
Received 25 November 2013

Accepted 15 March 2014

A QoS-oriented Web service composition approach

 based on multi-population genetic algorithm for Internet of things

Qian Li

College of Management and Economics, Tianjin University, No.92, Weijin Road, Nankai District,

Tianjin, 300072, China

Runliang Dou

College of Management and Economics, Tianjin University, No.92, Weijin Road, Nankai District,

Tianjin, 300072, China

Fuzan Chen*

College of Management and Economics, Tianjin University, No.92, Weijin Road, Nankai District,

Tianjin, 300072, China

E-mail: fzchen@tju.edu.cn

Guofang Nan

College of Management and Economics, Tianjin University, No.92, Weijin Road, Nankai District,

Tianjin, 300072, China

Abstract

Internet of things (IoT) will create new opportunities to build applications that better integrate real-time state of the

industry. With Web services accomplishing similar function proliferated, industrial enterprises have to choose

appropriate Web services according Quality of Service (QoS) properties. It introduces the problem of QoS-oriented

service composition (QSC). This study formulates the QSC problem as a multi-criteria goal programming (MCGP)

model, and develops a multi-population genetic algorithm (MGA) to solve the model. MCGP not only

automatically assigns high quality Web services to combine a composite service, but also finds non inferior

composite services by relaxing QoS constraints to satisfy users’ QoS requirements. Empirical comparisons

demonstrate MGA outperforms to the GA. Moreover, the experiments indicate MGA is capable to solve the large-

scale QSC problem in terms of efficiency and scalability.

Keywords: Internet of Things, Web service, Web service composition, Quality of service

*Corresponding author. E-mail addresses: fzchen@tju.edu.cn (Fuzan Chen)

International Journal of Computational Intelligence Systems, Vol. 7, Supplement 2 (July 2014), 26-34

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

26

Qian Li, Runliang Dou, Fuzan Chen, Guofang Nan

1. Introduction

Nowadays, with forceful evolutionary of the Internet

and the Web, the widespread deployment of spatially

distributed devices, such as RFID tags, sensor and smart

mobile machines, promotes the Internet of things (IoT).

There is a trend that distributed devices and enable

machines are able to interact and cooperate with others

to reach common goals by IoT (Guinard et al., 2010).

With IoT and Web service technologies, business

conduction and information exchanging can be

implemented more dynamic than before (Miorandi et al.,

2012).

An increasing number of business processes are

published as Web service across Web. Since the

individual service somehow fails to satisfy the users’

requirements, industrial organizations prefer to combine

the existing simple individual Web service to a more

complex composite service (Ko et al., 2008). Web

service composition presents an opportunity to the rapid

application development, service reuse and complex

service consummation (Chen et al., 2006).

An example of alarm service is used to illustrate the

idea of service composition. Suppose that a warehouse

is equipped with different devices including temperature

sensors, smoke detectors, infrared sensors, liquid

immersion sensors, alarm bells, camera, scupper valves

and water sprinklers. The alarm service is shown in

Fig.1 where individual devices providing simple

function can be combined to establish a more powerful

alarm service. In this application, each device in the

composite service is called a component service (or task)

which can be bound to various Web services providing

the same functionality but with different quality

properties.

Fig.1. A composite service for the warehouse alarm

Generally, when a user submits a service request,

overall QoS constraints can be referred along with, such

as response time should be less than 2H and cost should

be less than 10$. With the proliferation of Web service

offering similar functionality, how to select an

appropriate Web service to construct a composite

service according to the non-functional properties, such

as Quality of Service (QoS) has becomes a prominent

issue (AllamehAmiri et al., 2013).

This paper addresses the QoS-oriented Web service

composition (QSC) problem. The QSC problem is

formulated to a multi-criteria goal programming

(MCGP) model. In addition, a multi-population genetic

algorithm (MGA) is developed to solve the presented

MCGP model. Experiment results show that the

proposed method is capable to find the optimal service

composition for users’ QoS constrains with low failure

rate, especially when no Web service could exactly

satisfy the users’ QoS requirements.

The following of this paper is organized as follows.

Section 2 introduces the related work. The MCGP

model for QSC and MGA solving algorithm are

presented in section 3 and section 4, respectively.

Section 5 analyzes and discusses the experimental

results. Finally, conclusions and future work are given

in Section 6.

2. Related work

One of the main challenges for service composition is to

choose appropriate service instances for a service

composition schema representing the abstract

functionalities of tasks and the workflows of composite

service. Since the length of a composite service and the

candidates for each task are expected to proliferate, the

scale of possible service compositions with the identical

functionality but different QoS performance should be

in general exponentially enlarging. This leads to an

optimization problem on QSC (Zeng et al., 2004).

With perspective of multiple QoS constraints, multi-

criteria decision making model and mathematical goal

programming models were used to analyze the QSC

problem by Cui et al. (2011). However the weights and

priorities of the QoS objectives for goal programming

are respectively required in the non-preemptive and

preemptive goal programming model. Furthermore, if

all the goals cannot be simultaneously achieved, the

users have to decide which goal should be sacrificed to

continue the programming procedures. Moreover, Yu et

al. (2007) modeled the QSC problem as a

multidimension multichoice 0-1 knapsack problem

(MMKP) and a multi-constrained optimal path (MCOP)

Initialization End

Infrared sensors

Liquid immersion

sensors

Smoke

detectors

Smoke

detectors

Temperature

sensors

Temperature

sensors

Analysis Decision

Invasion

Camera

Sending

video

Inundation Scupper

valves

Fire Water

sprinklers

Alarm bells

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

27

 A QoS-oriented web service.

problem, respectively. However, they didn’t consider

the possible failure in finding a feasible solution to

satisfy the users’ QoS constrains.

Moreover, it is a NP-Complete problem to select the

optimal composite service from numerous solutions to

satisfy user’s QoS constrains, which can’t be solved

within a reasonable time. Hence, many efforts of

intelligent and heuristic algorithms are concentrated in

QSC to find an approximate optimal solution. Particle

swarm optimization (PSO) (Poli et al., 2007) has been

widely applied for QSC problem (Poli et al., 2007).

Additionally, Zhao et al. (2012) proposed an improved

discrete immune particle swarm optimization algorithm

(IDIPSO) which includes an improved local best first

stage based on mathematical analysis and a perturbing

global best stage along the global best particle.

Furthermore, Hu et al. (2009) transformed the QSC

problem into a QoS multi-objective model, and

developed an improved particle swarm optimization

algorithm (IPSOA), where satisfying results can be

obtained with adaptive weight adjustment and non-

uniform mutation strategies, to solve the multi-objective

model. Moreover, Ko et al. (2008) proposed a QoS

constraint satisfaction based method for QSC problem.

They automatically assigned high quality Web service

for each task in a composition schema with an optimal

algorithm. The algorithm is characterized as a meta-

heuristics combining tabu search and simulated

annealing. However, their work fails to the scalability

respecting to the growth of the number of Web services.

Though the approaches with intelligent algorithms

improve the efficiency of Web service composition with

QoS constraints, they will fail in the case where none of

feasible composite services exactly satisfies all the QoS

constrains. With this perspective, Lin et al. (2011)

attempted a relaxable QoS-based service selection

(RQSS) method to discover feasible Web services based

on QoS requirements. The RQSS is to not only find non

inferior composite services but also reduce the

computation complexity. The method of RQSS attempts

a worthy solution for the QSC problem.

In summary, researches endeavor to find best services

to compose optimal composite service in industrial

applications. It is still a vital task to develop efficient

methods for handling the situation where no feasible

solution can fulfill the overall QoS constraints. Aiming

to this issue, this paper formulates QSC problem to a

multi-criteria goal programming (MCGP) model to find

a solution with smaller amount of constraints violation.

Then we develop a multi-population genetic algorithm

to solve the MCGP model.

3. Multi-criteria goal programming model for

QSC problem

3.1 QoS model for QSC

In respect to various QoS attributes for Web services

defined by W3C working group, we define three QoS

properties as the quality evaluation criteria of Web

service according to domain application of IoT.

• Execution time (t): The execution time of a service

is the average time between when the request is sent

from the user and when the server response is

received.

• Reliability (r): The reliability of a service is the

percentage that a service request is completed

successfully. It is measured by the rate of number

of successful executions over to total number of

service invoked.

• Execution cost (c): The execution cost is the

payment of executing a Web service.

A composite service consists of a set of logically

connected component services (or tasks). Each task can

be bound to different candidate service instances with

identical functionality but different QoS values (Chen et

al., 2006). The most widely used workflows in service

composition include sequential (a), Loop (b), Parallel

(c) and Switch (d) (Zhao et al., 2012), as shown in Fig.

2.

S0 S1

m

S0

S0

S1

S2

S0

S1

S2
 (a) (b) (c) (d)

Fig.2. Workflows used in Web service composition

Accordingly, the QoS property values of composite

service can be calculated with the following equations

shown in Table 1.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

28

Qian Li, Runliang Dou, Fuzan Chen, Guofang Nan

Table 1. Aggregation function of QoS properties

QoS property Sequential Loop Parallel Switch

Execution
time

∑
=

n

i
it

1

 ∑
=

n

i
it

1

)max(it ∑
=

n

i

ii tp
1

*

Reliability ∏
=

n

i
ir

1

 ∏
=

n

i
ir

1

 ∏
=

n

i
ir

1

 ∏
=

n

i
ii rp

1

*

Execution
cost

∑
=

n

i
ic

1

 ∑
=

n

i
ic

1

 ∑
=

n

i
ic

1

 ∑
=

n

i
ii cp

1

*

Herein, ip is the probability of executing each branch in

the switch workflow.

As the scales of the QoS properties are quite different,

QoS property values are normalized at first with Eq. (1).

i

ii

i

QQ
Q

σ
−

=′ (1)

In Eq. (1),
iσ is the standard deviation of each QoS

property value, and iQ is the mean.

Without loss of generality,
iQ represents the

normalized QoS property value in the following parts of

this paper.

3.2 Multi-criteria goal programming model for

QSC problem

3.2.1 Goals for the programming model

Three objective functions can be derived in respect to

the QoS properties defined in section 3.1.

• Execution time (T): It is expected to be as minimal

as possible, where 0T is the maximum overall

execution time specified by user.

min Aggregation()iT t= ,
0T T≤ (2)

• Reliability (R): It is expected to be as maximal as

possible, where 0R is the minimum overall

reliability specified by user.

maxR Aggregation()it= ,
0R R≥ (3)

• Execution cost (C): It is expected to be minimized,

where
0C is the maximum overall execution cost

specified by user.

min Aggregation()iC c= ,
0C C≤ (4)

Summarily, the three-dimensional objective

optimization model with constraints is given as follows.





≤≥≤ 000 ,,..

)min,max,(min

CCRRTTts

CRTF
 (5)

3.2.2 MCGP model of QSC problem

We utilize multi-criteria programming (MCP) with a

weighted sum model and multi-criteria goal

programming (MCGP) (Cui et al., 2011) with a

weighted sum model to formulate the QSC problem.

MCP is a common model, while MCGP can be used in

the case where no feasible solution can be discovered

for the users’ overall QoS requirements. The proposed

approach works as follows.

 (i) MCP: The value of QoS properties for each

composite service can be aggregated by functions show

in Table1. We use the weighted summary method to

transform the multi-criteria programming goals into

single objective. The MCP model for QSC with

constraints is illustrated as follows.

1 2 3

0 0 0

()

. . , ,

Min w T w R w C

s t T T R R C C

⋅ − ⋅ + ⋅
 ≤ ≥ ≤

 (6)

Herein, iW is the weight of each QoS property, 1
1

=∑
=

m

i
iW ,

m is the number of QoS properties.

(ii) MCGP: In the case that there is none of composite

service exactly satisfying the user’s QoS constraints,

MCGP minimizes the QoS gap between Web service

composition and user’s requirements by means of

relaxing constraints.

The difference of the actual QoS value larger than its

constraint is denoted as +
id , while −

id represents the

difference of the QoS value less than its constraint.

They can be calculated Eq. (7) and Eq. (8), respectively,

herein 0
iQ is the constraint of QoS property.







<

>−
=+

0

00

,0

,

ii

iiii

i
QQ

QQQQ
d (7)







<−

>
=

00

0
-

,

,0

iiii

ii

i
QQQQ

QQ
d (8)

The QoS constraints can be modified

to 011 TddT =−+ −+ , 022 RddR =−+ −+ and 033 CddC =−+ −+ ,

0, ≥−+
ii dd . Accordingly, MCGP model can be illustrated

as follows.

1 2 3 4 1 5 2 6 3

1 1 0

2 2 0

3 3 0

Min()

, 0, 1, 2,3i i

w T w R w C w d w d w d

T d d T

R d d R

C d d C

d d i

+ − +

+ −

+ −

+ −

+ −

 ⋅ − ⋅ + ⋅ + ⋅ + ⋅ + ⋅


+ + =
 + + =
 + + =
 ≥ =

 (9)

If there is no feasible solution, MCGP can be used to

find non inferior solutions to relax the QoS constraints

and minimize the violated quality value. MCP is a

special case that +
id and −

id are zero.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

29

 A QoS-oriented web service.

4. MGA algorithm for solving the MCGP model

GA is an evolutionary algorithm rapidly growing in the

area of artificial algorithm (Goldberg, 2005). Generally,

GA gives less chance of survival (or none at all) for the

low fitting individuals by mimicking the principle of

natural evolution, i.e. ‘survival of the fittest’. However,

the worst individuals may result in better offspring if

they have chance to mate.

Along with such a sense, multi-population genetic

algorithm (MGA) partitions individuals into several

groups or sub-populations on the basis of fitness values.

Individuals within the same community are enabled to

mate with each other. If an individual produces a high

fitting offspring, the offspring migrates from its original

group to the suitable group with higher fitness value,

and vice versa. Thus, all individuals in the population

achieve the equal opportunities no matter they are of

high fitness or low fitness. This allows MGA to

maintain the diversity of population, and then ensures

faster convergence (Siva Sathya et al., 2013).

4.1 The framework of MGA

The framework of MGA is illustrated in Fig.3. During

the evolution, when an individual comes up with a

better fitness, the offspring leaves its group and migrate

to the group with similar fitness value to it. MGA is

good at faster convergence as each sub-population

evolves independent (Kojima et al., 2008).

Individuals

Offspring

Selection

Crossover

Mutation

Individuals

Offspring

Selection

Crossover

Mutation

Individuals

Offspring

Selection

Crossover

Mutation

Individuals

Offspring

Selection

Crossover

Mutation

Fig.3. Framework of MGA

However, it is a pivotal task to specify judicious

parameters or genetic strategies that heavily affect the

performance of MGA, such as connection topology,

migration method, migration policy and rate, and so on

(Siva Sathya et al., 2009). The size of groups and the

numbers of groups are fixed in the process of MGA.

With respect to the dynamic migration of individuals,

migration rate in MGA is influenced by the number of

individuals that has improved their fitness. But

connection topology, migration method and migration

policy are not explicitly mentioned in current researches.

In addition, MGA is usually more resistant to premature

convergence. Consequently, we presented some

effective genetic strategies to overcome these

shortcomings.

4.2 Fitness function

Commonly, the fitness of individual (corresponding a

candidate service composition generated by selecting

certain service instance for each task) is evaluated by

Eq.(10).

1 2 3F w t w r w c= − + + (10)

Herein t, r and c is the aggregated values of response
time, reliability and cost by aggregation functions in

Table1, respectively; 10 << iw and
3

1

1i

i

w
=

=∑ .

Particularly, in the case of no feasible solutions, the

fitness function shown in Eq.(11) aims to minimize

violations of QoS performance and the given QoS

constrains for individuals.

1 2 3 4 1 5 2 6 3F w t w r w c w d w d w d+ − += − + + + + (11)

Herein, 10 << iw ,
6

1

1i

i

w
=

=∑ ,
1 0d t T+ = − , 2 0d R r− = −

and
3 0d c C+ = − .

4.3 The design of MGA

(1) Encoding: A chromosome or individual

represents a possible composite service where each task

has been appointed a certain service instance. Assuming

that all the candidate services for each task have been

numbered with integers, the chromosome is represented

by a 1×n integer vector, where n is the number of task

included in composite service, and the value of each

position in the vector indicates the order of candidate

service for the task. For example, a vector (2,3,5,3,9,1)

indicates there are 6 tasks in the schema of composite

service, where task No.1 chooses its second candidate

service, task No.2 chooses its third candidate service,

and so on.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

30

Qian Li, Runliang Dou, Fuzan Chen, Guofang Nan

 (2) Genetic Operators: Individuals are chosen into

mating pool to produce offspring by using crossover and

mutation operators. The roulette wheel selection with

simple elitism where fitter individuals will tend to have

a better probability of survival is used to select pairs to

form the mating pool for the next generation. We adopt

the single-point crossover operator which exhibits the

maximum positional bias and the lowest disruption rates

(Jaeger et al., 2005). Offspring can be generated by

exchanging segment of parents at the selected crossover

point (Mardukhi et al., 2013). The mutations operator

aims to maintain diversity of individuals, i.e. genes of

individual are randomly selected and their values are

converted with a certain probability.

The main process of MGA is shown in Table 2.

Table 2 Process of MGA algorithm

//P: the population of current generation

//n: the number of individuals

//m: the number of groups

//t: the number of current generation

//T: the maximum number of generations

Begin

Initialize P(n)

t=0

while (t<=T) do

Calculate Fitness for P(n) using Eq.(10)

if noFeasible(P) then

 Calculate Fitness for P(n) using Eq.(11)

end if

 Sort P(n)

 for i = 1 to n/m

 Select P(i)

 Crossover P(i)

 Mutation P(i)

 end for

for i = (n/m)+1 to (n/m)*2

 Select P(i)

 Crossover P(i)

 Mutation P(i)

end for

…

for i = n-(m-1)*(n/m) to n

 Select P(i)

 Crossover P(i)

 Mutation P(i)

end for

t = t+1

end while

end

4.4 Advantages of MGA

Firstly, the strategy of multiple populations helps to

maintain the diversity of population, and thus address

the precocity problem. The low fit individuals are given

the same chance to mate. This may result in better

offspring which migrating to a better group (Siva Sathya

et al., 2010). Moreover, such strategy generally helps

the algorithm to converge faster.

Secondly, MGA is easy to be parallelized because the

entire population is divided into several sub-

populations. If the population size is very large, sub-

populations can independently evolve with different

processors.

5. Experimental investigations

In this section, we investigate the performance of

proposed MGA for large-scale QSC problem by

comparing to the genetic algorithm (GA).

5.1 Experimental setup

Algorithms were coded with Matlab 2010a, and ran on

an Intel Pentium Dual Core E5800 3.2 Ghz, 2 GB RAM

desktop PC with Window XP.

In order to evaluate the performance of the methods,

we illustrated composite service schemas containing

different number logically connected tasks with general

workflows. Each task varies in the number of candidate

services.

Additionally, QoS property values for candidate

services were synthetically generated referred to most of

QSC researches (Pastrana et al., 2011). For each task,

values of QoS properties were randomly generated with

the normal distribution, and the same parameters as

Pastrana et al. (2011) were used. Moreover, constraint

of each QoS property is set by Eq.(12).

3,2,1,** max == iCFQnQ
ii

 (12)

Herein, n is the number of tasks in a composite

service, max
iQ is the maximum value of a QoS property,

CF is the factor ranging [0,1], which is used to adjust

the impact of each QoS property. In the generation of

the QoS constraints, all the QoS metrics are assumed as

the additive metrics. Since the reliability is

multiplicative metric, the constraint of reliability is set

to () *max

i

n CF

Q
− . CF is 0.8 in this study. All the QoS

constraints are shown in Table 3.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

31

 A QoS-oriented web service.

Table 3 Range and constraint of QoS property

QoS property Range Constraint

Execution time [0.1,3] CFn *3*

Reliability [0.7,0.9] CFn*9.0 −

Execution cost [1,100] CFn *100*

In order to present comparisons of MGA and GA,

MGA and GA used the same genetic operators and

parameters. However, the strategy of multiple

populations was used in MGA. Probabilities of

crossover and mutation are 0.7 and 0.05, respectively.

Population size N is 80. The number of sub-populations

in MGA is 4, i.e. each sub-population includes 20

individuals. Moreover, we run GA and MGA 30 times

independently, and use the averaged values for

performance evaluation.

5.2 Fitness values investigation

Fitness value is an important guideline for GA

performance. The less value indicates the better

performance. Consequently, we compared the best

fitness obtained by GA and MGA for various scales of

QSC problem, as shown in Table 4. The number of

tasks in the composition schema is n and the number of

candidate services per task is m. As shown in Table 4,

MGA always got less fitness than that of GA for any

scale of QSC problem. It indicates that MGA can find

more suitable composite service than GA.

Table 4 Best Fitness values of GA and MGA

(a) Comparisons with n=10 varying m

Num. Of candidate services 10 15 20

GA -21.88 -25.67 -29.21

MGA -23.90 -28.12 -31.81

(b) Comparisons with m=15 varying n

Num. Of tasks 10 15 20

GA -25.67 -32.38 -6.44

MGA -28.12 -35.61 -11.51

Additionally, Fig. 4 shows the comparison of GA and

MGA for various scales of service compositions in

terms of fitness for each generation. Case (a) and (b)

have the same number of tasks but various candidate

services per task (10 and 15); and (c) and (d) vary to

tasks (10 and 15) but each task has the same number

candidate services.

(a) n=10, m=10 (b) n=10, m=15

(c) n=20, m=10 (d) n=20, m=15

Fig.4. Fitness values comparisons of GA and MGA

Fig. 4 indicates that MGA outperforms GA greatly.

The best fitness values of MGA surpass GA quickly for

various scales of service compositions. The results

demonstrate the powerful search ability of MGA for

promising solutions. It also can be seen that MGA

converges to a better minimal fitness value than GA.

According to the results, it is concluded that MGA

works well for large-scale QSC problem. It is capable to

find better solution even though either the task number

or the candidate services per task increases.

5.3 Time cost investigation

In order to evaluate the efficiency and scalability, we

compared the computation time of MGA and GA with

various scales of problem, i.e. there are approximate mn

possible composite services with different QoS

performances. Table 5(a) shows the execution times of

cases where n=10 and m ranges from 10 to 20 with a

step of 5, and Table 5(b) shows the execution times of

cases where m=10 and n ranges from 10 to 20 with a

step of 5.

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3

4

iterations

fi
tn

e
s
s
 v

a
lu

e

Comparison of fitness value

GA

MGA

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3

4

5

iterations

fi
tn

e
s
s
 v

a
lu

e

Comparison of fitness values

GA

MGA

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

iterations

fi
tn

e
s
s
 v

a
lu

e

Comparison of fitness value

GA

MGA

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

iterations

fi
tn

e
s
s
 v

a
lu

e

comparison of fitness value

GA

MGA

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

32

Qian Li, Runliang Dou, Fuzan Chen, Guofang Nan

Table 5. Time comparisons of GA and MGA

(a) Comparisons with n=10 varying m

Num. Of candidate services 10 15 20

GA 2.80 2.80 2.83

MGA 2.14 2.16 2.16

(b) Comparisons with m=15 varying n

Num. Of tasks 10 15 20

GA 2.80 3.53 4.00

MGA 2.16 2.84 3.41

The results of Table 5 shows that the superiority of

MGA to GA is more and more prominent as either task

number or number of candidate services per task grows.

This indicates that MGA has better efficiency and

scalability than GA, especially when the scale of

candidate composite services becomes larger and larger.

Summarily, MGA is an effective and scalable method

for large scale QSC problem, which can find appreciate

composite service to satisfy the user’s QoS constrains

within a reasonable time. We believe it is essential for

the development of IOT and other distributed

applications.

6. Conclusion

It can be expected that more and more Web services

offering the identical functionality could be published

across the Web. QoS properties will become the import

aspect for service composition. This paper addresses the

issue of large scale QSC problem.

We formulate QSC problem to a MCGP model to

discover the appropriate composite service fulfilling the

users’ QoS constraints. Especially, when none of

composite service could strictly satisfy the user’s overall

QoS constraints, it can also recommend feasible

solutions by relaxing the QoS constraints. Moreover, an

effective MGA is developed to solving the MCGP

model. Experimental results validate the excellent

performance of MGA in terms of powerful searching

ability and excellent convergence ability.

As a future work, we suggest more comprehensive

QoS measurement and effective algorithm to solve the

optimization model. Dynamic Web service composition

with QoS constrains may be another area we will extend.

Acknowledgements

The work was supported by the National Science
Fund for Distinguished Young Scholars of China (No.
70925005) and the General Program of the National
Science Foundation of China (No.71101103, No.
71201115 and No.71271148).

References

AllamehAmiri, M., Derhami, V., Ghasemzadeh, M., 2013.

QoS-Based web service composition based on genetic

algorithm. Journal of AI and Data Mining 1(2), 63-73.

Chen, Y., Zhou, L., Zhang, D., 2006. Ontology-Supported

Web Service Composition: An Approach to Service-

Oriented Knowledge Management in Corporate Services.

Journal of Database Management 17(1), 67-84.

Cui, L.Y., Kumara, S., Lee, D., 2011. Scenario Analysis of

Web Service Composition based on Multi-Criteria

Mathematical Goal Programming. Service Science 3(4),

280-303.

Goldberg, D.E., 2005. Genetic Algorithms in search,

Optimization, and Machine Learning, ninth ed., Pearson

Education.

Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.,

2010. Interacting with the SOA-Based Internet of Things:

Discovery, Query, Selection, and On-Demand

Provisioning of Web Services. IEEE Transactions on

Services Computing 3(3), 223-235.

Hu, C.H., Chen, X.H. Liang, X.M., 2009. Dynamic services

selection algorithm in Web services composition

supporting cross-enterprise collaboration, Journal of

Central South University of Technology 2, 269-274.

Jaeger, M.C., Muhl, G., Golze, S., 2005. QoS-aware

composition of web services: an evaluation of selection

algorithms. Lecture Notes in Computer Science 3760,

646-661.

Ko, J.M., Kim, C.O., Kwon, I., 2008. Quality-of-service

oriented web service composition algorithm and planning

architecture. Journal of System and Software 81(11),

2079-2090.

Kojima, K., Ishigame, M., Chakraborthy, G., Hatsuo, H.,

Makino, S., 2008. Asynchronous parallel distributed

genetic algorithm with elite migration. International

Journal of Computational Intelligence 4(2), 105-111.

Lin, C.F., Sheu, R.K., Chang, Y. S., Yuan, S.M., 2011. A

relaxable service selection algorithm for QoS-based web

service composition. Information and Software

Technology 53(12), 1370-1381.

Mardukhi, F., NematBakhsh, N., Zamanifar, K., Barati, A.,

2013. QoS decomposition for service composition using

genetic algorithm. Applied Soft Computing 13(7), 3409-

3421.

Miorandi, D., Sicari, S., Pellegrini, R.D., Chlamtac, I., 2012.

Internet of things: Vision, applications and research

challenges. Ad Hoc Networks 10(7), 1497-1516.

Poli, R., Kennedy, J., Blackwell, T., 2007. Particle swarm

optimization, Swarm Intelligence 1(1), 33-57.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

33

 A QoS-oriented web service.

Siva Sathya, S., Kuppuswami, S., Syam Badu, K., 2009.

Nomadic genetic algorithm for multiple sequence

aligement. International Journal of Adaptive and

Innovative Systems 1(1), 44-59.

Siva Sathya, S., Kuppuswami, S., 2010. Analyzing the

migration effects in nomadic genetic algorithm.

International Journal of Adaptive and Innovative Systems

1(2), 158-170.

Siva Sathya, S., Radhika, M.V., 2013. Convergence of

nomadic genetic algorithm on benchmark mathematical

functions. Applied Soft Computing 13(5), 2759-2766.

Yu, T., Zhang, Y., Lin, K.J., 2007. Efficient algorithms for

web services selection with End-to-End QoS constraints.

ACM Transactions on the Web 1(1), Article 6.

Zeng, L.Z., Bouguettaya, B., Ngu, A.H.H., Jayant, K., Henry,

C.,2004. QoS-aware middle ware for Web Services

composition. IEEE Transactions on Software Engineering

30(5), 311-327.

Zhao, X.C., Song, B.Q., Huang, P.Y., Wen, Z.C., Weng, J.L.,

Fan, Y., 2012. An improved discrete immune optimization

algorithm based on PSO for QoS-driven web service

composition, Applied Soft Computing 12(8), 2208-2216.

Pastrana, J.L., Pimentel, E., Katrib, M., 2011. QoS-enabled

and self –adaptive connectors for Web services

composition and coordination, Computer Language,

Systems & Structures 37(1), 2-23.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

34

	1. Introduction
	2. Related work
	3. Multi-criteria goal programming model for QSC problem
	3.1 QoS model for QSC
	3.2 Multi-criteria goal programming model for QSC problem
	3.2.1 Goals for the programming model
	3.2.2 MCGP model of QSC problem

	4. MGA algorithm for solving the MCGP model
	4.1 The framework of MGA
	4.2 Fitness function
	4.3 The design of MGA
	4.4 Advantages of MGA

	5. Experimental investigations
	5.1 Experimental setup
	5.2 Fitness values investigation
	5.3 Time cost investigation

	6. Conclusion
	Acknowledgements
	References

