
A QoS-Aware Transcoding Proxy Using
On-demand Data Broadcasting

Jiun-Long Huang†, Ming-Syan Chen† and Hao-Ping Hung‡
†Department of Electrical Engineering

‡Graduate Institute of Communication Engineering
National Taiwan University

Taipei, Taiwan, ROC
E-mail: jlhuang@arbor.ee.ntu.edu.tw, mschen@cc.ee.ntu.edu.tw, ropine@arbor.ee.ntu.edu.tw

Abstract— The high diversity in the capabilities of various
mobile de-vices such as display capabilities and computation
power makes the design of mobile information systems more
challenging. A transcoding proxy is placed between a client and
an information server to coordinate the mismatch be-tween what
the server provides and what the client prefers. However, most
research works in transcoding proxies in mo-bile computing
environments are under the traditional client-server architecture
and do not employ the data broadcast technique which is has been
deemed a promising technique to design a power conservation,
high scalable and high band-width utilization. In addition, the
issue of QoS provision is also not addressed. In view of this,
we design in this paper a QoS-aware transcoding proxy by
utilizing the on-demand broadcasting technique. We first propose
a QoS-aware transcoding proxy architecture, abbreviated as
QTP, and model it as a queueing network. By analyzing the
queueing network, several theoretical results are derived. We
then propose a version decision policy and a service admission
control scheme to provide QoS in QTP. The derived results are
used to guide the execution of the proposed version decision
policy and service admission control scheme to achieve the given
QoS requirement. To measure the performance of QTP, several
experiments are conducted. Experimental results show that the
proposed scheme is more scalable than traditional client-server
systems. In addition, the proposed scheme is able to effectively
control the system load to attain the desired QoS.

I. INTRODUCTION

The advance in wireless communication enables users to
ac-cess information systems anytime, anywhere, via various
mobile devices such as notebooks, tablet PCs, personal dig-
ital assistants (PDAs) and GPRS-enabled cellular phones.
Service providers are establishing a number of mobile services
including weather forecasting, stock information dissemina-
tion, location-dependent query, route guidance and so on.
To provide such services, researchers have encountered and
are endeavoring to overcome challenges in various research
areas including mobile data management[4], wireless network
infrastructure, location-dependent data management [19], per-
vasive computing, and so on.

In a pervasive computing environment [14], due to the con-
straints resulting from power-limited mobile devices and low-
bandwidth wireless networks, designing a power conservation,
high scalability and high bandwidth utilization mobile infor-
mation system becomes an important research issue, and hence

attracts a significant amount of research attention. In addition,
the high diversity in the capabilities of various mobile devices
such as display capabilities (e.g., screen size, color depth and
supported data formats) and computation power makes the
design of mobile information systems more challenging. This
diversity also results in an increasing demand on the capability
of context awareness [11] for mobile information systems.

Content adaptation, which is an important technique to
realize context awareness, emerges to remedy the problem
resulting from the said diversity by offering the different
mobile users suitable versions of the same object accord-
ing to the capabilities of the mobile devices, the traffic of
the networks and the users’ preferences [12]. Transcoding,
which transforms a data object from one version into another,
is recognized as a promising technique to realize content
adaptation [12]. A proxy capable of transcoding (referred to
as a transcoding proxy) is placed between a client and an
information server to coordinate the mismatch between what
the server provides and what the client prefers. Since proxy-
based approaches are transparent to the content providers and
users, this kind of approaches is able to simplify the design
of servers and clients, and as a result, attracts much research
attention, including cache replacement schemes [7][8], system
architectures [10][15] and proxy collaboration [7].

In recent years, data broadcast [2][3] has been employed as
an important technique to design a power conservation, high
scalability and high bandwidth utilization mobile information
system. However, most research works in transcoding proxies
in mobile computing environments are under the traditional
client-server architecture and do not employ the data broadcast
technique. Hence, the transcoding proxies are not scalable and
the network bandwidth is not well utilized. In addition, most
prior studies do not consider the issue of quality of service
(abbreviated as QoS) which is crucial in a mobile computing
environment.

In view of this, we design in this paper a scalable and QoS-
aware transcoding proxy by utilizing the on-demand broad-
casting technique. Explicitly, we first propose a QoS-aware
transcoding proxy architecture, abbreviated QTP, and model
it as a queueing network with three queues. By analyzing
the queueing network, several theoretical results are derived
to formulate the average waiting time of each queue. We

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Mobile
Information System

Data Request Queue

Data
Request

Data
Object

PDANotebookTablet PC

Fig. 1. An example on-demand broadcasting system

then devise scheme ODB-QoS to provide QoS in QTP where
ODB-QoS stands for “On-demand Data Broadcasting with
QoS”. Scheme ODB-QoS is an online, iterative and adaptive
algorithm comprising

1) a version decision policy to determine the suitable
version for each data request according to the users’
device profiles and the network state, and

2) a service admission control scheme to determine
whether to grant a service registration or a service
handoff according to the network state.

In each iteration, scheme ODB-QoS evaluates the average
waiting time of each queue according to the derived results,
determines the state of each queue according to the corre-
sponding obtained average waiting time, and configures the
behavior of the version decision policy and the service admis-
sion control scheme according to the states of these queues to
attain the desired QoS. To measure the performance of QTP,
several experiments are conducted. Experimental results show
that the proposed approach is more scalable than traditional
client-server systems. In addition, the proposed system is able
to achieve the system administrators’ QoS requirements by
the devised version decision policy and the service admission
control scheme. To the best of our knowledge, there is no prior
research on the design of transcoding proxies employing data
broadcast. This feature distinguishes this paper from others.

The rest of this paper is organized as follows. The de-
scription of on-demand data broadcasting and the proposed
transcoding proxy architecture, QTP, are given in Section II.
An analytical model and a transcoding model are devised in
Section III. Section IV describes the proposed scheme, and
the performance evaluation is shown in Section V. Finally,
Section VI concludes this paper.

II. PRELIMINARIES

A. On-demand Data Broadcasting

Figure 1 shows an example on-demand broadcasting system.
In an on-demand data broadcasting system, a server maintains
a data request queue and serves these requests according to

the employed scheduling algorithm. When requiring one data
item, a mobile client sends a data request to the server. After
receiving a data request, the server first checks whether there
exists another data request in the data request queue with the
same required data object. If yes, the new-coming data request
is merged into the existing data request. This phenomenon is
called request merge. Data requests with the same requested
data object can be safely merged since one transmission of
the data object in a broadcast channel is able to satisfy all
merged data requests. Therefore, the higher the occurrence
probability of request merge is, the more efficient the system
is. Otherwise, the new-coming data request is inserted into the
data request queue.

A scheduling algorithm is used to prioritize all data requests
in the data request queue, and the server will serve these
data requests according to their priorities. To serve a data
request, the system retrieves the required data object from the
corresponding data server, and then broadcasts this object to all
its clients via a dedicated and shared broadcast channel. As a
result, the on-demand broadcast system is more scalable and
can obtain higher network utilization than traditional client-
server architecture.

B. System Architecture

Figure 2 shows the proposed architecture of QTP. In a
cellular network architecture, the whole service area of a
mobile environment is divided into a number of cells. Two
dedicated channels, a control channel and a broadcast channel,
are provided in each cell. A control channel is used to transmit
control messages such as registration messages, data requests,
acknowledgements, and so on. On the other hand, a broadcast
channel is used by the transcoding proxy to disseminate
data objects to its clients. In according to the locations of
these components, QTP comprises the following two types of
components: front-end and back-end.

A front-end which comprises a service manager and a
scheduler is allocated to each cell. These two components are
described below.

• Service Manager: A service manager is in charge of
all service-related operations such as service registration,
service termination, service admission control and so on.
Each service manager owns a profile database storing the
profiles of users using the service and the profiles of these
users’ devices. Several standards such as CC/PP (stands
for Composite Capabilities/Preferences Profile) [17] and
UAProf (stands for User Agent Profile) [18] have been
proposed to describe the capabilities of devices and users’
preferences.

• Scheduler: A scheduler is a software component which
handles the data requests of its corresponding cell. After
receiving a user’s data request, the scheduler will first
determine a suitable version for this data request accord-
ing to the user’s device profile and the network state.
Then, the scheduler will check whether the received data
request can be merged into an existing data request in
the data request queue. Different from the traditional on-
demand broadcasting architecture showing in Section II-
A, request merge occurs only when there exists another

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Storage

Scheduler
Service

Manager

Cache Manager Internet

Server

Server

CellCell

Service Area

Back End

Transcoder

Service
Manager

Scheduler

Front
End

Front
End

Fig. 2. The architecture of QTP

data request in the data request queue asking for the
same version of the same required data object of the
received data request. Otherwise, the scheduler will insert
the received data request into the data request queue.
In addition, a scheduling algorithm is employed to deter-
mine the service order of these data requests in the data
request queue. While serving a data request, the scheduler
will send this request to the cache manager and the cache
manager will respond with the content of the required
data object. The scheduler then broadcasts the returned
data object via the downlink channel, then serves the next
data request in the data request queue.

A back-end which comprises a cache manager and a
transcoder behaves like a traditional transcoding proxy.

• Cache Manager: After receiving a data request from a
scheduler, the cache manager is responsible for returning
the required version of the required data object to the
scheduler. Suppose that the cache manager receives a data
request of the j-th version of data object D(i). If the j-th
version of Di is cached, the cache manager will return the
cached data object to the scheduler immediately. If the
j-th version of Di is not cached, the cache manager will
check whether there exists another version of Di which
can be transcoded into the j-th version of Di. If yes, the
cache manager will ask the transcoder to generate the
j-th version of Di. Otherwise, the cache manager will
request the original version of the requested data object
from the data server, ask the transcoder to transform the
returned data object into the required version, and then
respond with the transcoded data object to the scheduler.

• Transcoder: A transcoder is in charge of the transforma-
tion of data objects among different versions according
to the transformation requests of the cache manager.

Since the design of the back-end is similar to the systems
proposed in some prior works [7][8][10][15], we focus in this
paper on the design of the front-end to provide scalable and

QoS-aware transcoding proxy services.

C. Signalling Procedures

Before using the transcoding proxy, a mobile user should
register the service in advance by sending a registration
message via a control channel. After the transcoding proxy
receives the registration message, a service admission control
scheme is activated to determine whether to grant the service
registration. If yes, the mobile device will send the device
profile to the proxy, and the proxy will record the user profile
and device profile in its profile database. Otherwise, the service
registration is blocked. The rate that a service registration is
blocked is called the service blocking rate (abbreviated as
SBR).

After the service registration is granted, the mobile user can
issue data requests to the corresponding transcoding proxy
by the control channel. When receiving a data request, the
transcoding proxy first determines the suitable version of the
requested data object by a version decision policy, and returns
an acknowledgement message containing the decided version
information via the control channel to the mobile user. Then,
the transcoding proxy will return the decided version of the
required data object via the corresponding broadcast channel
as soon as possible. After receiving the acknowledgement
message, the mobile device will tune to the broadcast channel
to wait for the appearance of the decided version of the
requested data object. When the mobile user decides not to
use the transcoding proxy service, the mobile device will send
a de-registration message to terminate the service.

Since a mobile user is able to freely move around these
cells, a service handoff will occur. A service admission control
scheme is executed to determine whether the service handoff is
granted. If yes, the mobile user can use the service as usual. If
not, the system will force mobile user to terminate the service
(we say that the call is dropped). Since a service admission
control scheme is employed, a service handoff may be rejected.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Symbol Description

Pi i-th device profile
Dj(k) k-th version of data item Dj

NUser Number of users in the cell
λCtrl. Aggregate request rate in the cell
µCtrl. Service rate of the control channel
µSche. Service rate of the cache
µBCast. Service rate of the broadcast channel
ρSche. Standard deviation of the service time of the cache
BCtrl. Bandwidth of the control channel
BBCast Bandwidth of the broadcast channel

TABLE I

DESCRIPTION OF SYMBOLS

The rate that a service handoff is forced to terminate is called
the service dropping rate (abbreviated as SDR).

III. ANALYTICAL AND TRANSCODING MODELS

A. Analytical Model

In this subsection, we derive the worst case of the average
access time of QTP, and use the derived results to guide
the version decision policy and the server admission control
scheme proposed in Section IV. To facilitate the following
discussion, we make the following assumptions.

1) The employed scheduling scheme of the scheduler is
FCFS (standing for first come, first serve).

2) No request merge occurs in the data request queue of
the scheduler.

3) One transmission of a data object in the broadcast
channel is received by exactly one client.

4) The messages of registration, de-registration and handoff
are negligible.

Assumptions 2 and 3 occur when the users’ interests are
highly diverse, and hence the effect of on-demand broadcast is
eliminated. We make these two assumptions since we focus on
the worst case of the transcoding proxy. Assumption 4 is made
since we focus on the the situation that the number of data
requests is much higher than the number of control messages
(i.e., registration, de-registration, handoff and service termi-
nation). These assumptions will be relaxed in our simulation
model described in Section V. For better readability, a list of
used symbols is shown in Table I.

We model QTP as a queueing network as shown in Figure 3.
Queue 2 is a physical queue which is located in the scheduler.
On the contrary, Queue 1 and Queue 3 are logical queues
which are only used to model the control and broadcast
channels in order to derive the average waiting time of a data
request on the control and broadcast channels, respectively.
Suppose that the data requests submitted by a mobile user i
in service follow a Poisson process with rate λi, and NUser

is the number of mobile users in service in the cell. To
facilitate the following discussion, we number the mobile users
in the cell as user 1, 2, · · ·, NUser. Due to the characteristic
of the Poisson process, the aggregate data requests of all
mobile users in the cell follow a Poisson process with rate
λCtrl. =

∑NUser

i=1 λi. Denote the sizes of data requests and
request acknowledgements as sCtrl. and sAck., respectively.

M/M/1

M/G/1

G/M/1

C
ontrol C

hannel

Scheduler

B
roadcast

C
hannel

Data
Request

Data
Request

Data

Data

Queue 1

Queue 2

Queue 3

ACK

ACK

Fig. 3. The analytical model of the proposed transcoding proxy

We also let BCtrl. be the bandwidth of the control channel, and
let the waiting time of the control channel for a data request
(denoted as WCtrl.) be the time interval between the user
sending a data request and the user receiving the acknowledge.
Then, we have the following lemma.

Lemma 1: The average waiting time of the control channel
can be formulated as below.

WCtrl. =
1

BCtrl.

sCtrl.+sAck.
− λCtrl.

Let the waiting time of the scheduler for a data request
(denoted as WSche.) be the time interval from the arrival of the
data request from the scheduler’s perspective to the time that
the requested data object has been obtained by the scheduler.
Note that the service time of a cache manager is affected by
several factors such as cached status of required data objects,
the employed replacement scheme, the characteristic of the
input jobs, and so on. The service time of the cache manager
cannot be modeled by a particular mathematical distribution.
Therefore, we model the average service time of the cache
manager as an arbitrary distribution with mean 1

µSche.
and

variance σ2
Sche.. Suppose that ρSche. = λCtrl.

µSche.
is the load of

the scheduler. We then have the following lemma.

Lemma 2: The average waiting time of the scheduler is

WSche. =
1

µSche.
+

ρSche.

µSche.
+ λCtrl.σ

2
Sche.

2(1− ρSche.)
.

Let the waiting time of the broadcast channel for a data
request be the time interval between the time that the requested
data object has been obtained by the scheduler and the time
that the user has received it. Then, we have the following
lemma.

Lemma 3: The average waiting time of the broadcast channel
can be formulated as

WBCast =
1

µBCast(1− r0)
,

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

6 5 4 3 2 1

P3 P2 P1

Fig. 4. Example device profiles

where r0 is the root of the following equation with value larger
than zero and less than one.

z = A∗[µBCast(1− z)]

Finally, the average waiting time of the whole system
(denoted as WSys.) is equal to the summation of the average
waiting time of the control channel, the scheduler and the
broadcast channel. Then, with Lemmas (1), (2) and (3), WSys.

can be formulated as

WSys. = WCtrl. + WSche. + WBCast (1)

B. Transcoding Model

Suppose that the mobile devices are classified into several
categories based on the their capabilities, and the capabilities
of each category are described by one device profile. Let Pi

be the i-th device profile. Without loss of generality, we order
the device profiles according to their capabilities in ascendent
order. That is, the capability of Pi is better than that of
Pj when i > j. We also let Di(j) be the j-th version of
data object Di. Again, we order all versions of a data object
according to their quality in ascendent order, which means
that the quality of Di(j) is better than that of Di(k) when
j > k. For each data objects, we assume that the data size
of a version with higher quality is larger than that of another
version with lower quality.

To facilitate the following discussion, the concept of view-
able version set is defined below.

Definition 1: A viewable version set of a device profile Pi

and a data object Dj (denoted as V V S(i, j)) is a set of
versions of Dj which are able to be displayed by mobile
devices with profile Pi.
Then, we have the following example.

Example 1: Consider the example shown in Figure 4. Mobile
devices are classified into three categories: notebook, PDA and
smart phone, and their capabilities are described in device
profiles P3, P2 and P1, respectively. In addition, there are
six versions of data object Dj . V V S(3, j), V V S(2, j) and
V V S(1, j) are {3, 4, 5, 6}, {3, 4} and {1, 2}, respectively. We
have V V S(2, j) ⊂ V V S(3, j) since devices with profile P3

(e.g., notebooks) are capable of displaying all versions of
Dj viewable by devices with profile P2 (e.g., PDAs). On
the other hand, we have V V S(3, j)

⋂
V V S(1, j) = φ and

V V S(2, j)
⋂

V V S(1, j) = φ since devices with profile P1

(e.g., smart phone) employ special data formats (e.g., WML

and WBMP) that are not supported by devices with profile P2

and P3.
Let the function BEST (i, j) = k (respectively,

WORST (i, j) = k) represent that the best (respectively,
worst) viewed version of data object Dj for a mobile de-
vice with device profile Pi is version k. In practice, we
have BEST (i, j) ≥ BEST (l, j) and WORST (i, j) ≥
WORST (l, j) when i > l. We also have BEST (i, j) =
max {V V S(i, j)} and WORST (i, j) = min {V V S(i, j)}.
Example 2: Consider the example shown in Figure 4. The
best viewable versions of P3, P2 and P1 are Dj(6), Dj(4) and
Dj(2), respectively. As a result, we have BEST (3, j) = 6,
BEST (2, j) = 4 and BEST (1, j) = 2. In addition, we
also have WORST (3, j) = 3, WORST (2, j) = 3 and
WORST (1, j) = 1.

When a user registers the service, the user’s mobile device
will transmit the identifications the user and the corresponding
device profile to the system. Suppose that the device profile of
the mobile device is Pi. Then, when the mobile user requests
Dj , the system will return a suitable version of Dj , say the
k-th version of Dj where k ∈ V V S(i, j), according to the
result of the underlying version decision policy.

IV. DESIGN OF SCHEME ODB-QOS

This section shows the design of the proposed scheme ODB-
QoS (standing for On-demand Data Broadcasting with QoS).
An overview of scheme ODB-QoS is given in Section IV-A.
The determination of the system state is given in Section IV-
B. Finally, the proposed version decision policy and admission
control scheme of scheme ODB-QoS are described in Section
IV-C and IV-D, respectively.

A. Overview

We take the average access time as the QoS metric. Before
executing scheme ODB-QoS, system administrators specify a
QoS requirement by setting two thresholds of average access
time, W1 and W2 where W1 < W2. The meanings of the two
thresholds are as follows. The users are guaranteed to receive
the best viewable versions of requested data objects when the
average waiting time is smaller than W1. On the other hand,
scheme ODB-QoS will use its best effort to prevent the average
waiting time from being larger than W2.

Scheme ODB-QoS is an online, iterative and adaptive algo-
rithm which comprises a version decision policy and a service
admission control scheme. The flowchart of scheme ODB-
QoS is shown in Figure 5. Scheme ODB-QoS is executed
periodically, and the following three steps are executed in
each iteration. First, scheme ODB-QoS measures the average
waiting time of each queue according to the derived results in
Section III. Then, in state determination step, scheme ODB-
QoS measures the load of each queue based on the obtained
average waiting time, and determines the current state of
each queue accordingly. Finally, scheme ODB-QoS configures
the version decision policy and the service admission control
scheme according to the state of each queue. The details of
scheme ODB-QoS are described in the following subsections.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

State Determination

Start

Next
iterationVersion Decision Policy

Configuration

Service Admission Control
Scheme Configuration

Fig. 5. The flowchart of scheme ODB-QoS

B. State Determination

Three positive factors, γ1, γ2 and γ3 where γ1 + γ2 + γ3 =
1, are also defined to determine the values of ρCtrl.

1 , ρCtrl.
2 ,

ρSche.
1 , ρSche.

2 , ρBCast
1 and ρBCast

2 . The values of ρCtrl.
1 and

ρCtrl.
2 are first determined so that the average waiting time of

the control channel is equal to WCtrl. = γ1×W1 and WCtrl. =
γ1×W2, respectively. The values of ρSche.

1 and ρSche.
2 are then

determined so that the average waiting time of the cache is
equal to γ2 × W1 and γ2 × W2, respectively. Analogously,
the values of ρBCast

1 and ρBCast
2 are determined so that the

average waiting time of the cache is equal to γ3 ×W1 and
γ3 ×W2, respectively.

The values of γ1, γ2 and γ3 are determined adaptively and
automatically. When the system starts up, γ1, γ2 and γ3 are
initialized to be 1

3 . In each execution, they are determined as
follows: γ1 = WCtrl.

WSys.
, γ2 = WCache.

WSys.
and γ3 = WBCast.

WSys.
=

1 − γ1 − γ2. Note that in scheme ODB-QoS, only the QoS
requirement (i.e., W1 and W2) are required to be specified by
system administrators.

C. Version Decision Policy

Figure 6 shows the relationship between the average waiting
time and the load of a queue. We can observe that when
the the load is larger than or equal to one, the system is
not stable since the average waiting time does not converge
and will approach to infinite. In addition, when the load is
smaller than one, the average waiting time increases as the load
increases, and the increment will increase drastically when the
load approaches one.

With the above observations, the rationale of our scheduling
algorithm is to keep the system loads of the scheduler (i.e.,
Queue 2 in Figure 3) and broadcast channel (i.e., Queue 3
in Figure 3) smaller than one at the cost of the quality of
requested data objects. As a consequence, when the load of
the scheduler or the broadcast channel is high, for each data
request, the system will return the version of worse quality
than the best viewed version. The strategy has the following
two effects:

LIGHT FAIR

System Load (ρ)

A
ve

ra
ge

 A
cc

es
s

T
im

e
(W

)

H
E

A
V

Y

ρ1 ρ2 1

Fig. 6. The relationship between load and average access time of a queue

1) Decrease the average waiting time of the broadcast
channel (1

µBCast
) since the data size of a data object

with lower quality is usually smaller than that of the
same data object with higher quality. The load of the
broadcast channel (ρBCast) is hence reduced.

2) Increase the occurrence probability of request merge.
Consider the device profiles shown in Figure 4, and
two data requests of Dj for device profiles P2 and P3,
respectively. These two data requests will not be merged
when the load of the scheduler or the broadcast channel
is light. However, when the load is high, the system will
decide to return the third version of Dj , and hence, these
two data requests can be merged. The arrival rates of the
input processes of the cache and the broadcast channel
them decrease. As a result, this strategy will reduce
the load of the cache (ρSche.) and broadcast channel
(ρBCast).

Two thresholds, ρSche.
1 and ρSche.

2 (respectively, ρBCast
1

and ρBCast
2), are specified first and they divide the load of

the scheduler (respectively, the broadcast channel) into three
states: LIGHT, FAIR and HEAVY. Figure 7 shows the state
transition diagram of the scheduler. The state transition sce-
narios are as follows. When the previous state is LIGHT, the
current state will transit to FAIR if ρSche. > (1+α)×ρSche.

1 .
Otherwise, the current state will still be LIGHT. When the
previous state is FAIR, the current state will transit to LIGHT
if ρSche. < (1 − α) × ρSche.

1 . If ρSche. > (1 + α) × ρSche.
2 ,

the current state will transit to HEAVY. Otherwise, the current
state will still be FAIR. When the previous state is HEAVY, the
current state will transit to FAIR if ρSche. < (1−α)×ρSche.

2 .
Otherwise, the current state will still be HEAVY. The factor α,
where 0 < α < 1, is set to avoid state oscillation. We assume
that (1 + α) × ρSche.

2 < 1 without loss of generality. The
state transition diagram and transition scenario the broadcast
channel are as shown in Figure 7 by substituting ρBCast

1 and
ρBCast
2 for ρSche.

1 and ρSche.
2 , respectively. The determination

of ρSche.
1 , ρSche.

2 , ρBCast
1 and ρBCast

2 are described in Section
IV-B.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

LIGHT FAIR HEAVY

.
1.)1(Sche

Sche ραρ ×+> .
2.)1(Sche

Sche ραρ ×+>

.
2.)1(Sche

Sche ραρ ×−<.
1.)1(Sche

Sche ραρ ×−<

otherwise otherwise otherwise

Fig. 7. State transition diagram

We also define the aggregated state of the scheduler and the
broadcast channel as follows. The aggregated state is LIGHT
when the loads of the scheduler and the broadcast channel
are both LIGHT. The aggregated state is HEAVY when at
least one load of the cache and broadcast channel is HEAVY.
Otherwise, the aggregated state is FAIR. For each new-coming
data request, the scheduler will decide a suitable version, fill
a version information into the data request according to the
aggregated state, and insert it into the data request queue. The
scheduler will also inform the mobile client of the decided
version by replying an acknowledge message. Formally, the
version decision policy is described below.

• LIGHT: The scheduler operates in the traditional on-
demand broadcast mode when the aggregated state is
LIGHT. Hence, the system guarantees that each client
will receive the best viewed versions of data objects
being requested. That is, the system will return the
BEST (i, j)-th version of Dj when a user requests Dj

by a mobile device belonging to device profile Pi.
• FAIR: In FAIR state, the quality of received data

object may be degraded. Let degradation and
maxDegradation indicate the current and maximal
degrees of degradation, respectively. The value of
maxDegradation is obtained by

max
∀Pk,Dj

{BEST (k, j) − WORST (k, j)}.

When receiving a data request of Dj from a mobile
device belonging to device profile Pi, the system will
return the (BEST (i, j)−degradation)-th version of Dj .
When the current aggregated state is FAIR, the previous
aggregated state is also taken into consideration. When
the previous aggregated state is LIGHT, degradation
is set to be one. When the previous aggregated state is
HEAVY, degradation is set to be maxDegradation−1.
Otherwise, when the previous aggregated state is also
FAIR, the load of the scheduler is considered. The value
of degradation increases by one when ρSche.

cur > (1+β)×
ρSche.

pre . Similarly, the value of degradation decreases by
one when ρSche.

cur < (1−β)×ρSche.
pre . Otherwise, the value

of degradation remains the same. The constant β is used
to avoid the oscillation of degradation.

• HEAVY: When the aggregated state is HEAVY, the
system will force each client to receive the worst viewed
versions of data objects which it requests. That is, the
system will return the WORST (i, j)-th version of Dj

when a user requests Dj by a mobile device belonging
to device profile Pi.

As a consequence, the algorithmic form of the version decision
procedure is as below.

Procedure VersionDecision(Pi, Dj)
Input: A user requests Dj by a mobile device belonging to
device profile Pi.
Output: A version of Dj .

1: Let preState and curState← be the previous/current
state of the scheduler, respectively

2: Let ρSche.
pre and ρSche.

cur ← be the previous/current load of
the scheduler state of the scheduler, respectively

3: maxDegradation←
max∀Pk

{BEST (k, j)−WORST (k, j)}
4: if (curState=LIGHT) then
5: return BEST (i, j) /* The system will return the best

viewable version to the user */
6: else if (curState=HEAVY) then
7: return WORST (i, j) /* The system will return the

worst viewable version to the user */
8: else /* curState=FAIR */
9: if (preState=LIGHT) then

10: degradation← 1
11: else if (preState=HEAVY) then
12: degradation← maxDegradation− 1
13: else /* preState=FAIR */
14: if (ρSche.

cur > (1 + β)× ρSche.
pre) then

15: degradation←
min {degradation + 1,maxDegradation}

16: else if (ρSche.
cur < (1− β)× ρSche.

pre) then
17: degradation← max {degradation− 1, 0}
18: end if
19: end if
20: return BEST (i, j)− degradation
21: end if

D. Service Admission Control Scheme

A service admission control scheme is employed in each
service manager to determine whether to grant a service
registration or a service handoff by considering the number
users in service, the network status, and so on. Analogously,
the rationale of our service admission control scheme is to
keep the system load of the control channel (i.e., Queue 1 in
Figure 3) smaller than one at the cost of SBR and SDR. As
shown in Section III-A, the incoming rate of data requests
is in proportion to the number of users using the service in
the cell. As a result, the service admission control scheme
should keep the number of users in service under a reasonable
level. To achieve this, two thresholds, ρCtrl.

1 and ρCtrl.
2 where

ρCtrl.
1 < ρCtrl.

2 < 1, are specified first and they divide the
load of the control channel into three states: LIGHT, FAIR and
HEAVY. The state transition diagram and transition scenario
of the service manager are shown in Figure 7 by substituting
ρCtrl.
1 and ρCtrl.

2 for ρSche.
1 and ρSche.

2 , respectively. The
determination of ρCtrl.

1 and ρCtrl.
2 are described in Section

IV-B.
Although the proposed version decision policy can reduce

the loads of the scheduler and the broadcast channel, the effect

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

of the proposed version decision policy is limited since it
depends on several factors such as the locality of data requests,
the cache size and so on. As a consequence, in addition
to the load of the control channel, the service admission
control scheme should also takes the loads of the scheduler
and the broadcast channels into consideration. Note that SBR
is sacrificed first since mobile users can tolerate a service
registration being blocked rather than a service handoff being
forced to terminate (i.e., dropped). The proposed admission
control scheme is as below.

• A service handoff is dropped when the state of the
control channel is HEAVY or when degradation =
maxDegradation.

• A service registration is blocked when the state of the
control channel is FAIR or when

degradation ≥ maxDegradation

2
.

The algorithmic form of the revised service admission control
scheme is as below.

Procedure ServiceAdmission
Input: A service registration or a service handoff.
Output: Decision of the incoming service registration or
service handoff.

1: curState← current state of the control channel
2: if (the input is a service handoff) then
3: if (curState=HEAVY or

degradation = maxDegradation) then
4: return REJECT
5: else
6: return GRANT
7: end if
8: else /* the input is a service registration */
9: if

(
curState=FAIR or

degradation ≥= maxDegradation
2

)
then

10: return REJECT
11: else
12: return GRANT
13: end if
14: end if

V. PERFORMANCE EVALUATION

To evaluate the performance of the scheme ODB-QoS, we
build an event-driven simulator with SIM [5]. Scheme ODB-
QoS is executed periodically with period two minutes and
the simulation is run for 12 hours. Scheme CS (standing for
traditional Client-Server) and scheme ODB (standing for On-
Demand Broadcasting) are also implemented for comparison
purposes. The average waiting time is employed as the perfor-
mance measurement for each scheme. In addition, SBR and
SDR are taken as the measurement of the cost of scheme
ODB-QoS. The simulator is coded in C++ and run in a PC
with Pentium III 400 MHz CPU and 256 MBytes RAM.

A. Simulation Model

Similar to [16], we set the cell topology as a 4×4 cells
wrapped-around mesh topology shown in Figure 8. We take

Parameter Value

Data object number 4000
Data object sizes Lognormal dist. (mean 18 KB)
Data access probabilities Zipf dist. with parameter 1.1
Cache replacement scheme AE
Cache capacity 0.01 ×

∑
object size

Object fetch delay Exponential dist. with µ = 2.3
Transcoding rate 30 KB/sec
Client number 1000
Cell residence time Exp. dist. with µ = 40 minutes
Cell holding time Exp. dist. with µ = 15 minutes
Cell establishing time Exp. dist. with µ = one hour

TABLE II

DEFAULT SYSTEM PARAMETERS

Transcoding Proxy

Fig. 8. The simulation topology

LWF (standing for Longest Wait First) as the underlying
scheduling algorithm. Scheme AE [8] is employed as the cache
replacement policy since it outperforms the other replacement
policies for transcoding proxies. Each cell provides one control
channel and one download channel with network bandwidth
10 KByte/sec and 100 KByte/sec, respectively. Analogously to
[8], we assume that there are 4000 data objects and the sizes
follow a lognormal distribution with a mean of 15 KBytes.
The size of a control message (e.g., data request message
and acknowledgement message) is set to be 1 KByte. The
access probability of data objects follows a Zipf distribution,
which is widely adopted as a model for real Web traces
[1][6]. The parameter of the Zipf distribution is set to be 1.1
with a reference to the analyses of real Web traces [6][13].
Since small objects are much more frequently accessed than
large ones [9], we assume that there is a negative correlation
between the object size and its access probability. The default
capacity of the cache is set to be 0.01×∑

object size and the
fetch delays of data objects follow an exponential distribution
with mean 2 seconds [8]. The values of W1 and W2 (i.e., the
QoS requirement) are set to be two seconds and five seconds,
respectively.

In the client model, as in [7] and [8], we assume that the
mobile clients can be classified into five device profiles, and

Profile Viewable version set

P1 {2, 1}
P2 {4, 3, 2, 1}
P3 {6, 5}
P4 {8, 7, 6, 5}
P5 {10, 9, 8, 7, 6, 5}

TABLE III

DEVICE PROFILES AND VIEWABLE VERSION SETS

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

the distribution of these five device profiles of mobile clients
is modeled as a device vector of 〈15%, 20%, 30%, 20%, 15%〉.
Without loss of generality, we also assume that all objects
could be transcoded into ten versions, and the sizes of the
ten versions (from version one to version ten) are assumed
to be 10%, 20%, 30%, · · · and 100% of the original object
sizes [8]. The viewable version set for each device profile is
shown in Table III. By a reference to [8], we assume that a
more detailed version can be transcoded into a less detailed
one and the transcoding delay is determined as the quotient
of the object size to the transcoding rate. The transcoding rate
is set to be 30 KBytes/sec [7]. The number of users in the
network is set to be 1000. The cell residence time, service
holding time and service establishing time for each user are
set to be exponential distributions with means of 50 minutes,
10 minutes and one hour, respectively. We also assume that
the data requests for each user follow a Possion process with
parameter 1

λ = 60.

B. The Effects of the Number of Users

Figure 9 shows the experimental results with the number of
users varied. The number of users is set from 400 to 1400.
From Figure 9a, we observe that when the number of users
is small (400 in this experiment), the system load is light and
the average waiting times of all schemes are close. When
the number of users increases, the average waiting time of
scheme CS and scheme ODB also increases. In addition, the
increment of the average waiting time of scheme CS and ODB
increases as the number of users increases, especially when
the number of users is larger than 1200. Since a large number
of users implies the high arrival frequencies of data requests,
the system load becomes heavy when the number of users is
large, and hence, the average waiting time increases drastically.
When the number of users is 1400, the average waiting time
of scheme CS does not converge as the time advances since
the system load is larger than one. This situation again agrees
with the observation in Section IV-C. The average waiting time
reduction of scheme ODB over scheme CS increases from
47.11% to 74.2% as the number of users increases from 400
to 1400. Scheme ODB is more scalable than scheme CS due
to the effect of request merge and the employment of data
broadcast.

Next, consider scheme ODB-QoS. When the number of
users is small (400 in this experiment), scheme ODB-QoS and
scheme ODB have similar behavior. This can be explained by
the reason that when the average waiting time of scheme ODB-
QoS is smaller than W1, scheme ODB-QoS is degenerated to
scheme ODB and guarantees that each user will receive the
best viewable versions of the requested data objects. When the
number of users increases to 1000, some service registrations
are blocked since the average waiting time cannot be satisfied
with the QoS requirements (i.e., in the interval (W1,W2)).
Similarly, some service handoffs are dropped when the number
of users is larger than 1200. We observe that scheme ODB-
QoS is able to keep the average waiting time satisfying the
QoS requirement by controlling the quality of received data
objects and the number of users in service even when the
offered system load is heavy.

C. The Effects of Skewness of Access Probabilities

We investigate the effect of varied skewness of access
probabilities in average waiting time, SBR and SDR. The
degree of skewness is measured by the value of the Zipf
parameter which is set from 1 to 1.4. The larger the Zipf
parameter is, the higher the degree of skewness is. As shown in
Figure 10a, the average waiting time of all schemes increases
as the value of Zipf parameters decreases. It is because that the
degree of request locality is high when the access frequencies
is highly skewed (i.e., high Zipf parameter). Therefore, with
the same cache size, the cache hit ratio is high and is able to
effectively reduce the average access time. Moreover, scheme
ODB can further reduce the average waiting time since the
probability of request merge increases. We also observe that
the increment of the average waiting time of scheme CS and
ODB increases drastically when the value of Zipf parameter
decreases (i.e., one in this experiment). The reason is that the
effect of cache decreases as the degree of skewness decreases.
Hence, the system load becomes heavy when the degree of
skewness is low, and therefore, the increment of average
waiting time increases. This result conforms the observation in
Section IV-C. The average waiting time reduction of scheme
ODB over scheme CS ranges from 36.9% to 65%.

Figure 10b shows the produced SBR and SDR of scheme
ODB-QoS with the value of Zipf parameter varied. We ob-
serve that when the skewness of access frequencies is high
(Zipf parameter=1.4 in this experiment), scheme ODB-QoS
is degenerated to scheme ODB since the average waiting
time of scheme ODB-QoS is smaller than W1. When the
Zipf parameter is 1.2, some service registrations are blocked
(SBR> 0) since the average waiting time without blocking
service registration cannot be satisfied with the QoS require-
ment. SBR is sacrificed first since mobile user can tolerate a
service registration being blocked rather than a service handoff
being forced to be dropped. In addition, when Zipf parameter
is smaller than 1.1, some service handoffs are also dropped
since the system load is too heavy.

VI. CONCLUSION

We explored in this paper the effect of on-demand broad-
casting technique in the design of a QoS-aware transcoding
proxy. We first proposed a QoS-aware transcoding proxy
architecture, QTP, and modeled it as a queueing network.
By analyzing the queueing network, several theoretical results
were derived to formulate the system average waiting time.
We then proposed a version decision policy and a service
admission control scheme to provide QoS in QTP. The derived
results were used to guide the execution of the proposed ver-
sion decision policy and service admission control scheme to
fulfill the given QoS requirement. To measure the performance
of QTP, several experiments were conducted. Experimental
results show that the proposed approach is more scalable
than traditional client-server systems. In addition, the proposed
approach can effectively achieve the desired QoS.

ACKNOWLEDGEMENT

The authors are supported in part by the Ministry of Edu-
cation Project No. 89-E -FA06-2-4, and the National Science

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

0
20
40
60
80

100
120
140
160
180
200

400 600 800 1000 1200 1400

Number of Users

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(s

ec
)

CS

ODB

ODB-QoS

(a) Average Waiting Time

0
2
4
6
8

10
12
14
16
18
20

400 600 800 1000 1200 1400

Number of Users

R
at

e
(%

)

SBR

SDR

(b) SBR/SDR

Fig. 9. The effects of the number of users

0

20

40

60

80

100

120

140

160

180

1 1.1 1.2 1.3 1.4

Zipf Parameter

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(s

ec
)

CS

ODB

ODB-QoS

(a) Average Waiting Time

0

1

2

3

4

5

6

7

8

9

1 1.1 1.2 1.3 1.4

Zipf Parameter

R
at

e
(%

)

SBR

SDR

(b) SBR/SDR

Fig. 10. The effects of the Zipf parameters

Council Project No. NSC 92-2213-E-002-001 and NSC 92-
2213-E-002-010, Taiwan, Republic of China.

REFERENCES

[1] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World Wide Web.
IEEE Transactions on Knowledge and Data Engineering, 11(1):94–107,
1999.

[2] M. Agrawal, A. Manjhi, N. Bansal, and S. Seshan. Improving Web
Performance in Broadcast-Unicast Networks. In Proceedings of the
IEEE INFOCOM Conference, March-April 2003.

[3] D. Aksoy and M. J. Franklin. Scheduling for Large-Scale On-Demand
Data Broadcasting. In Proceedings of IEEE INFOCOM Conference,
pages 651–659, March 1998.

[4] D. Barbara. Mobile Computing and Databases - A Survey. IEEE
Transactions on Knowledge and Database Engineering, 11(1):108–117,
January/February 1999.

[5] D. Bolier and A. Eliëns. SIM: a C++ library for Discrete Event
Simulation. http://www.cs.vu.nl/∼eliens/sim/, October 1995.

[6] L. Breslau, P. Cao, G. Phillips, and S. Shenker. Web Caching and Zipf-
like Distributions: Evidence and Implications. In Proceedings of the
IEEE INFOCOM Conference, March 1999.

[7] V. Cardellini, P. S. Yu, and Y.-W. Huang. Collaborative Proxy System for
Distributed Web Content Transcoding. In Proceedings of the 9th ACM
International Conference on Information and Knowledge Management,
November 2000.

[8] C.-Y. Chang and M.-S. Chen. Exploring Aggregate Effect with Weighted
Transcoding Graphs for Efficient Cache Replacement in Transcoding
Proxies. In Proceedings of the 18th IEEE International Conference on
Data Engineering, Feburary 2002.

[9] S. Glassman. A Caching Relay for the World Wide Web. Computer
Networks and ISDN Systems, 27, 1994.

[10] R. Han, P. Bhagwat, R. Lamaire, T. Mummert, V. Perret, and J. Rubas.
Dynamic Adaptation in an Image Transcoding Proxy for Mobile Web
Browsing. IEEE Personal Communications, 5(6), December 1998.

[11] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The
Anatomy of a Context-Aware Application. In Proceedings of the
5th ACM/IEEE International Conference on Mobile Computing and
Networking, pages 59–68, August 1999.

[12] W. Y. Lum and F. C. M. Lau. A Context-Aware Decision Engine for
Content Adaptation. IEEE Pervasive Computing, 1(3), July-September
2002.

[13] V. Padmanabhan and L. Qiu. The Content and Access Dynamics of a
Busy Web Site: Findings and Implications. In Proceedings of the IEEE
SIGCOMM Conference, pages 293–304, August-September 2000.

[14] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE
Personal Communications, 8(4):10–17, August 2001.

[15] J. R. Smith, R. Mohan, and C.-S. Li. Content-based Transcoding on
Images in the Internet. In Proceedings of IEEE International Conference
on Image Processing, October 1998.

[16] C.-C. Tseng, G.-C. Lee, R.-S. Liu, and T.-P. Wang. HMRSVP: A
Hierarchical Mobile RSVP Protocol. ACM Wireless Networks, 9(2):95–
102, 2003.

[17] W3C. http://www.w3.org/Mobile/CCPP/.
[18] WAP Forum. http://www.wapforum.org/.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

