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Abstract— Data aggregation has been one of important key 
techniques to increase energy efficiency and bandwidth 
utilization in wireless sensor networks. There were many 
research works in this area, but most of them have a 
disadvantage that cannot optimally meet practical requirements, 
such as the heterogeneity of application data and latency 
requirements. In this paper, we propose a novel and simple data 
aggregation protocol, referred to as Lump, which enables to 
support QoS requirements of applications. For this purpose, it 
prioritizes packets for differentiated services and facilitates 
aggregation decision. Its architecture has a cross-layered design 
that mitigates overheads of in-network processing, and it is 
completely an independent module residing on between data-
link layer and network layer so that it can be applicable to a 
variety of applications. Our experiments show that, when an 
intermediate node has four neighbors, Lump can reduce radio 
traffic up to 30% while satisfying QoS requirements. 
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I. INTRODUCTION 
Wireless Sensor Networks (WSNs) have been widely used 

for various kinds of applications including environmental 
and habitat monitoring [1], underwater monitoring [2], and 
surveillance system [3]. Recent advances in low-power 
design and small micro sensor nodes enabled the exploration 
of such applications, however the resource constrained 
nature of sensor nodes is still the most challenging feature. 
Developers have been trying to maximize energy efficiency 
so as to increase network lifetime and decrease the cost of 
deployment. Since each application differs in features and 
requirements, (e.g., the frequency of data reporting or the 
number of sensor nodes) the system design of a WSN 
depends significantly on the application. 

Data aggregation [4] has been a key technique that 
minimizes energy consumption by reducing radio 
communication while maximizing network utilization by 
combining data coming from different sources into a single 
frame. Since the computation cost is much lower than the 
communication cost [5], it is worth exploring such in-

network processing which resorts to tradeoff between energy 
and latency. The more packets are aggregated, the more energy 
will be conserved while increasing delay. In this respect, it is 
quite important to consider how much the tradeoff will impact 
the Quality of Service (QoS). The characteristics of data are 
mostly not identical in realistic field. Rather, there are more 
than at least two types. For example, consider a forest-
monitoring application. In this case, there may be three types of 
packets - network maintaining messages, periodical reports of 
temperature and humidity values, and notification of fire. Each 
type can be classified as delay-tolerable, delay-bounded, and 
delay-critical, respectively. Both application developers and 
users may expect these properties to be ensured. Thus, in this 
sense, when data aggregation scheme is used, differentiated 
services need be provided to users. 

To provide the QoS services in WSNs, it is necessary to 
analyse the application requirements [6]. Since packets are of 
many types, it is impossible to analyse their QoS requirements 
individually without the help of the application. 

There are some difficulties for supporting QoS in WSNs. 1) 
Sensor nodes have severe resource constraints, which implies 
that computation speed should be as fast as possible. This 
requires that a running protocol on a sensor node must be 
simply designed. 2) It should be able to support different QoS 
levels associated with various properties of network: multiple 
sinks, multiple traffic types, and packet priority. 3) Practical 
features of WSNs such as dynamic network topology, mobility 
of nodes, and large scale of deployment increase both 
complexity and uncertainty. Consequently, it can exacerbate 
the system performance, which in turn will result degradation 
of QoS. The entire design of our protocol has been prototyped 
with careful consideration of the above-mentioned challenges 
for QoS support. 

In this paper, we introduce a QoS-aware data aggregation 
protocol, which we call Lump. Lump protocol aggregates MAC 
headers into a single common header and concatenates 
application-data of each packet. In order to eliminate 
application specific context, it does not fuse application-data. 
This lossless aggregation scheme enables Lump to aggregate 
packets, irrespective of their types. Lump utilizes various 
properties of packets not only to support QoS, but also to 



maximize degree of aggregation (DOA). In order to make 
overall mechanism simple, we take advantage of cross-layer 
design [8][9] which provides upper layer to specify service 
requirements on each packet, i.e., Lump protocol gives 
authority to the application. Therefore, our protocol 
accurately understands various QoS requirements. It can also 
keep simplicity since it does not need additional computation 
to select priority level of packet. 

The remainder of this paper is structured as follows. We 
begin a discussion of related work in Section II, then present 
the design of Lump Protocol in Section III. We describe our 
prototype implementation and experimental results in 
Section IV, and future work in Section V. We give 
conclusions in Section VI. 

II. RELATED WORK 
Data aggregation has been a challenge issue in WSNs. 

There were a lot of efforts in facilitating data aggregation. 
The aggregation functions relied on manipulating data to 
some extent, needing semantic information on what the 
actual aggregation function is. In this sense, these are all 
application-dependent aggregation operations. The 
Application-Independent Data Aggregation [7] that isolates 
aggregation decisions from the application context, and uses 
dynamic feedback scheme compared with fixed- and on-
demand-data aggregation scheme. It is generalized to be 
utilized over a wide range of applications without incurring 
the costs of rewriting other components to support 
application-specific logic. Although AIDA efficiently 
conserves energy as well as minimizing average end-to-end 
delay, the feedback scheme is too complex for severely 
resource constrained sensor node. Specifically, it does not 
take into account the diversity of packets. 

Another researcher considered involving the collection of 
both real-time and non-real-time data [10]. The suggested 
schemes have taken into account some applications of 
energy-efficient delay-constrained data aggregation include 
real-time target tracking in battle environments and critical 
relaying of after-shock events in disaster management 
environments. To balance energy saving and queuing, a 
scheduling algorithm that is based on weighted fair queuing 
(WFQ), is employed. However, this algorithm has 
application-dependency since they manipulate application 
data while processing aggregation. Moreover, as they strive 
to derive condition which is denoted as acceptable longest 
path, for on-time packet delivery over an aggregation tree, it 
results in longer delivery latency. 

Data aggregation is a method to conserve energy by 
tradeoff between energy and latency. For WSNs, two 
primary service differentiation parameters are reliability and 
latency. Wireless links as communication medium of WSNs 
are more error prone than wired links are. In AFS [11], not 
only the reaching probability of packet but also latency can 
be affected by this medium property. In order to satisfy both 
of them, QoS mechanisms should provide differentiated 
service such as more acknowledgements, more transmission 
of packets, and stronger FEC for higher priority packets. 

However, this end-to-end reliability is a responsibility of 
transport layer thus beyond our scope in this paper. We assume 
that the reliability can be supported enough from hop-by-hop 
error control mechanisms, e.g., CRC, retransmission of data-
link layer. 

III. PROTOCOL DESIGN 

A. Goals of Lump Protocol 
The goals of Lump Protocols are as followings: 
· Supporting QoS according to the priority of packet 
· Supporting multiple sinks and multiple traffic types 
· Maximizing degree of aggregation 

We examined some requirements to achieve these goals. 

1)  Prioritization: In order to support QoS, Lump protocol 
must recognize packet priority. Sensor nodes are too resource 
constrained to decide packet priority statistically e.g., meter and 
marker mechanisms of DiffServ [14]. Thus, it is necessary to 
take simpler approach. 

2)  Multiple Sinks: Traditional data aggregation protocols are 
not only limited to support multiple sinks but also expected to 
decrease DOA, since they operate on top of network layer and 
do not aggregate packets destined for different nodes. 
Considering supporting multiple sinks as an essential paradigm, 
we need Lump layer to aggregate packets that share a route 
even instantly. 

3)  Multiple Traffic Types: To support multiple traffic types, 
aggregation mechanism must not fuse or manipulate 
application data. Traditional mechanisms perform system-level 
fusion of the collected data for a certain command. This 
strategy is only for some possible situation, i.e., it is application 
dependent, and not able to support multiple traffic types. In 
other applications, it may be more desirable to deliver 
application data to the sink node. Thus, we need to perform 
lossless aggregation. 

4)  Maximization of DOA: In order to maximize DOA, each 
sensor node needs to adjust waiting time for aggregation based 
on its position or role in the network. If a node is a leaf node 
located at the end of network, it does not relay any packet. 
Thus, there is no need to wait but to send packet generated by 
itself immediately. On the other hand, if a node is a router, it 
must wait for the other packets to aggregate. We need to 
classify such condition to adjust waiting time. Taking into 
account the above requirements, we designed Lump protocol as 
a QoS-aware mechanism. 

B. Packet Priority 
Lump layer receives packets with their priorities from upper 

layer directly. This cross-layer design is the simplest approach 
to recognize packet priority. The priority represents tolerable 
end-to-end latency of its packet. For example, if a priority 
value is '5', end-to-end latency of the packet is tolerable during 
'5' time units. Accordingly, the highest value '0' means that the 
packet must be sent immediately. The priority is raised toward 
the highest value as time goes by. On every router node on the 
path, Lump protocol decides the waiting time of the packet 



corresponding to its priority, which is included in the packet 
until the arrival at the final destination. With this manner, 
Lump protocol provides differentiated services for each 
packet, i.e., it makes delay-tolerable packets to yield network 
band-width to more delay-critical ones. 

C. Data Aggregation 
As we previously discussed, supporting QoS is 

challenging in WSNs, particularly because of various traffic 
properties and dynamic circumstances of network. 
Employing data aggregation scheme in such QoS constrained 
environment has led us to make two decisions. 

First, in order to maximize DOA, it is important to decide 
how long a packet should wait for being aggregated with 
others. As mentioned above, delay-tolerable packets can be 
deferred for a certain amount of time. Lump protocol utilizes 
that time quantum for aggregating packets. This intuitive 
strategy enables Lump protocol to be lightweight so that little 
overhead is added to the baseline system. 

Second, we designed Lump layer to reside between 
network layer and data link layer, meaning that the data 
aggregation scheme is not only independent to the dynamic 
circumstances of network layer but also able to maintain per-
route flow. When packets are being delivered to multiple 
sinks, routers should maintain per-route flow rather than per-
sink flow. If routers aggregate packets based on their sink 
address, packets destined for different sinks will not be 
aggregated, which in turn causes reduction of DOA. On the 
other hand, maintaining per-route flow enables efficient data 
aggregation even when the packets share the same next-hop 
in transit. Thus, it is able to support multiple sinks without 
decreasing DOA. 

However, there still exists another problem. Packets 
destined for different sinks may have different values and 
different format. Conventional data aggregation mechanisms 
manipulate application data, using certain operators such as 
averaging, to reduce data redundancy. This is limited to 
certain types of data and also not able to aggregate distinct 
data types. Instead, in order to support multiple traffic types, 
we design our protocol to aggregate MAC headers and 
concatenate each application data into MAC payload without 
data loss. Generally, packets in WSNs contain small sensing 
data. Relatively, MAC headers consume significant energy 
as a fixed overhead on every single transmission. Our 

protocol aggregates their MAC headers into common MAC 
header so that the transmission rate is decreased. 

D. Architectural Design 
Fig. 1 shows the architectural design of Lump protocol. 

Arrows represent the flow of both packets and their priorities. 
Sender module is designated to intercept all outgoing packets 
from network layer and responsible for concatenating them into 
a frame. When the system receives an aggregated frame, 
receiver module verifies if it contains multiple packets or not, 
and separates it to individual frames. Then it forwards the 
frames to network layer. As a result, network layer receives 
individual frames, including both packets and their priorities, 
from Lump layer. Then it will either pass the frame to the 
application or find the next hop addresses where they have to 
be forwarded to. 

Sender module is shown in Fig. 2. It consists of common 
header structures, send timer, and send-queues that are 
corresponding to the next hop addresses. Sender module 
deframes and classifies packets coming from network layer by 
next hop addresses, then enqueues them to the queue 
corresponding to addresses. Common header structure 
maintains common information of the queue. On every enqueue 
of packets, sender module updates common header structure of 
the queue. In order to aggregate packets, sender module delays 
them for the amount of time corresponding to their priorities. 
Send timer manages and updates the priorities of packets in all 
queues. When it sends a packet, it aggregates all packets in the 
same queue into a single payload and links common header and 
the payload. This aggregated frame is processed as a normal 
frame by MAC layer. 

Sender module schedules frame transmission. Conditions of 
transmission are as followings: 

1)  Size: Before sender module enqueues a new packet, it 
checks the free space of the queue. If there is not enough space 
in the queue, at first it empties the queue by sending all of the 
packets, then enqueues new packet. On the other hand, if the 
free space fits new one perfectly, sender module enqueues it 
first, then sends all packets with no additional wait. Because 
there is no more space to aggregate now. 

Lump Layer

Link Layer

Upper Layer
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L3

sender receiver
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Fig. 1.  Architectural Design 

 

Fig. 2. Sender module 

 
Fig. 3.  Receiver module 



2)  Position: Sender module sends packet immediately when 
the node is not a router, in other words, the node has no more 
chance to aggregate. In order to recognize its position, sender 
module distinguishes where packets are generated from. For 
some packets generated from application layer, sender 
module tries to finds the queue to store them. If it finds a 
queue corresponding to the same next hop address, it 
recognizes that the node is a router. However, if there is no 
queue to store, sender module recognizes that the node is a 
leaf node. So it sends the packet immediately. For the other 
packets coming from network layer, sender module 
obviously recognizes that the node as router. 

3)  Priority: When a packet is passed to sender module and 
enqueued to certain queue, sender module checks its priority 
and decides whether it must be sent now or not. If the 
priority is the highest, sender module sends it immediately. 

4)  Time-out: Sender module sends the packet when its 
weighted waiting time in network reaches up to its tolerable 
end-to-end latency. The send timer checks it on every 
updates of packet priorities. 

Fig. 3 shows the receiver module. It consists of a verifier, 
a separator, and a queue to store received frames temporarily. 
When a frame is passed from data-link layer, then receiver 
module enqueues it at first, and processes frames in the 
queue sequentially. Verifier dequeues a frame and verifies 
whether it is aggregated by our protocol or not. If it is, 
verifier passes it to the separator for next processing, 
otherwise passes it directly to upper layer. Aggregated 
frames are separated to individual frames and passed to 
network layer sequentially by separator. 

E. Frame Format Details 
An aggregated frame is formed as shown in Fig. 4. Lump 

protocol aggregates common information of individual 
packets into one header and concatenates application data 
with sub headers. Common header contains common 
information (e.g. source address, destination address) of 
aggregated frames. Each sub header contains individual 

information (e.g. length, priority) of each frame. 

IV. EVALUATION 
We chose to integrate our prototype implementation of 

Lump protocol in Nano Qplus [12][13] - a multi-threaded, 
lightweight sensor network operating system. The key design 
goal of Nano Qplus is ease of use. It has the thread 
programming model and supports many functions, e.g., 
message queue, semaphore, user timer and so on. The memory 
management supports stable thread stack management and 
dynamic memory allocation scheme in a small sensor node. 
Nano Qplus has NanoMAC which is a very small sized MAC, 
but provides most of basic MAC functions, such as data 
retransmission, acknowledgement and CCA for wireless 
communication. In order to keep backward compatibility, we 
retained existing API related to MAC, and add new API related 
to Lump Protocol. Table I shows the existing and the newly 
added APIs of Nano Qplus for Lump protocol. 

A. Evaluation Setup 
To evaluate the performance of Lump protocol, we have 

constructed a system consists of 10 sensor nodes. The hardware 
mote used is named Ubi-coin — a Telos B-based hardware 
platform that has MSP430 microcontroller, CC2420 RF 
transceiver and a few peripherals. We took a tree-based 
approach as a maiden work, because it would optimally affect 
our evaluation due to additional workload. And we assume that 
the network topology is initially set up and would not change, 
thus we can exclude unexpected interference such as 
complicated routing protocol. However, we did not just follow 
the traditional tree-based data flow. Rather, to support multiple 
sinks, we take into consideration that variant data from a source 
may not only flow upwards the sink but also go downwards, 
i.e., packet can be forwarded to any direction of the next hop in 
the system. This is possible even when the data flow is fixed 
upwards a single sink node if we use dynamic routing protocol 
such as AODV. 

 

 
 

Fig. 4.  Frame Format 

TABLE I 
API LIST RELATED WITH NANOMAC AND LUMP 

 Prototypes Description 

NMAC 

void mac_init(UINT8 channel, UINT16 panaddr, UINT16 myaddr); Initialize MAC channel and addresses 
void mac_set_rx_cb(void (*func)(void)); Set callback function to receive frame. 
BOOL mac_tx_noack(MAC_TX_INFO *frame); Transmit frame without ACK. 
BOOL mac_tx(MAC_TX_INFO *frame); Transmit frame with ACK. 
BOOL mac_rx(MAC_RX_INFO *frame); Read frame. 

Lump BOOL mac_tx_with_prio(MAC_TX_INFO *frame, PKT_PRIORITY prio); Transmit frame with priority. 
BOOL mac_rx_with_prio(MAC_RX_INFO *frame, PKT_PRIORITY *prio_ptr); Read frame with priority. 

 

 
Fig. 5. System model 



Fig. 5 shows our simple network structure. Each number 
on the nodes represents their routing entity, i.e., number of 
neighbor, meaning that we can expect relative degree of 
traffic in terms of additional workload forwarding packets 
between the neighbors. Both sided arrows connecting the 
nodes represent our considerations, the possible direction of 
data flow. All nodes have a static routing table and are aware 
of the network size. Each node is designated to periodically 
send 10 packets containing application data 20 bytes long 
every minute. To evaluate overall performance related to the 
parameters, packets are sent toward randomly selected final 
destination with randomly generated priority that represents a 
time unit of a second. Note that, in practical use, application 
layer is responsible for setting the packet priority thus 
determine DOA on demand. To make sure to take advantage 
of Lump protocol, it is important to carefully choose the 
level of packet priority properly. 

B. End-to-End Latency 
In our evaluation, we mainly focus on the goal directed to 

support QoS requirements specified by upper layer. We 
examined packet transmission, reception, and forwarding of 
each node respectively, until the pure packet generation (and 
transmission) exceeds more than 2000 packets. In order to 
measure both the expected efficiency and overhead precisely, 
we compared Lump-added MAC protocol with unmodified 
MAC protocol, NanoMAC, by using the rest of conditions 
identical. Fig. 6-7 show the change of average end-to-end 
latency as priority and hop count vary. As both the packet 
priority and hop counts increase, the latency increases 
accordingly. However, note that Lump protocol turned out to 
ensure approximately half the specified priority on average 
(Fig. 6). We were also able to make certain that not a single 
packet exceeds its designated priority. 

Fig. 8 illustrates, when using Lump protocol with priority 
0 for critical message, how the average latency is affected in 
comparison with baseline of NanoMAC usage. The average 
latency is more or less the same as NanoMAC. The little 
difference is mainly due to the additional computation within 
the Lump layer. The results demonstrate that the tradeoff 
between latency and energy efficiency are feasible without 
significantly affecting the system performance in terms of 
the energy efficiency corresponding to the reduced radio 
usage. 

C. Performance 
In our model, we assumed that the number of routing 

entity would directly affect each node in its degree of traffic. 
Fig. 9 shows the reduction ratio of radio transmission under 
the varying degree of traffic. At one extreme degree in our 
model, at the rightmost vertex in the graph, Lump protocol 
has reduced 27% of packet transmission, which represents 
the reduced amount of redundant MAC header. The graph 
demonstrates that our design has achieved graceful 
degradation against increasing traffic load. This is a truly 
remarkable result since, in our model, the packets flow 
randomly into all possible directions, not the one-way traffic. 
However, when the number of neighbor is one (meaning that 

it is a leaf node), the reduction ratio results in 0%. This is 
because leaf nodes are not engaged in data aggregation 
mechanism. Overall, Lump protocol does not harm the system 

 
Fig. 6. Average latencies with the order of priority 

 

 
Fig. 7. Average latencies with hop counts 

 

 
Fig. 8. Latency comparison: NanoMAC vs. Lump with priority 0 

 

 
Fig. 9. The number of transmission reduction ratio for three hours 
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performance to serve two goals: Energy efficiency and QoS 
support. 

V. FUTURE WORK 
Although our protocol is well-performed for the goal we 

have targeted, there are some immaturities in which we hope 
to carry out future work. 

First, the larger the packet size becomes, the more 
congestion would occur due to the limited channel 
bandwidth. Consequently, Power consumption may increase 
owing to retransmission trials. Thus it is not always the best 
plan to maximize the size of packets [5]. However, results 
have shown that packet retransmission rate of the two 
protocols are observed as the same, approximately 0.1%. 
One possible reason is that the designated traffic in the 
system does not exceed maximum bandwidth capacity. Since 
we decided to initially minimize unexpected interferences, 
we started with a moderate traffic model. For now, we plan 
to expand the evaluations with other traffic models that are 
dynamic and malicious, in order to enhance stability of 
Lump protocol. 

Second, when a priority value is 5, the corresponding 
packet is supposed to be delivered in 5 seconds. But the 
average end-to-end latency has resulted in about half the 
priority values. Indeed, the distribution of the results spread 
out randomly. The reason is that the aggregation queues are 
based on the next-hop address so that delay-tolerable packets 
may be sent earlier with a delay-critical packet when both are 
aggregated in the same queue. Although the system satisfies 
application requirements, neither accuracy nor precision has 
been met. We aim to reconcile the error between application 
decisions and the results of services so as to attain 
consistently high DOA. 

Finally, since we designed Lump layer to be independent, 
more optimization will be available by cooperating with the 
other protocols such as data-centric routing. We will 
investigate such advantages. 

VI. CONCLUSION 
This paper presented Lump protocol, running 

independently between network layer and data-link layer, as 
a way of data aggregation. To the best of our knowledge, the 
other data aggregation mechanisms are interested in complex 
algorithms to increase DOA without knowing application 
demands. This may, in turn, lead to misdirected performance 
and not fulfill the application’s expectations. Our design 
concept which employed cross-layer manner was 
straightforward. Therefore we have minimized computation-
bound workload and focused on adaptability and reliability. 

Lump protocol is mainly targeted to aggregate individual 
packets sharing the same next-hop address into a single 
frame to reduce radio bandwidth usage while supporting QoS 

requirements of applications. The Lump module tries to 
aggregate packets as long as each the potential waiting time 
remains. It is designed to be adaptable for both end-nodes and 
router nodes. 

We have demonstrated that our design meets the goals. Our 
prototype designed on top of Nano Qplus, a well-made WSN 
operating system, outperformed its baseline. Results have 
shown that Lump protocol offers sufficient level of QoS 
support while reducing the redundant MAC headers. Despite 
the fact that the packets have been randomly destined for the 
multiple sinks, Lump protocol gracefully reduces radio 
communication rate with little overhead. 
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