
A QoS-Aware Memory Controller for Dynamically
Balancing GPU and CPU Bandwidth Use in an MPSoC

Min Kyu Jeong, Mattan Erez
Dept. of Electrical and Computer Engineering,

The University of Texas at Austin

{mkjeong, mattan.erez}@mail.utexas.edu

Chander Sudanthi, Nigel Paver
ARM Inc.

{Chander.Sudanthi, Nigel.Paver}@arm.com

ABSTRACT

Diverse IP cores are integrated on a modern system-on-chip
and share resources. Off-chip memory bandwidth is often
the scarcest resource and requires careful allocation. Two
of the most important cores, the CPU and the GPU, can
both simultaneously demand high bandwidth. We demon-
strate that conventional quality-of-service allocation tech-
niques can severely constrict GPU performance by allowing
the CPU to occasionally monopolize shared bandwidth. We
propose to dynamically adapt the priority of CPU and GPU
memory requests based on a novel mechanism that tracks
progress of GPU workload. Our evaluation shows that our
mechanism significantly improves GPU performance with
only minimal impact on the CPU.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—
Heterogeneous (hybrid) systems

; I.3.1 [Computer Graphics]: Hardware Architecture—Graph-
ics processors

; C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems

; C.4 [Performance of Systems]: Design studies

General Terms
Design, Experimentation, Performance

Keywords

Graphics processor, Memory controller, Quality of service, Sys-

tem on chip

1. INTRODUCTION
A modern system-on-chip (SoCs) is typically composed of

multiple types of intellectual property cores (IP cores) with
different functionality. This is done because heterogeneity
increases efficiency and decreases development time. All in-
tegrated cores share off-chip memory, which is often one of
the most constrained resources. High end SoCs, for exam-
ple, now include powerful CPU and GPU cores, which are
both very demanding of the memory system. Optimally al-
locating the scarce memory bandwidth resource between the

c©ACM, 2012. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for re-
distribution. The definitive version will be published in DAC 2012,
http://doi.acm.org/10.1145/nnnnnn.nnnnnn"

CPU and GPU cores is critical yet challenging. The CPU is
latency sensitive and cannot tolerate long memory latency
without losing performance. The GPU, on the other hand,
is designed to tolerate long latencies but requires consistent
high bandwidth for periods of time to meet its real-time
deadlines. Because the CPU is sensitive to latency, it is
common practice to always prioritize requests from the CPU
over those of the GPU. We show that such a static policy
can lead to an unacceptably low frame rate for the GPU.
Conversely, prioritizing GPU requests significantly degrades
CPU performance.

We propose a new mechanism to solve this challenge by
dynamically adjusting the memory controller’s quality-of-
service (QoS) policy. As is done today, we prioritize CPU
requests by default and GPU requests are serviced oppor-
tunistically. When the GPU is expected to miss a deadline,
however, we increase the GPU service rate by raising its
priority. The key to our technique is identifying when the
default policy should be adjusted. We do this by utilizing
knowledge of the GPU architecture and monitor the progress
of processing a frame against the frame deadline. The mem-
ory controller can than determine when a deadline is likely
to be missed and boost the GPU service quality.

To the best of our knowledge, we are the first to propose
and provide a detailed evaluation of adjusting the mem-
ory controller QoS policy in response to progress towards
a real-time deadline. We show how the dynamic technique
balances both real-time constraints and best-effort memory
accesses and maintains GPU target performance with only
a small impact on the CPU. We are also first to present a
detailed analysis based on a combined cycle-accurate simula-
tion of GPU and CPU cores with a detailed memory system.
1 We draw important insights into how these components
interact, which contradicts current best practices.

The rest of this paper is organized as follows: Section 2
provides background on CPU and GPU architecture, mem-
ory controllers, and the commonly used QoS mechanisms.
Section 3 describes our dynamic QoS mechanisms, based
on our technique to monitor GPU’s workload progress. We
present our evaluation methodology and results in Section 4
and 5, then conclude in Section 6.

2. BACKGROUND AND RELATED WORK
This section briefly discusses the memory access and ex-

ecution characteristics of CPU and GPU cores, as well as
the fundamental principles and design of modern memory
controllers and QoS mechanisms.

1Concurrent work by Ausavarungnirun et al. [3] also ex-
plores the memory-system implications of heterogeneous
GPU/CPU processors.



2.1 CPU
Modern general purpose processors are designed mainly

to maximize the performance of a single thread of execu-
tion. Single-thread performance is very sensitive to long-
latency memory requests because instructions dependent on
the long latency load cannot proceed until the load com-
pletes. Caching and out-of-order execution can mitigate the
impact of long main memory latency. Main memory access
latency, however, is much higher than what the out-of-order
structure can tolerate and cache misses that go out to main
memory inevitably stall the accessing thread [7]. There-
fore, any increase in CPU memory access latency, such as
delays introduced by contention from the GPU, decreases
CPU performance.

2.2 GPU
Mobile GPU cores often utilize tile based rendering to re-

duce off-chip memory bandwidth consumption. The screen
is subdivided into many blocks/tiles, which can be processed
independently of one another (Figure 1). As the tiles are
small enough, the entire pixel data of a tile can be kept in on-
chip buffers while being rendered so that repeated accesses
to the same pixel do not incur off-chip memory accesses.
GPUs can process all vertices and fragments within the tile
and multiple tiles in parallel and can therefore tolerate very
long memory latencies. They still require high bandwidth
and are sensitive to disruptions in available bandwidth.

Figure 1: Tile based rendering in progress. Shaded
tiles are to be rendered.

Simple scenes can be processed rapidly and generate cor-
respondingly low memory traffic, while others may take the
entire time allotted or longer, resulting in skipped frames
and degraded user experience. Because frame rate is fixed
and frame render time varies, the GPU may idle between
finishing a frame and starting the next frame. Figure 2
shows an example of processing one frame from the Taiji
GPU workload [1] with two CPU cores running together.
The figure shows how the GPU only requires about half the
frame time to process a scene (GPU bandwidth consump-
tion shown with dashed lines) and consumes up to 62% of
total memory bandwidth when not constrained by the mem-
ory controller as discussed below. The figure also shows
how the heavy bandwidth use of the GPU hurts CPU per-
formance (CPU’s instructions per cycle (IPC) shown with
solid lines) compared to when the GPU is idling. The two
subfigures show different CPU workloads and the same set
of GPU frames. Both mcf and art are memory-intensive ap-
plications from the MinneSPEC suite [9], with art requiring
somewhat higher bandwidth.

2.3 Memory Controller Basics

Modern DRAM architecture is optimized for access pat-
terns with spatial locality. Within a DRAM chip, each ac-
cess is performed at a granularity of an entire row, which
is 8Kb or 16Kb in current technology [10]. To amortize
the time and energy involved in activating an entire DRAM
row, each DRAM bank contains a row buffer. Consecutive
accesses to the same row (row buffer hits) can be served
directly from the row buffer, saving time and energy in ac-
tivating rows. In contrast, accesses to a different row (row
buffer misses) need additional steps of precharging the ar-
ray and activating the new rows. When the row buffer hit
rate is low, DRAM can only supply a small fraction of its
peak bandwidth. Therefore, modern out-of-order memory
controllers schedule accesses to the same row together by
prioritizing row buffer hit requests [13].

2.4 Quality of Service
An out-of-order memory scheduler increases overall band-

width, but in a shared memory SoC, the priority scheme can
starve some cores when other cores offer frequent requests
with high spatial locality, like GPUs do. To prevent such
unfairness, the memory controller must balance the accesses
from different cores and provide QoS mechanisms. Because
of the heavy competition in the SoC industry, very little in-
formation on how commercial SoCs manage shared memory
bandwidth is publicly available.

Most previous literature on off-chip memory bandwidth
QoS focuses on a different context than our multi-processor
SoC (MPSoC), such as real-time systems and general pur-
pose chip multiprocessors (CMP). High-end SoCs combine
both real-time and best-effort components and place very

0.05 0.06 0.07 0.08 0.09 0.10
Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
M

B
/s

)

GPU BW CPU IPC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
st

ru
ct

io
n
s 

P
e
r 

C
y
cl

e

(a) CPU cores: mcf-art, GPU unconstrained

0.05 0.06 0.07 0.08 0.09 0.10
Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
M

B
/s

)

GPU BW CPU IPC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
st

ru
ct

io
n
s 

P
e
r 

C
y
cl

e

(b) CPU cores: art-art, GPU unconstrained

Figure 2: GPU activity (bandwidth consumption)
and CPU performance. Vertical lines represent
frame deadlines. Experimental setup discussed
in Section 4.



high pressure on shared memory bandwidth. Prior work on
QoS for CMPs (e.g., [11, 12]) does not consider real-time
constraints, thus can lead to an unacceptable rate of missed
deadlines for the GPU. Work on real-time systems, on the
other hand, has focused exclusively on bounding the latency
of individual requests and ensuring a minimal fraction of
shared throughput [2]. This approach sacrifices effective
memory scheduling in favor of guaranteed deadlines, which
leads to very poor utilization of available DRAM bandwidth
and requires significant over-provisioning of this scarce and
expensive resource. Recent white papers [15, 16] discuss gen-
eral quality-of-service techniques and recommendations and
appear to describe the status quo. This status quo is that
two techniques are effective when combined: regulating the
number of outstanding GPU requests and prioritizing CPU
requests over ones from the GPU. Note that previous aca-
demic literature does not address this particular problem of
sharing bandwidth between best-effort and real-time work-
loads from different cores.

Restricting the number of outstanding GPU requests re-
duces the GPU’s ability to continuously send requests to
the memory system, even though the abundant parallelism
associated with graphics allows many concurrent requests.
The smaller the number of outstanding GPU requests, the
greater the number of memory access issue slots that are
available for other cores. There are several equivalent mech-
anisms that can be used to constrain the number outstand-
ing GPU requests, including separate memory controller queues
for each core, which may be either physical or virtual.

Guaranteeing available request queue slots is insufficient
because the memory controller may still prefer to always
issue GPU requests. To avoid this situation, an age-based
QoS technique can be used [11]. Recent guidelines, however,
suggest that CPU requests should receive higher priority to
decrease the performance lost to contention-induced high la-
tency memory accesses [15, 16]. While the priority policy is
static, the GPU may take advantage of much of the avail-
able bandwidth when CPU cores do not access main memory
frequently.

Prioritizing CPU requests indiscriminately, however, can
hurt GPU performance significantly, when a CPU core con-
tinuously uses high memory bandwidth and GPU workload
is complex enough to mandate high memory bandwidth as
well. The impact of the aggressive QoS is shown in Figure 3.
The figure shows the same workload scenario as in Figure 2,
but with a QoS mechanism that balances memory perfor-
mance by restricting the GPU to 8 outstanding requests
and prioritizing all latency-sensitive CPU requests. When
compared to Figure 2, the QoS mechanisms successfully pre-
vent CPU starvation and CPU performance is not impacted
by the GPU. With this static QoS, however, the GPU suf-
fers. When mcf and art are run together with the GPU,
the GPU receives barely enough bandwidth to maintain the
frame rate. With the higher bandwidth art-art CPU work-
load, frame deadlines are missed.

From this example and discussion, we can conclude that
for the static QoS scheme to generally work for any work-
load scenario, the memory bandwidth needs to be over-
provisioned for the worst case. Otherwise, it is possible
that frames must be dropped, either while reconfiguring or
while programming. A better alternative to costly overpro-
visioning, is to identify when the GPU should be allowed
to nearly monopolize bandwidth to meet its real-time con-
straints, which we discuss in the next section.

3. DYNAMIC QUALITY-OF-SERVICE

0.05 0.06 0.07 0.08 0.09 0.10
Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
M

B
/s

)

GPU BW CPU IPC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
st

ru
ct

io
n
s 

P
e
r 

C
y
cl

e

(a) CPU cores: mcf-art, GPU out=8, cpu > gpu

0.05 0.06 0.07 0.08 0.09 0.10
Time (seconds)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
M

B
/s

)

GPU BW CPU IPC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
st

ru
ct

io
n
s 

P
e
r 

C
y
cl

e

Miss
ed!

(b) CPU cores: art-art, GPU out=8, cpu > gpu

Figure 3: GPU activity (bandwidth consumption)
and CPU performance. GPU is restricted to at
most 8 outstanding memory requests and CPU re-
quests are given higher priority. Vertical lines repre-
sent frame deadlines. Experimental setup discussed
in Section 4.

Static QoS mechanisms lack the ability to adapt to the
dynamic behavior of real workloads, resulting in either de-
graded CPU performance (Figure 2), or missed GPU dead-
lines (Figure 3(b)). In order to achieve high CPU perfor-
mance while satisfying real-time constraints, we propose to
dynamically adjust the QoS policy based on runtime work-
load characteristics. Ideally, CPU requests should be prior-
itized as long as the CPU does not compromise the GPU
target frame rate. The key to achieving behavior that is
near this ideal is to identify when a deadline is likely to
be missed and only then adjust the QoS policy and either
treat the GPU and CPU as equals, or even prioritize GPU
requests. We discuss how to predict when the GPU makes
insufficient progress and a heuristic to adjust priority below.

3.1 Monitoring GPU workload progress
As discussed in Section 2.2, mobile GPUs typically par-

tition the screen into equal-sized tiles and process them in
order. Each tile is processed once for all primitives that over-
lap it, then it is not accessed again until the following frame.
We exploit this to track the progress the GPU is making
in the current frame. The GPU hardware is aware of how
many tiles in total it must process, the order in which tiles
are processed, and what tiles are currently active. Progress
is thus simply the current position within the total frame,
as described by Equation 1. This information can readily
be communicated from the GPU to the memory controller
to affect the QoS policy.



FrameProgress =
Number of tiles rendered

Number of tiles
(1)

Although this progress monitoring mechanism is simple,
it is very effective in our system because the mobile GPU
uses fine-grained tiles. With coarser tiles or non-tiled GPU
architecutres, a more sophisticated estimation of workload
can be used, such as those suggested by prior work in the
context of coarse-grained adjustments to the GPU voltage
and frequency [5, 14] 2 .

3.2 Dynamic QoS policy
To determine the QoS policy, the memory controller com-

pares the frame progress rate, obtained above, with the ex-

pected progress rate. The expected progress rate can be cal-
culated by dividing the elapsed from the beginning of the
frame by the target frame time, (e.g. 16.67ms for 60 frames-
per-second (FPS)) as shown in Equation 2. As with tracking
progress, more sophisticated techniques can be used to ob-
tain higher accuracy estimates of expected progress [5].

ExpectedProgress =
T ime elapsed in current frame

Target frame time
(2)

The memory controller then chooses a QoS policy based
on how far the GPU is behind its expected progress point.
Algorithm 1 shows an example dynamic QoS policy, which
we employ in this paper and which works well in our ex-
periments. There are two priority levels, and the CPU gets
the higher priority as long as the current GPU progress rate
is above the expected rate. When the progress falls behind
the expected rate, GPU priority is increased to equal that
of the CPU. When only 10% of the frame time remains until
the deadline and if the GPU has not yet caught up to its
expected point, the GPU is prioritized above the CPU in an
attempt to make the frame deadline. This 10% buffer was
chosen arbitrarily and can be tuned for better performance.
Again, we favored a simple design that can demonstrate the
benefits and importance of the dynamic approach. We leave
refinements of this QoS selection algorithm to future work.

Algorithm 1 Dynamic QoS policy

if FrameProgress > ExpectedProgress then
CPUpriority = High

GPUpriority = Low

else if ExpectedProgress > 0.9 then
CPUpriority = Low

GPUpriority = High

else
CPUpriority = GPUpriority

end if

Figure 4(a) demonstrates how a static mechanism that
prioritizes the CPU can lead to a missed GPU deadline.
With our dynamic scheme, GPU priority is dynamically in-
creased to enable it to meet its deadlines (Figure 4(b)). In
the first frame, the GPU makes acceptable progress most
of the time even with CPU priority. In the second frame,

2Prior work estimates workload at frame granularity, and
does not discuss monitoring in-frame progress dynamically.
An additional hardware counter is needed to keep track in-
frame progress, such as number of geometries processed.
Our tile-based monitor does not need any additional hard-
ware, as the tile bookkeeping is an integral part of the GPU’s
job management.

however, the GPU requires equal priority for much of the
frame and higher priority towards the end of the frame to
ensure the deadline is met.

0.01 0.02 0.03 0.04 0.05
Time (seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
M

B
/s

)

CPU Mem BW GPU progress

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
ti

le
s 

fr
a
g
m

e
n
t-

sh
a
d
e
d

Missed!

(a) Static QoS leading to missed deadline

0.01 0.02 0.03 0.04 0.05
Time (seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
M

B
/s

)

CPU Mem BW GPU progress

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
ti

le
s 

fr
a
g
m

e
n
t-

sh
a
d
e
d

(b) Dynamic QoS adjusting priority to make deadline

Figure 4: CPU memory bandwidth consumption
and GPU progress over several frames for static and
dynamic QoS. Time intervals shaded in light red in-
dicate times that GPU progress was insufficient and
CPU and GPU priority are equal. Dark red shading
indicates the critical periods of time that the dy-
namic scheme prioritizes GPU requests over CPU
accesses.

4. EVALUATION METHODOLOGY
We evaluate our proposed dynamic QoS scheme using cy-

cle level simulations. We use a combination of the gem5 sys-
tem simulator [4], a proprietary next-generation GPU sim-
ulator, and the DrSim DRAM simulator [6]. The gem5 out-
of-order CPU model and the GPU model share the DRAM
model through the gem5 bus. DrSim models memory con-
trollers and DRAMmodules faithfully, simulating the buffer-
ing of requests, scheduling of DRAM commands, contention
on shared resources (such as address/command and data
buses), and all latency and timing constraints of LPDDR2
DRAM.

System configuration

The QoS schemes we simulate include uncontrolled CPU and
GPU (noqos), static CPU priority over GPU (static), and
our dynamic scheme (dynamic). Constraining the number
of outstanding GPU requests to N (outN) is used in combi-
nation with static and dynamic.
Table 1 summarizes the system parameters of our simu-

lated systems. We believe the simulated system is represen-
tative of the next-generation high-end mobile SoC. Memory
scheduling queues are large enough to guarantee room for



CPU Dual-core, 1.2GHz ARM out-of-order superscalar
Caches 32KB private L1 I/D, 1MB shared L2
GPU 8 Unified shader cores, 600MHz
GPU L2 128KB shared
System bus 128-bit wide, 1GHz
Memory FR-FCFS scheduling, open row policy
controller 64 entries read queue, 64 entries write queue
Main memory 1 channel, 1 rank / channel, 8 banks / rank

4 x16 LPDDR2-1066 chips / rank
8.3GB/s peak BW, All chip parameters from the
latest Micron datasheet [10]
XOR-interleaved bank index [17]

Table 1: Simulated system parameters

GPU workload Source Target FPS

taiji 3DMarkMobile ES 2.0 [1] 60
egypt GLBenchmark [8] 60

taiji1080p 3DMarkMobile ES 2.0 30
farcry Game 30

CPU workload Average Mem Bandwidth

art-art 5.8GB/s
mcf-art 3.5GB/s
mcf-mcf 800MB/s

Table 2: Workloads used and their characteristics.

CPU requests even when GPU was not constrained in no-

qos.

Workloads

Due to the slow GPU simulation speed, it is impractical
to run a GPU accelerated application and other memory
intensive applications on top of the full OS and GPU driver
stack. Instead, we run CPU workloads on the CPU cores in
parallel with graphics workloads on the GPU to approximate
the memory bandwidth constrained usage scenario.

Table 2 shows the CPU and the GPU benchmarks used.
We selected two SPEC CPU 2000 benchmarks with the
MinneSPEC input set [9], which place significant demand
on the memory system. Dual-core CPU workloads are multi-
programmed to simulate 3 levels of CPU memory bandwidth
usage. GPU workloads are post-driver output of a repre-
sentative frame from each graphics benchmark; taiji and
egypt are WVGA resolution and taiji1080p and farcry

are 1080p. Their target performance in frames-per-sercond
(FPS) was determined by measuring the their execution
time on GPU without CPU interference. Two workloads,
taiji1080p and farcry were not able to finish in 16.67ms
on our simulated system, but finished within 33.34ms. We
assume that missed frames are skipped and the behavior is
repetitive, so the target FPS is an integer divisor of the 60
FPS base.

5. RESULTS
In this section we present experimental results that demon-

strate the effectiveness of the dynamic mechanism. We fo-
cus on challenging workloads that are constrained by the
available memory bandwidth of the SoC. In such cases, it is
impossible to simultaneously meet the target frame rate and
service the CPU without GPU interference. We analyze the
interaction between the components and show how dynamic
can adapt to the changes in workload demand combination
and provide the near-optimal QoS strategy, while current
guidelines for static QoS fail.

To better quantify these interactions, we show the results
of multiple QoS schemes for GPU and CPU performance in
Figure 5 and Figure 6, respectively. The results point to
two important insights, which contradict the current best
practice of prioritizing the CPU and constraining the GPU.

0 

10 

20 

30 

40 

50 

60 

70 

taiji egypt taiji_1080p farcry 

F
ra

m
e

s 
P

e
r 

S
e

co
n

d
 (

F
P

S
) 

noqos static + out32 static + out16 static + out8 

dynamic + out32 dynamic + out16 dynamic + out8 

Figure 5: GPU performance in frames per second
(FPS) when both CPU cores run art.

First, restricting the number of outstanding GPU requests
can cause the GPU to miss deadlines, while at the same
time often degrading CPU performance. As shown in Fig-
ure 5, restricting the GPU to 8 outstanding requests reduces
the frame rate by 33% or 50%, dropping one of every three
or two frames respectively. The impact on the CPU is in-
teresting. Figure 6 shows that as long as the GPU meets
its deadlines (configurations for which the GPU fails are
shaded black in Figure 6) the CPU either sees little benefit
from constraining the GPU, or experiences noticeable per-
formance degradation. We found that having fewer GPU
requests for the memory scheduler to choose from prevents
efficient scheduling and reduces the effective memory band-
width. Both the GPU and CPU cores suffer from the longer
low effective bandwidth period.

The CPU benefits from a constrained GPU only when the
GPU fails to meet its required frame rate (black bars). For
example, restricting the GPU to 8 outstanding accesses leads
to only a 5% degradation in CPU performance in farcry-
art-art. The GPU however, only achieves 10 FPS instead
of the targeted 30 FPS. This is generally unacceptable.

Second, our GPU progress-aware dynamicQoS mechanism
can indeed adapt to the changes in CPU and GPU work-
loads and provide the performance of the best QoS setting
for each workload. When bandwidth is not sufficient for
the workloads (egypt and farcry in Figure 5), only noqos

and dynamic meet GPU performance requirements. Even
in such severely bandwidth-constrained cases, dynamic can
still find opportinity to give the CPU some priority and
reduces slowndown by 3.6% and 6.9% from noqos. When
there is sufficient bandwidth to serve the GPU and CPU
cores simultaneously, CPU performance of dynamic +out32

roughly matches the best static configuration of each work-
load (shown as the lowest non-black bar in Figure 6) and
provides up to 9.4% reduction in slowdown from noqos.

Again, constraining the outstanding number of requests
from the GPU hurts CPU performance even more for dy-

namic with egypt and mcf-art. It turns out that the con-
straint slows down GPU progress and our dynamic scheme
forces the memory controller to raise GPU priority, and
therefore the CPU suffers. Since mcf-art uses a moderate
amount of memory bandwidth, GPU requests can be issued
opportunistically even with low priority. Therefore, having
many outstanding requests at the memory controller ready
allows them to be scheduled efficiently and enables the GPU
to make good progress. In the dynamic + out32 configura-
tion, the memory controller doesn’t raise GPU priority and
the CPU gets low-latency priority accesses, yielding better
performance.

6. CONCLUSION



1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art art-art mcf-mcf mcf-art

taiji egypt taiji_1080p

C
P

U
 S

lo
w

d
o

w
n

 f
ro

m
 C

P
U

 o
n

ly

noqos static + out32 static + out16 static + out8 dynamic + out32 dynamic + out16 dynamic + out8

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

art-art mcf-mcf mcf-art

farcry

Figure 6: Slowdown of the CPU relative to its performance in an SoC with the same memory configuration but
no GPU. Black bars represent configurations in which the GPU could not meet the workload’s performance
target.

In this paper we carefully analyzed the performance of a
system that is representative of current and upcoming ad-
vanced SoCs. We used a cycle-level simulator that accu-
rately models an SoC with two CPU cores and a mobile
GPU, which all share a single DRAM main memory system.
By evaluating the complex interactions between these com-
ponents we show that current best-practice QoS mechanisms
are insufficient and often apply the wrong QoS policy. We
determine that there is no single static policy that can be
used to simultaneously meet the requirements of the GPU
without significantly impacting the CPU cores.

We use this insight to develop a dynamic QoS scheme that
maintains CPU priority when possible, but shifts priority
towards the GPU if it predicts that the GPU will miss a real-
time deadline. We propose a simple, yet effective, tile based
frame progress tracking mechanism to enable dynamic QoS
policy decisions and show that it both enables the GPU to
meet its deadlines and minimizes impact on the CPU. Using
our technique, we also conclude that restricting the number
of outstanding GPU requests, a static QoS mechanism in use
today, often degrades the performance of all cores, because it
limits the ability of the memory scheduler to exploit locality.

These conclusions are important and open the way to ad-
ditional research. This paper used a GPU and CPU as an
example of cores with conflicting demands: latency-sensitive
best-effort CPU cores, and a bandwidth-sensitive real-time
GPU. These diverse requirements are common and a grow-
ing number of cores share an increasingly constrained mem-
ory system. We believe dynamic techniques, such as the one
we present, are the key to enabling such future systems to
meet user requirements while still efficiently utilizing scarce
shared resources.

7. REFERENCES

[1] 3DMarkMobile ES 2.0.
http://www.futuremark.com/products/3dmarkmobile,
2011.

[2] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A
Predicatable SDRAM Memory Controller. In Proceedings
of the 5th IEEE/ACM international conference on
Hardware/software codesign and system synthesis -
CODES+ISSS ’07, page 251, New York, New York, USA,
Sept. 2007. ACM Press.

[3] R. Ausavarungnirun, G. Loh, K. Chang, L. Subramanian,
and O. Mutlu. Staged memory scheduling: Achieving high
performance and scalability in heterogeneous systems. In

Proc. the 39th Ann. Int’l Symp. Computer Architecture
(ISCA), ISCA ’12, New York, NY, USA, 2012. ACM.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39:1–7, Aug. 2011.

[5] Y. Gu and S. Chakraborty. A Hybrid DVS Scheme for
Interactive 3D Games. In 2008 IEEE Real-Time and
Embedded Technology and Applications Symposium, pages
3–12. IEEE, Apr. 2008.

[6] M. K. Jeong, D. H. Yoon, and M. Erez. DrSim: A platform
for flexible DRAM system research.
http://lph.ece.utexas.edu/public/DrSim.

[7] T. Karkhanis and J. E. Smith. A day in the life of a data
cache miss. In Workshop on Memory Performance Issues,
2002.

[8] Kishonti Informatics Ltd. GLBenchmark.
http://www.glbenchmark.com, 2011.

[9] A. J. KleinOsowski and D. J. Lilja. Minnespec: A new spec
benchmark workload for simulation-based computer
architecture research. IEEE Comput. Archit. Lett., 1:7–,
January 2002.

[10] Micron Corp. Micron 2 Gb ×16, ×32, Mobile LPDDR2
SDRAM S4, 2011.

[11] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In International
Symposium on Microarchitecture, pages 146–160, 2007.

[12] K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith. Fair
queuing memory systems. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 208–222. IEEE Computer Society,
2006.

[13] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and
J. D. Owens. Memory access scheduling. In Proc. the 27th
Ann. Int’l Symp. Computer Architecture (ISCA), Jun.
2000.

[14] B. Silpa, G. Krishnaiah, and P. R. Panda. Rank based
dynamic voltage and frequency scaling for tiled graphics
processors. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign
and system synthesis, CODES/ISSS ’10, pages 3–12, New
York, NY, USA, 2010. ACM.

[15] A. Stevens. Qos for high-performance and power-efficient
hd multimedia. Technical report, Arm, 2010.

[16] A. Tune and A. Bruce. How to tune your SoC to avoid
traffic congestion. In DesignCon, 2010.

[17] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page
interleaving scheme to reduce row-buffer conflicts and
exploit data locality. In Proc. the 33rd IEEE/ACM Int’l
Symp. Microarchitecture (MICRO), Dec. 2000.


