separates it to individual frames. Then it forwards the
frames to network layer. As a result, network layer receives
individual frames, including both packets and their priorities,
from Lump layer. Then it will either pass the frame to the
application or find the next hop addresses where they have to
be forwarded to.

Sender module is shown in Fig. 2. It consists of common
header structures, send timer, and send-queues that are
corresponding to the next hop addresses. Sender module
deframes and classifies packets coming from network layer by
next hop addresses, then enqueues them to the queue
corresponding to addresses. Common header structure
maintains common information of the queue. On every enqueue
of packets, sender module updates common header structure of
the queue. In order to aggregate packets, sender module delays
them for the amount of time corresponding to their priorities.
Send timer manages and updates the priorities of packets in all
queues. When it sends a packet, it aggregates all packets in the
same queue into a single payload and links common header and
the payload. This aggregated frame is processed as a normal
frame by MAC layer.

Sender module schedules frame transmission. Conditions of
transmission are as followings:

1) Size: Before sender module enqueues a new packet, it
checks the free space of the queue. If there is not enough space
in the queue, at first it empties the queue by sending all of the
packets, then enqueues new packet. On the other hand, if the
free space fits new one perfectly, sender module enqueues it
first, then sends all packets with no additional wait. Because
there is no more space to aggregate now.

Lump Layer

Link Layer

Upper Layer

L2

L3

sender receiver

routing

Fig. 1. Architectural Design

Fig. 2. Sender module

Fig. 3. Receiver module

2) Position: Sender module sends packet immediately when
the node is not a router, in other words, the node has no more
chance to aggregate. In order to recognize its position, sender
module distinguishes where packets are generated from. For
some packets generated from application layer, sender
module tries to finds the queue to store them. If it finds a
queue corresponding to the same next hop address, it
recognizes that the node is a router. However, if there is no
queue to store, sender module recognizes that the node is a
leaf node. So it sends the packet immediately. For the other
packets coming from network layer, sender module
obviously recognizes that the node as router.

3) Priority: When a packet is passed to sender module and
enqueued to certain queue, sender module checks its priority
and decides whether it must be sent now or not. If the
priority is the highest, sender module sends it immediately.

4) Time-out: Sender module sends the packet when its
weighted waiting time in network reaches up to its tolerable
end-to-end latency. The send timer checks it on every
updates of packet priorities.

Fig. 3 shows the receiver module. It consists of a verifier,
a separator, and a queue to store received frames temporarily.
When a frame is passed from data-link layer, then receiver
module enqueues it at first, and processes frames in the
queue sequentially. Verifier dequeues a frame and verifies
whether it is aggregated by our protocol or not. If it is,
verifier passes it to the separator for next processing,
otherwise passes it directly to upper layer. Aggregated
frames are separated to individual frames and passed to
network layer sequentially by separator.

E. Frame Format Details
An aggregated frame is formed as shown in Fig. 4. Lump

protocol aggregates common information of individual
packets into one header and concatenates application data
with sub headers. Common header contains common
information (e.g. source address, destination address) of
aggregated frames. Each sub header contains individual

information (e.g. length, priority) of each frame.

IV. EVALUATION
We chose to integrate our prototype implementation of

Lump protocol in Nano Qplus [12][13] - a multi-threaded,
lightweight sensor network operating system. The key design
goal of Nano Qplus is ease of use. It has the thread
programming model and supports many functions, e.g.,
message queue, semaphore, user timer and so on. The memory
management supports stable thread stack management and
dynamic memory allocation scheme in a small sensor node.
Nano Qplus has NanoMAC which is a very small sized MAC,
but provides most of basic MAC functions, such as data
retransmission, acknowledgement and CCA for wireless
communication. In order to keep backward compatibility, we
retained existing API related to MAC, and add new API related
to Lump Protocol. Table I shows the existing and the newly
added APIs of Nano Qplus for Lump protocol.

A. Evaluation Setup
To evaluate the performance of Lump protocol, we have

constructed a system consists of 10 sensor nodes. The hardware
mote used is named Ubi-coin — a Telos B-based hardware
platform that has MSP430 microcontroller, CC2420 RF
transceiver and a few peripherals. We took a tree-based
approach as a maiden work, because it would optimally affect
our evaluation due to additional workload. And we assume that
the network topology is initially set up and would not change,
thus we can exclude unexpected interference such as
complicated routing protocol. However, we did not just follow
the traditional tree-based data flow. Rather, to support multiple
sinks, we take into consideration that variant data from a source
may not only flow upwards the sink but also go downwards,
i.e., packet can be forwarded to any direction of the next hop in
the system. This is possible even when the data flow is fixed
upwards a single sink node if we use dynamic routing protocol
such as AODV.

Fig. 4. Frame Format

TABLE I
API LIST RELATED WITH NANOMAC AND LUMP

 Prototypes Description

NMAC

void mac_init(UINT8 channel, UINT16 panaddr, UINT16 myaddr); Initialize MAC channel and addresses
void mac_set_rx_cb(void (*func)(void)); Set callback function to receive frame.
BOOL mac_tx_noack(MAC_TX_INFO *frame); Transmit frame without ACK.
BOOL mac_tx(MAC_TX_INFO *frame); Transmit frame with ACK.
BOOL mac_rx(MAC_RX_INFO *frame); Read frame.

Lump BOOL mac_tx_with_prio(MAC_TX_INFO *frame, PKT_PRIORITY prio); Transmit frame with priority.
BOOL mac_rx_with_prio(MAC_RX_INFO *frame, PKT_PRIORITY *prio_ptr); Read frame with priority.

Fig. 5. System model

Fig. 5 shows our simple network structure. Each number
on the nodes represents their routing entity, i.e., number of
neighbor, meaning that we can expect relative degree of
traffic in terms of additional workload forwarding packets
between the neighbors. Both sided arrows connecting the
nodes represent our considerations, the possible direction of
data flow. All nodes have a static routing table and are aware
of the network size. Each node is designated to periodically
send 10 packets containing application data 20 bytes long
every minute. To evaluate overall performance related to the
parameters, packets are sent toward randomly selected final
destination with randomly generated priority that represents a
time unit of a second. Note that, in practical use, application
layer is responsible for setting the packet priority thus
determine DOA on demand. To make sure to take advantage
of Lump protocol, it is important to carefully choose the
level of packet priority properly.

B. End-to-End Latency
In our evaluation, we mainly focus on the goal directed to

support QoS requirements specified by upper layer. We
examined packet transmission, reception, and forwarding of
each node respectively, until the pure packet generation (and
transmission) exceeds more than 2000 packets. In order to
measure both the expected efficiency and overhead precisely,
we compared Lump-added MAC protocol with unmodified
MAC protocol, NanoMAC, by using the rest of conditions
identical. Fig. 6-7 show the change of average end-to-end
latency as priority and hop count vary. As both the packet
priority and hop counts increase, the latency increases
accordingly. However, note that Lump protocol turned out to
ensure approximately half the specified priority on average
(Fig. 6). We were also able to make certain that not a single
packet exceeds its designated priority.

Fig. 8 illustrates, when using Lump protocol with priority
0 for critical message, how the average latency is affected in
comparison with baseline of NanoMAC usage. The average
latency is more or less the same as NanoMAC. The little
difference is mainly due to the additional computation within
the Lump layer. The results demonstrate that the tradeoff
between latency and energy efficiency are feasible without
significantly affecting the system performance in terms of
the energy efficiency corresponding to the reduced radio
usage.

C. Performance
In our model, we assumed that the number of routing

entity would directly affect each node in its degree of traffic.
Fig. 9 shows the reduction ratio of radio transmission under
the varying degree of traffic. At one extreme degree in our
model, at the rightmost vertex in the graph, Lump protocol
has reduced 27% of packet transmission, which represents
the reduced amount of redundant MAC header. The graph
demonstrates that our design has achieved graceful
degradation against increasing traffic load. This is a truly
remarkable result since, in our model, the packets flow
randomly into all possible directions, not the one-way traffic.
However, when the number of neighbor is one (meaning that

it is a leaf node), the reduction ratio results in 0%. This is
because leaf nodes are not engaged in data aggregation
mechanism. Overall, Lump protocol does not harm the system

Fig. 6. Average latencies with the order of priority

Fig. 7. Average latencies with hop counts

Fig. 8. Latency comparison: NanoMAC vs. Lump with priority 0

Fig. 9. The number of transmission reduction ratio for three hours

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

A
ve

ra
g
e

La
te

n
cy

 [
s]

Priority

0

2

4

6

8

10

0 1 2 3 4 5

A
ve

ra
g
e

La
te

n
cy

 [
s]

Hop counts

prio 0 prio 3

prio 6 prio 9

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

A
ve

ra
g
e

La
te

n
cy

 [
s]

Hop Counts

NMAC

Lump Prio 0

-30%

-20%

-10%

0%

10%

20%

30%

40%

0 1 2 3 4

R
ed

u
ct

io
n
 R

at
io

Degree of Traffic (# of Neighbor)

performance to serve two goals: Energy efficiency and QoS
support.

V. FUTURE WORK
Although our protocol is well-performed for the goal we

have targeted, there are some immaturities in which we hope
to carry out future work.

First, the larger the packet size becomes, the more
congestion would occur due to the limited channel
bandwidth. Consequently, Power consumption may increase
owing to retransmission trials. Thus it is not always the best
plan to maximize the size of packets [5]. However, results
have shown that packet retransmission rate of the two
protocols are observed as the same, approximately 0.1%.
One possible reason is that the designated traffic in the
system does not exceed maximum bandwidth capacity. Since
we decided to initially minimize unexpected interferences,
we started with a moderate traffic model. For now, we plan
to expand the evaluations with other traffic models that are
dynamic and malicious, in order to enhance stability of
Lump protocol.

Second, when a priority value is 5, the corresponding
packet is supposed to be delivered in 5 seconds. But the
average end-to-end latency has resulted in about half the
priority values. Indeed, the distribution of the results spread
out randomly. The reason is that the aggregation queues are
based on the next-hop address so that delay-tolerable packets
may be sent earlier with a delay-critical packet when both are
aggregated in the same queue. Although the system satisfies
application requirements, neither accuracy nor precision has
been met. We aim to reconcile the error between application
decisions and the results of services so as to attain
consistently high DOA.

Finally, since we designed Lump layer to be independent,
more optimization will be available by cooperating with the
other protocols such as data-centric routing. We will
investigate such advantages.

VI. CONCLUSION
This paper presented Lump protocol, running

independently between network layer and data-link layer, as
a way of data aggregation. To the best of our knowledge, the
other data aggregation mechanisms are interested in complex
algorithms to increase DOA without knowing application
demands. This may, in turn, lead to misdirected performance
and not fulfill the application’s expectations. Our design
concept which employed cross-layer manner was
straightforward. Therefore we have minimized computation-
bound workload and focused on adaptability and reliability.

Lump protocol is mainly targeted to aggregate individual
packets sharing the same next-hop address into a single
frame to reduce radio bandwidth usage while supporting QoS

requirements of applications. The Lump module tries to
aggregate packets as long as each the potential waiting time
remains. It is designed to be adaptable for both end-nodes and
router nodes.

We have demonstrated that our design meets the goals. Our
prototype designed on top of Nano Qplus, a well-made WSN
operating system, outperformed its baseline. Results have
shown that Lump protocol offers sufficient level of QoS
support while reducing the redundant MAC headers. Despite
the fact that the packets have been randomly destined for the
multiple sinks, Lump protocol gracefully reduces radio
communication rate with little overhead.

REFERENCES
[1] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S.

Burgessm T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
macroscope in the redwoods,” in Proceedings of the 3rd ACM
international conference on Embedded networked sensor systems, 2005.

[2] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data
collection, storage, and retrieval with an underwater sensor network,” in
Proceedings of the 3rd ACM international conference on Embedded
networked sensor systems, 2005.

[3] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He, J.
Stankovic, T. Abdelzaher, and B. Krogh, “Lightweight detection and
classification for wireless sensor networks in realistic environments,” in
Proceedings of the 3rd ACM international conference on Embedded
networked sensor systems, 2005.

[4] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data
aggregation in wireless sensor networks,” in Proceedings of the 22nd
IEEE international conference on Distributed Computing Systems
Workshops, 2002.

[5] G. J. Pottie and W. J. Kaiser, “Wireless Integrated Network Sensors,” in
Communications of the ACM, 2000.

[6] D. Chen, and P. K. Varshney, “QoS Support in Wireless Sensor
Networks: A Survey,” in Proceedings of the International Conference
on Wireless Networks, 2004.

[7] T. He, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “AIDA:
Adaptive application-independent data aggregation in wireless sensor
networks,” in ACM Transactions on Embedded Computing Systems
(TECS), vol 3, pp. 426-457, 2004.

[8] S. Shakkottai, T. S. Rapaport, and P. C. Karlsson, “Cross-layer Design
for Wireless Networks,” in IEEE Communications Magazine, vol 41, pp.
74-80, 2003.

[9] V. Srivastava, and M. Motani, “Cross-layer design: a survey and the
road ahead,” in IEEE Communications Magazine, vol. 43, pp. 112–119,
2005.

[10] K. Akkaya, M. Younis, and M. Youssef, “Efficient Aggregation of
Delay-Constrained Data in Wireless Sensor Networks,” in Proceedings
of the 3rd ACS/IEEE Internaltional Conference on Computer Systems
and Applications, 2005.

[11] S. Bhatnagar, B. Deb, and B. Nath, “Service Differentiation in Sensor
Networks,” in Proceedings of Wireless Personal Multimedia
Communications, 2001.

[12] S. C. Kim, H. Y. Kim, J. K. Song, M. S. Yu, and P. S. Mah, “Nano
Qplus – A Multi-Threaded Operating System with Memory Protection
Mechanism for Wireless Sensor Networks,” in 1st China-Korea WSN
Workshop (CKWSN), Chongqing. China, 2008.

[13] Nano Qplus, http://qplus.or.kr/
[14] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An

Architecture for Differentiated Services,” in RFC 2475, IETF, 1998.

