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Abstract 

Internet of things (IoT) will create new opportunities to build applications that better integrate real-time state of the 

industry. With Web services accomplishing similar function proliferated, industrial enterprises have to choose 

appropriate Web services according Quality of Service (QoS) properties. It introduces the problem of QoS-oriented 

service composition (QSC). This study formulates the QSC problem as a multi-criteria goal programming (MCGP) 

model, and develops a multi-population genetic algorithm (MGA) to solve the model. MCGP not only 

automatically assigns high quality Web services to combine a composite service, but also finds non inferior 

composite services by relaxing QoS constraints to satisfy users’ QoS requirements. Empirical comparisons 

demonstrate MGA outperforms to the GA. Moreover, the experiments indicate MGA is capable to solve the large-

scale QSC problem in terms of efficiency and scalability.  
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1. Introduction 

Nowadays, with forceful evolutionary of the Internet 

and the Web, the widespread deployment of spatially 

distributed devices, such as RFID tags, sensor and smart 

mobile machines, promotes the Internet of things (IoT). 

There is a trend that distributed devices and enable 

machines are able to interact and cooperate with others 

to reach common goals by IoT (Guinard et al., 2010). 

With IoT and Web service technologies, business 

conduction and information exchanging can be 

implemented more dynamic than before (Miorandi et al., 

2012).  

An increasing number of business processes are 

published as Web service across Web. Since the 

individual service somehow fails to satisfy the users’ 

requirements, industrial organizations prefer to combine 

the existing simple individual Web service to a more 

complex composite service (Ko et al., 2008). Web 

service composition presents an opportunity to the rapid 

application development, service reuse and complex 

service consummation (Chen et al., 2006).  

An example of alarm service is used to illustrate the 

idea of service composition. Suppose that a warehouse 

is equipped with different devices including temperature 

sensors, smoke detectors, infrared sensors, liquid 

immersion sensors, alarm bells, camera, scupper valves 

and water sprinklers. The alarm service is shown in 

Fig.1 where individual devices providing simple 

function can be combined to establish a more powerful 

alarm service. In this application, each device in the 

composite service is called a component service (or task) 

which can be bound to various Web services providing 

the same functionality but with different quality 

properties. 

 

 
 
 
 
 
 
 
 

Fig.1. A composite service for the warehouse alarm 

 

Generally, when a user submits a service request, 

overall QoS constraints can be referred along with, such 

as response time should be less than 2H and cost should 

be less than 10$. With the proliferation of Web service 

offering similar functionality, how to select an 

appropriate Web service to construct a composite 

service according to the non-functional properties, such 

as Quality of Service (QoS) has becomes a prominent 

issue (AllamehAmiri et al., 2013).  

This paper addresses the QoS-oriented Web service 

composition (QSC) problem. The QSC problem is 

formulated to a multi-criteria goal programming 

(MCGP) model. In addition, a multi-population genetic 

algorithm (MGA) is developed to solve the presented 

MCGP model. Experiment results show that the 

proposed method is capable to find the optimal service 

composition for users’ QoS constrains with low failure 

rate, especially when no Web service could exactly 

satisfy the users’ QoS requirements.  

The following of this paper is organized as follows. 

Section 2 introduces the related work. The MCGP 

model for QSC and MGA solving algorithm are 

presented in section 3 and section 4, respectively. 

Section 5 analyzes and discusses the experimental 

results. Finally, conclusions and future work are given 

in Section 6. 

2. Related work  

One of the main challenges for service composition is to 

choose appropriate service instances for a service 

composition schema representing the abstract 

functionalities of tasks and the workflows of composite 

service. Since the length of a composite service and the 

candidates for each task are expected to proliferate, the 

scale of possible service compositions with the identical 

functionality but different QoS performance should be 

in general exponentially enlarging. This leads to an 

optimization problem on QSC (Zeng et al., 2004). 

With perspective of multiple QoS constraints, multi-

criteria decision making model and mathematical goal 

programming models were used to analyze the QSC 

problem by Cui et al. (2011). However the weights and 

priorities of the QoS objectives for goal programming 

are respectively required in the non-preemptive and 

preemptive goal programming model. Furthermore, if 

all the goals cannot be simultaneously achieved, the 

users have to decide which goal should be sacrificed to 

continue the programming procedures. Moreover, Yu et 

al. (2007) modeled the QSC problem as a 

multidimension multichoice 0-1 knapsack problem 

(MMKP) and a multi-constrained optimal path (MCOP) 
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problem, respectively. However, they didn’t consider 

the possible failure in finding a feasible solution to 

satisfy the users’ QoS constrains.  

Moreover, it is a NP-Complete problem to select the 

optimal composite service from numerous solutions to 

satisfy user’s QoS constrains, which can’t be solved 

within a reasonable time. Hence, many efforts of 

intelligent and heuristic algorithms are concentrated in 

QSC to find an approximate optimal solution. Particle 

swarm optimization (PSO) (Poli et al., 2007) has been 

widely applied for QSC problem (Poli et al., 2007). 

Additionally, Zhao et al. (2012) proposed an improved 

discrete immune particle swarm optimization algorithm 

(IDIPSO) which includes an improved local best first 

stage based on mathematical analysis and a perturbing 

global best stage along the global best particle. 

Furthermore, Hu et al. (2009) transformed the QSC 

problem into a QoS multi-objective model, and 

developed an improved particle swarm optimization 

algorithm (IPSOA), where satisfying results can be 

obtained with adaptive weight adjustment and non-

uniform mutation strategies, to solve the multi-objective 

model. Moreover, Ko et al. (2008) proposed a QoS 

constraint satisfaction based method for QSC problem. 

They automatically assigned high quality Web service 

for each task in a composition schema with an optimal 

algorithm. The algorithm is characterized as a meta-

heuristics combining tabu search and simulated 

annealing. However, their work fails to the scalability 

respecting to the growth of the number of Web services. 

Though the approaches with intelligent algorithms 

improve the efficiency of Web service composition with 

QoS constraints, they will fail in the case where none of 

feasible composite services exactly satisfies all the QoS 

constrains. With this perspective, Lin et al. (2011) 

attempted a relaxable QoS-based service selection 

(RQSS) method to discover feasible Web services based 

on QoS requirements. The RQSS is to not only find non 

inferior composite services but also reduce the 

computation complexity. The method of RQSS attempts 

a worthy solution for the QSC problem. 

In summary, researches endeavor to find best services 

to compose optimal composite service in industrial 

applications. It is still a vital task to develop efficient 

methods for handling the situation where no feasible 

solution can fulfill the overall QoS constraints. Aiming 

to this issue, this paper formulates QSC problem to a 

multi-criteria goal programming (MCGP) model to find 

a solution with smaller amount of constraints violation. 

Then we develop a multi-population genetic algorithm 

to solve the MCGP model.  

 

3. Multi-criteria goal programming model for 

QSC problem  

3.1 QoS model for QSC 

In respect to various QoS attributes for Web services 

defined by W3C working group, we define three QoS 

properties as the quality evaluation criteria of Web 

service according to domain application of IoT. 

• Execution time (t): The execution time of a service 

is the average time between when the request is sent 

from the user and when the server response is 

received. 

• Reliability (r): The reliability of a service is the 

percentage that a service request is completed 

successfully. It is measured by the rate of number 

of successful executions over to total number of 

service invoked.  

• Execution cost (c): The execution cost is the 

payment of executing a Web service.  

A composite service consists of a set of logically 

connected component services (or tasks). Each task can 

be bound to different candidate service instances with 

identical functionality but different QoS values (Chen et 

al., 2006). The most widely used workflows in service 

composition include sequential (a), Loop (b), Parallel 

(c) and Switch (d) (Zhao et al., 2012), as shown in Fig. 

2.  
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Fig.2. Workflows used in Web service composition 

 

 

Accordingly, the QoS property values of composite 

service can be calculated with the following equations 

shown in Table 1.  
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Table 1. Aggregation function of QoS properties  
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Herein, ip is the probability of executing each branch in 

the switch workflow. 

As the scales of the QoS properties are quite different, 

QoS property values are normalized at first with Eq. (1). 

i

ii

i

QQ
Q

σ
−

=′  (1) 

In Eq. (1), 
iσ is the standard deviation of each QoS 

property value, and iQ  is the mean. 

Without loss of generality, 
iQ represents the 

normalized QoS property value in the following parts of 

this paper. 

3.2 Multi-criteria goal programming model for 

QSC problem 

3.2.1 Goals for the programming model 

Three objective functions can be derived in respect to 

the QoS properties defined in section 3.1. 

• Execution time (T): It is expected to be as minimal 

as possible, where 0T is the maximum overall 

execution time specified by user. 

min Aggregation( )iT t= , 
0T T≤  (2) 

• Reliability (R): It is expected to be as maximal as 

possible, where 0R is the minimum overall 

reliability specified by user. 

maxR Aggregation( )it= , 
0R R≥  (3) 

• Execution cost (C): It is expected to be minimized, 

where 
0C is the maximum overall execution cost 

specified by user. 

min Aggregation( )iC c= , 
0C C≤  (4) 

Summarily, the three-dimensional objective 

optimization model with constraints is given as follows. 





≤≥≤ 000 ,,..

)min,max,(min

CCRRTTts

CRTF
 (5) 

3.2.2 MCGP model of QSC problem 

We utilize multi-criteria programming (MCP) with a 

weighted sum model and multi-criteria goal 

programming (MCGP) (Cui et al., 2011) with a 

weighted sum model to formulate the QSC problem. 

MCP is a common model, while MCGP can be used in 

the case where no feasible solution can be discovered 

for the users’ overall QoS requirements. The proposed 

approach works as follows. 

  (i) MCP: The value of QoS properties for each 

composite service can be aggregated by functions show 

in Table1. We use the weighted summary method to 

transform the multi-criteria programming goals into 

single objective. The MCP model for QSC with 

constraints is illustrated as follows. 
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0 0 0

( )

. . , ,

Min w T w R w C

s t T T R R C C

⋅ − ⋅ + ⋅
 ≤ ≥ ≤

 (6) 

Herein, iW is the weight of each QoS property, 1
1

=∑
=

m

i
iW , 

m is the number of QoS properties. 

(ii) MCGP: In the case that there is none of composite 

service exactly satisfying the user’s QoS constraints, 

MCGP minimizes the QoS gap between Web service 

composition and user’s requirements by means of 

relaxing constraints.  

The difference of the actual QoS value larger than its 

constraint is denoted as +
id , while −

id represents the 

difference of the QoS value less than its constraint. 

They can be calculated Eq. (7) and Eq. (8), respectively, 

herein 0
iQ is the constraint of QoS property. 
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The QoS constraints can be modified 

to 011 TddT =−+ −+ , 022 RddR =−+ −+ and 033 CddC =−+ −+ , 

0, ≥−+
ii dd . Accordingly, MCGP model can be illustrated 

as follows. 
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, 0, 1, 2,3i i
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 (9) 

If there is no feasible solution, MCGP can be used to 

find non inferior solutions to relax the QoS constraints 

and minimize the violated quality value. MCP is a 

special case that  +
id  and −

id  are zero. 
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4. MGA algorithm for solving the MCGP model  

GA is an evolutionary algorithm rapidly growing in the 

area of artificial algorithm (Goldberg, 2005). Generally, 

GA gives less chance of survival (or none at all) for the 

low fitting individuals by mimicking the principle of 

natural evolution, i.e. ‘survival of the fittest’. However, 

the worst individuals may result in better offspring if 

they have chance to mate.  

Along with such a sense, multi-population genetic 

algorithm (MGA) partitions individuals into several 

groups or sub-populations on the basis of fitness values. 

Individuals within the same community are enabled to 

mate with each other. If an individual produces a high 

fitting offspring, the offspring migrates from its original 

group to the suitable group with higher fitness value, 

and vice versa. Thus, all individuals in the population 

achieve the equal opportunities no matter they are of 

high fitness or low fitness. This allows MGA to 

maintain the diversity of population, and then ensures 

faster convergence (Siva Sathya et al., 2013). 

4.1 The framework of MGA 

The framework of MGA is illustrated in Fig.3.  During 

the evolution, when an individual comes up with a 

better fitness, the offspring leaves its group and migrate 

to the group with similar fitness value to it. MGA is 

good at faster convergence as each sub-population 

evolves independent (Kojima et al., 2008). 
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Fig.3. Framework of MGA 

 

 

However, it is a pivotal task to specify judicious 

parameters or genetic strategies that heavily affect the 

performance of MGA, such as connection topology, 

migration method, migration policy and rate, and so on 

(Siva Sathya et al., 2009). The size of groups and the 

numbers of groups are fixed in the process of MGA. 

With respect to the dynamic migration of individuals, 

migration rate in MGA is influenced by the number of 

individuals that has improved their fitness. But 

connection topology, migration method and migration 

policy are not explicitly mentioned in current researches. 

In addition, MGA is usually more resistant to premature 

convergence. Consequently, we presented some 

effective genetic strategies to overcome these 

shortcomings. 

4.2 Fitness function 

Commonly, the fitness of individual (corresponding a 

candidate service composition generated by selecting 

certain service instance for each task) is evaluated by 

Eq.(10). 

1 2 3F w t w r w c= − + +  (10) 

Herein t, r and c is the aggregated values of response 
time, reliability and cost by aggregation functions in 

Table1, respectively; 10 << iw  and
3

1

1i

i

w
=

=∑ . 

Particularly, in the case of no feasible solutions, the 

fitness function shown in Eq.(11) aims to minimize 

violations of QoS performance and the given QoS 

constrains for individuals. 

1 2 3 4 1 5 2 6 3F w t w r w c w d w d w d+ − += − + + + +  (11) 

Herein, 10 << iw ,
6

1

1i

i

w
=

=∑ ,
1 0d t T+ = − , 2 0d R r− = −  

and
3 0d c C+ = − . 

4.3 The design of MGA 

(1) Encoding: A chromosome or individual 

represents a possible composite service where each task 

has been appointed a certain service instance. Assuming 

that all the candidate services for each task have been 

numbered with integers, the chromosome is represented 

by a 1×n integer vector, where n is the number of task 

included in composite service, and the value of each 

position in the vector indicates the order of candidate 

service for the task. For example, a vector (2,3,5,3,9,1) 

indicates there are 6 tasks in the schema of composite 

service, where task No.1 chooses its second candidate 

service, task No.2 chooses its third candidate service, 

and so on.  
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 (2) Genetic Operators: Individuals are chosen into 

mating pool to produce offspring by using crossover and 

mutation operators. The roulette wheel selection with 

simple elitism where fitter individuals will tend to have 

a better probability of survival is used to select pairs to 

form the mating pool for the next generation. We adopt 

the single-point crossover operator which exhibits the 

maximum positional bias and the lowest disruption rates 

(Jaeger et al., 2005). Offspring can be generated by 

exchanging segment of parents at the selected crossover 

point (Mardukhi et al., 2013). The mutations operator 

aims to maintain diversity of individuals, i.e. genes of 

individual are randomly selected and their values are 

converted with a certain probability.  

The main process of MGA is shown in Table 2. 

 

 
Table 2 Process of MGA algorithm 

//P: the population of current generation 

//n: the number of individuals 

//m: the number of groups 

//t: the number of current generation 

//T: the maximum number of generations 

Begin 

Initialize P(n) 

t=0 

while (t<=T) do 

Calculate Fitness for P(n) using Eq.(10) 

if noFeasible(P) then 

           Calculate Fitness for P(n) using Eq.(11) 

end if 

        Sort P(n) 

        for i = 1 to n/m 

        Select P(i) 

        Crossover P(i) 

        Mutation P(i) 

    end for 

for i = (n/m)+1 to (n/m)*2 

    Select P(i) 

         Crossover P(i) 

    Mutation P(i) 

end for 

… 

for i = n-(m-1)*(n/m) to n 

    Select P(i) 

    Crossover P(i) 

    Mutation P(i) 

end for 

t = t+1 

end while 

end 

4.4 Advantages of MGA 

Firstly, the strategy of multiple populations helps to 

maintain the diversity of population, and thus address 

the precocity problem. The low fit individuals are given 

the same chance to mate. This may result in better 

offspring which migrating to a better group (Siva Sathya 

et al., 2010). Moreover, such strategy generally helps 

the algorithm to converge faster. 

Secondly, MGA is easy to be parallelized because the 

entire population is divided into several sub-

populations. If the population size is very large, sub-

populations can independently evolve with different 

processors.  

5. Experimental investigations 

In this section, we investigate the performance of 

proposed MGA for large-scale QSC problem by 

comparing to the genetic algorithm (GA). 

5.1 Experimental setup 

Algorithms were coded with Matlab 2010a, and ran on 

an Intel Pentium Dual Core E5800 3.2 Ghz, 2 GB RAM 

desktop PC with Window XP. 

In order to evaluate the performance of the methods, 

we illustrated composite service schemas containing 

different number logically connected tasks with general 

workflows. Each task varies in the number of candidate 

services. 

Additionally, QoS property values for candidate 

services were synthetically generated referred to most of 

QSC researches (Pastrana et al., 2011). For each task, 

values of QoS properties were randomly generated with 

the normal distribution, and the same parameters as 

Pastrana et al. (2011) were used. Moreover, constraint 

of each QoS property is set by Eq.(12). 

3,2,1,** max == iCFQnQ
ii

                     (12) 

Herein, n is the number of tasks in a composite 

service, max
iQ is the maximum value of a QoS property, 

CF is the factor ranging [0,1], which is used to adjust 

the impact of each QoS property. In the generation of 

the QoS constraints, all the QoS metrics are assumed as 

the additive metrics. Since the reliability is 

multiplicative metric, the constraint of reliability is set 

to ( ) *max

i

n CF

Q
− . CF is 0.8 in this study. All the QoS 

constraints are shown in Table 3. 
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Table 3 Range and constraint of QoS property 

QoS property Range Constraint 

Execution time [0.1,3] CFn *3*  

Reliability [0.7,0.9] CFn*9.0 −
 

Execution cost [1,100] CFn *100*  

 

In order to present comparisons of MGA and GA, 

MGA and GA used the same genetic operators and 

parameters. However, the strategy of multiple 

populations was used in MGA. Probabilities of 

crossover and mutation are 0.7 and 0.05, respectively. 

Population size N is 80. The number of sub-populations 

in MGA is 4, i.e. each sub-population includes 20 

individuals. Moreover, we run GA and MGA 30 times 

independently, and use the averaged values for 

performance evaluation. 

5.2 Fitness values investigation 

Fitness value is an important guideline for GA 

performance. The less value indicates the better 

performance. Consequently, we compared the best 

fitness obtained by GA and MGA for various scales of 

QSC problem, as shown in Table 4. The number of 

tasks in the composition schema is n and the number of 

candidate services per task is m. As shown in Table 4, 

MGA always got less fitness than that of GA for any 

scale of QSC problem. It indicates that MGA can find 

more suitable composite service than GA. 

 
Table 4 Best Fitness values of GA and MGA 

(a) Comparisons with n=10 varying m 

Num. Of candidate services 10 15 20 

GA -21.88 -25.67 -29.21 

MGA -23.90 -28.12 -31.81 

(b) Comparisons with m=15 varying n 

Num. Of tasks 10 15 20 

GA -25.67 -32.38 -6.44 

MGA -28.12 -35.61 -11.51 

 

Additionally, Fig. 4 shows the comparison of GA and 

MGA for various scales of service compositions in 

terms of fitness for each generation. Case (a) and (b) 

have the same number of tasks but various candidate 

services per task (10 and 15); and (c) and (d) vary to 

tasks (10 and 15) but each task has the same number 

candidate services.  

 

 

 

 

 

 

 

 

 

(a) n=10, m=10                         (b) n=10, m=15 

 

 

 

 

 

 

 

 

 

 

 

(c) n=20, m=10                         (d) n=20, m=15 

 
Fig.4. Fitness values comparisons of GA and MGA 

 

 

 

 

Fig. 4 indicates that MGA outperforms GA greatly. 

The best fitness values of MGA surpass GA quickly for 

various scales of service compositions. The results 

demonstrate the powerful search ability of MGA for 

promising solutions. It also can be seen that MGA 

converges to a better minimal fitness value than GA.  

According to the results, it is concluded that MGA 

works well for large-scale QSC problem. It is capable to 

find better solution even though either the task number 

or the candidate services per task increases.  

 

5.3 Time cost investigation 

In order to evaluate the efficiency and scalability, we 

compared the computation time of MGA and GA with 

various scales of problem, i.e. there are approximate mn 

possible composite services with different QoS 

performances.  Table 5(a) shows the execution times of 

cases where n=10 and m ranges from 10 to 20 with a 

step of 5, and Table 5(b) shows the execution times of 

cases where m=10 and n ranges from 10 to 20 with a 

step of 5. 

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3

4

iterations

fi
tn

e
s
s
 v

a
lu

e

Comparison of fitness value 

 

 

GA

MGA

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3

4

5

iterations

fi
tn

e
s
s
 v

a
lu

e

Comparison of fitness values

 

 

GA

MGA

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

iterations

fi
tn

e
s
s
 v

a
lu

e

Comparison of fitness value

 

 

GA

MGA

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

iterations

fi
tn

e
s
s
 v

a
lu

e

comparison of fitness value

 

 

GA

MGA

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

32



Qian Li, Runliang Dou, Fuzan Chen, Guofang Nan 

 

Table 5. Time comparisons of GA and MGA  

 

(a) Comparisons with n=10 varying m 

Num. Of candidate services 10 15 20 

GA 2.80 2.80 2.83 

MGA 2.14 2.16 2.16 

 

(b) Comparisons with m=15 varying n 

Num. Of tasks 10 15 20 

GA 2.80 3.53 4.00 

MGA 2.16 2.84 3.41 

 

 

 

The results of Table 5 shows that the superiority of 

MGA to GA is more and more prominent as either task 

number or number of candidate services per task grows. 

This indicates that MGA has better efficiency and 

scalability than GA, especially when the scale of 

candidate composite services becomes larger and larger. 

Summarily, MGA is an effective and scalable method 

for large scale QSC problem, which can find appreciate 

composite service to satisfy the user’s QoS constrains 

within a reasonable time. We believe it is essential for 

the development of IOT and other distributed 

applications. 

6. Conclusion 

It can be expected that more and more Web services 

offering the identical functionality could be published 

across the Web. QoS properties will become the import 

aspect for service composition. This paper addresses the 

issue of large scale QSC problem.  

We formulate QSC problem to a MCGP model to 

discover the appropriate composite service fulfilling the 

users’ QoS constraints. Especially, when none of 

composite service could strictly satisfy the user’s overall 

QoS constraints, it can also recommend feasible 

solutions by relaxing the QoS constraints. Moreover, an 

effective MGA is developed to solving the MCGP 

model. Experimental results validate the excellent 

performance of MGA in terms of powerful searching 

ability and excellent convergence ability.  

As a future work, we suggest more comprehensive 

QoS measurement and effective algorithm to solve the 

optimization model. Dynamic Web service composition 

with QoS constrains may be another area we will extend. 
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