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Abstract

The QR algorithm is one of the classical methods to compute the eigendecom-

position of a matrix. If it is applied on a dense n×nmatrix, this algorithm requires

O(n3) operations per iteration step. To reduce this complexity for a symmetric
matrix to O(n), the original matrix is £rst reduced to tridiagonal form using ortho-
gonal similarity transformations.

In the report [Van Barel, Vandebril, Mastronardi 2003] a reduction from a sym-

metric matrix into a similar semiseparable one is described. In this paper a QR

algorithm to compute the eigenvalues of semiseparable matrices is designed where

each iteration step requires O(n) operations. Hence, combined with the reduction
to semiseparable form, the eigenvalues of symmetric matrices can be computed via

intermediate semiseparable matrices, instead of tridiagonal ones.

The eigenvectors of the intermediate semiseparable matrix will be computed

by applying inverse iteration to this matrix. This will be achieved by using an

O(n) system solver, for semiseparable matrices.
A combination of the previous steps leads to an algorithm for computing the ei-

genvalue decompositions of semiseparable matrices. Combined with the reduction

of a symmetric matrix towards semiseparable form, this algorithm can also be used

to calculate the eigenvalue decomposition of symmetric matrices. The presented

algorithm has the same order of complexity as the tridiagonal approach, but has
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larger lower order terms. Numerical experiments illustrate the complexity and the

numerical accuracy of the proposed method.

Keywords: symmetric matrix, semiseparable matrix, similarity reduction

to semiseparable form, implicit QR algorithm for semiseparable matrices, ei-

genvalues, eigenvectors

1 Introduction

Semiseparable matrices appear in various research £elds. In the papers [18, 20, 21, 27],

the matrices arising from the discretization of the integral equations are semiseparable

matrices. They arise also in statistics as covariance, variance matrices [17]. Physical

applications such as electromagnetic scattering theory [5, 6], mechanical systems [14]

and time varying systems [9, 15], all have connections with these matrices. Also in the

£eld of rational interpolation and approximation theory semiseparable matrices [11, 12]

play an important role.

Within the structured matrix £eld, semiseparable matrices are well known as the

inverses of strict band matrices [1, 19, 24, 25, 26].

In several applications symmetric matrices arise fromwhich the complete, or part of

the spectrum has to be computed. Traditional approaches for calculating the spectrum

are based on a tridiagonalization of the symmetric matrix [16], and then eigenvalue

solvers are applied on this tridiagonal matrix. For tridiagonal matrices there exists a

huge class of eigenvalue solvers, for example the traditional QR algorithm [16] and

divide and conquer algorithms [2, 3, 7].

The algorithm proposed in [29], performs a similarity transformation of a sym-

metric matrix towards semiseparable form. The algorithm as presented there, has two

interesting properties. The £rst property of the reduction is the fact that while running

the algorithm, semiseparable matrices of increasing dimensions are created. These

intermediate semiseparable matrices have the Lanczos-Ritz-values as eigenvalues. A

second convergence property of the reduction is the performance of subspace iteration,

while transforming the matrix. This subspace iteration tends to make the matrix block

diagonal. Both of the mentioned properties are advantaguous, when searching for the

eigenvalues of this semiseparable matrix, coming from the reduction algorithm. These

beni£ts can be seen rather clearly in the numerical examples.

For the class of semiseparable matrices already several eigenvalue solvers exists,

which exploit the structure of the matrices [4, 11]. Another possible approach to cal-

culate the eigenvalues of these semiseparable matrices is the reduction towards bi- or

tridiagonal form, and then applying one of the techniques mentioned above [13, 22].

In this paper we propose a new approach to compute the eigenvalue decomposition

of symmetric and semiseparable matrices. Instead of a reduction towards a tridiagonal

matrix the matrix is reduced into a similar semiseparable one [29]. Afterwards an

implicit QR algorithm for semiseparable matrices is applied. Both of the algorithms

mentioned, have the same order of complexity as their corresponding algorithms for

the tridiagonal approach.

Although the algorithms have the same order of complexity, they have larger lower
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order terms. Nevertheless this approach can be very useful as will be demonstrated in

one of the numerical examples where it is shown that the average number of iteration

steps to approximate each eigenvalue for a semiseparable matrix is less than the number

of iteration steps required by theQR algorithm applied to the corresponding tridiagonal

matrix. Other experiments are performed, comparing the semiseparable approach with

the tridiagonal approach. The behavior of both algorithms applied to special problem

matrices is investigated. The reduction towards semiseparable and tridiagonal form is

compared and a £nal experiment is dedicated to the in¤uence of the criterion how to

cut off eigenvalues, on the accuracy of the results.

2 Different de£nitions and representations of semisep-

arable matrices

In the literature semiseparable matrices are de£ned in different ways. The most fre-

quently used de£nition is given in the next subsection.

2.1 A £rst de£nition and a corresponding representation

De£nition 1 S is called a semiseparable matrix of semiseparability rank r if there exist

two matrices R1 and R2, both of rank r, such that

S= triu(R1)+ tril(R2);

triu(R1) and tril(R2) denote respectively the upper triangular part of the matrix R1
and the strictly lower triangular part of the matrix R2. Suppose the semiseparability

rank to be equal to 1, this means that R1 and R2 are two rank one matrices. Therefore

they can both be written as the outer product of two vectors, respectively u and v for R1
and s and t for R2. These vectors are also called the generators of the semiseparable

matrix S.

Theoretically this de£nition with u,v,s and t is very useful and many algorithms for
semiseparable matrices are written in terms of the generators u,v,s and t of the semisep-
arable matrix S. Even though this representation is cheap in terms of memory usage,

it is easy to reconstruct arbitrary elements within the matrix and several algorithms for

semiseparable matrices are based on this representation, it lacks numerical stability for

our purpose. Because our algorithm is based on applying implicit QR steps to semisep-

arable matrices, we know that the semiseparable matrix will tend to become more and

more block diagonal. This will introduce very small elements in the lower left and the

upper right corner and these small elements will cause the latter representation to fail,

as can be seen in the following example.

Talking about semiseparable matrices throughout the remaining part of the pa-

per, we consider symmetric semiseparable matrices of semiseparability rank 1. These

matrices can be represented with two generators.
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Example 1 Suppose a symmetric 5× 5 matrix with eigenvalues: (1,2,3,100,105) is
given. Constructing a semiseparable matrix from it (see e.g. [29]) generates the fol-
lowing matrix:

⎛

⎜

⎜

⎜

⎜

⎝

1.2738 −5.7004 ·10−1 1.2664 ·10−1 −1.6459 ·10−4 1.5753 ·10−12

−5.7004 ·10−1 2.2236 −4.9398 ·10−1 6.4202 ·10−4 −1.5858 ·10−13

1.2664 ·10−1 −4.9398 ·10−1 2.5026 −3.2527 ·10−3 1.5679 ·10−12

−1.6459 ·10−4 6.4202 ·10−4 −3.2527 ·10−3 1.0000 ·102 4.8030 ·10−8

1.5753 ·10−12 −1.5858 ·10−13 1.5679 ·10−12 4.8030 ·10−8 1.0000 ·105

⎞

⎟

⎟

⎟

⎟

⎠

.

Although this matrix is semiseparable it can clearly be seen that the lower right
element already converged to the largest eigenvalue. Representing this matrix now
with the generators u and v (with the last component of u equal to 1) gives us the
following vectors:

u=
(

8.0861 ·1011 −3.6187 ·1011 8.0391 ·1010 −1.0448 ·108 1.0000
)T

and

v=
(

1.5753 ·10−12 −1.5858 ·10−13 1.5679 ·10−12 4.8030 ·10−8 1.0000 ·105
)

.

Because the second element of v is of the order 10−13 and is constructed by summa-

tions of elements of order 1, we can expect that this element has a precision of only 3

signi£cant decimal digits left. Using this number to reconstruct the elements within the

matrix will only give these elements with a limited number of exact digits.

The explanation why this representation fails is rather straightforward. The limit of a

sequence of semiseparable matrices generated by e.g. QR is a (block-)diagonal matrix.

Only some special (block-)diagonal matrix can be represented by generators u and v.

To overcome this problem, semiseparable matrices are de£ned as a more general

class in the following subsection.

2.2 An alternative de£nition

De£nition 2 A matrix S is called a lower- (upper-)semiseparable matrix of semisepar-

ability rank r if all submatrices which can be taken out of the lower (upper) triangular

part of the matrix S have rank ≤ r and there exists at least one submatrix having exact

rank r.

Assume that a semiseparable matrix satisfying De£nition 2 is denoted as S, and a

semiseparable matrix, representable with two generators u,v is denoted as S(u,v). The
next theorem shows how the class of semiseparable matrices represented with two gen-

erators can be embedded in the class of semiseparable matrices as de£ned in De£nition

2. To prove the theorem an interesting property is needed, revealing the close connec-

tion between the two de£nitions.

Proposition 2.1 Suppose a symmetric semiseparable matrix S is given, which cannot

be represented by two generators, then this matrix can be written as a block diagonal

matrix, for which all the blocks are semiseparable matrices representable with two

generators.
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PROOF: It can be seen that a matrix S cannot be represented by two generators (e.g.

u and v), if and only if

∃k : 1≤ k ≤ n,∃l : 1≤ l ≤ k such that S(k, l) = 0

∃i : l ≤ i≤ n such that S(i, l) ̸= 0

∃ j : 1≤ j ≤ k such that S(k, j) ̸= 0.

(In case it is representable with two generators, a uk,vl would exist for which one of
the two has to be zero, this leads to a contradiction.)

l j k

↓ ↓ ↓

l→

i→

k→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
...

...

. . .
...

...

· · · · · ·
. . .

...

× . . .
...

· · · · · · 0 × . . .

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Because of the rank 1 assumption following from De£nition 2, extra conditions can

be placed on the indices, namely: i < k and j > l. Suppose now, that the element

S(î, l) ̸= 0, with l ≤ î< k and all S(i, l) = 0 for î< i< k. The rank one assumption on

the blocks implies that S(i, j) = 0, for all î< i≤ n and 1≤ j < î+1. This means that
our matrix can be divided into two blocks. This procedure can be repeated until all the

diagonalblocks are representable by two generators. !

The following theorem justi£es the new de£nition of semiseparable matrices. Also

clearly seen in the following proof, is the case when problems arise with the de£nition

in terms of the generators. First the pointwise limit of a sequence of matrices will be

de£ned.

De£nition 3 The pointwise limit of a collection of matrices Aε ∈ R
n×n for ε ∈ I (if it

exists). With the matrices Aε as

Aε =

⎛

⎜

⎝

(a1,1)ε · · · (a1,n)ε
...

. . .
...

(an,1)ε · · · (an,n)ε

⎞

⎟

⎠

is de£ned as:

lim
ε→ε0

Aε =

⎛

⎜

⎝

limε→ε0(a1,1)ε · · · limε→ε0(a1,n)ε
...

. . .
...

limε→ε0(an,1)ε · · · limε→ε0(an,n)ε

⎞

⎟

⎠
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Theorem 3.1 The pointwise closure of the class of semiseparable matrices represent-

able by two generators is the class of semiseparable matrices according to De£nition

2.

PROOF:

⇒ Suppose a sequence of semiseparable matrices representable with two generators

is given:

S(u(ε),v(ε)) ∈ R
n for ε ∈ I, (1)

such that the pointwise limit exists:

lim
ε→ε0

S(u(ε),v(ε)) = S ∈ R
n.

It will be shown that this matrix belongs to the class of semiseparable matrices

from De£nition 2.

It is known that limε→ε0 (ui(ε)v j(ε)) ∈ R. (Note that this last demand does not

imply that limε→ε0 ui(ε), limε→ε0 v j(ε)∈R, which can lead to numerical unsound

problems when representing these semiseparable matrices with two generators

u,v.) It remains to prove that, ∀i ∈ {2, . . . ,n}:

rank

(

lim
ε→ε0

(S(u(ε),v(ε))(i : n,1 : i))

)

= 1.

All the limits within the above equation are well de£ned, and therefore the limit

can be placed outside the rank(). We get:

lim
ε→ε0

(rank ((S(u(ε),v(ε))(i : n,1 : i)))) = lim
ε→ε0

1= 1.

Which proves one direction of the theorem.

⇐ Suppose a semiseparable matrix S is given such that it cannot be represented by

two generators. Then there exists a sequence S(u(ε),v(ε)) with ε→ ε0 such that

lim
ε→ε0

S(u(ε),v(ε)) = S (2)

According to Proposition 2.1 the matrix can be written as a block diagonal matrix,

consisting of 2 diagonal blocks (more diagonal blocks can be dealt with in an analogu-

ous way), which can both be represented by two generators, i.e., S has the following

structure:

S=

(

S(u,v) 0

0 S(s, t)
.

)

(3)

In a straightforward way we can de£ne the generators u(ε),v(ε):

u(ε) =
[u1

ε
, . . . ,

uk

ε
,s1, . . . ,sl

]

v(ε) = [εv1, . . . ,εvk, t1, . . . , tn] .

6



It is clearly seen that the limit:

lim
ε→0

S(u(ε),v(ε)) = S. (4)

This proves the theorem. !

The proof shows that the limit

lim
ε→0

S(u(ε),v(ε)) = S (5)

exists, but the limits of the generating vectors

u(ε) =
[u1

ε
, . . . ,

uk

ε
,s1, . . . ,sl

]

v(ε) = [εv1, . . . ,εvk, t1, . . . , tn]

do not necessarily exist. In fact for ε→ 0 some elements of u(ε)will become extremely
large, while some elements of v(ε) will become extremely small. This is the behaviour
observed in Example 1.

2.3 Another representation

Still one question remains: can these matrices be represented such that they preserve

the interesting properties of the representation with the generators? The answer is

af£rmative: the new representation consists of a sequence of Givens transformations

and a vector. Suppose the semiseparable matrix is of dimension n, then n− 1 Givens
transformations and a vector of length n are needed. The following £gures denote how

a semiseparable matrix can be constructed, using this information. From the rows and

columns built up by the elements denoted by ⊠ only matrices having maximum rank 1

can be constructed. The new representation is introduced considering, as an example,

the construction of a semiseparable matrix of order 5. The Givens transformations are

denoted as G = [G1, . . . ,G4] and the vector as d = [d1, . . . ,d5]. Initially one starts on
the £rst 2 rows of the matrix. The element d1 is placed in the upper left position, then

a Givens transformation is applied, and £nally to complete the £rst step element d 2 is

added in position (2,1). Only the £rst two columns and rows are shown here.

(

d1 0

0 0

)

→ G1

(

d1 0

0 0

)

+

(

0 0

0 d2

)

→
(

⊠ 0

⊠ d2

)

.

The second step consists of applying the Givens transformation G2 to the second and

the third row, furthermore d3 is added in position (3,3). Here only the £rst three
columns are shown and the second and third row. This leads to:

(

⊠ d2 0

0 0 0

)

→ G2

(

⊠ d2 0

0 0 0

)

+

(

0 0 0

0 0 d3

)

→
(

⊠ ⊠ 0

⊠ ⊠ d3

)

.

This process can be repeated by applying the Givens transformation G3 to the third

and the fourth row of the matrix, and afterwards adding the diagonal element d4. After
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applying all the Givens transformations and adding all the diagonal elements, the lower

triangular part of a symmetric semiseparable matrix is constructed. Because of the

symmetry also the upper triangular part is known.

Suppose the Givens and vector representation of a semiseparable matrix S is known.

When denoting the Givens transformations as:

Gl =

(

cl −sl
sl cl

)

. (6)

The elements S(i, j) with n> i≥ j are calculated in the following way:

S(i, j) = cisi−1si−2 · · ·s jd j. When n = i we have S(i, j) = sn−1sn−2 · · ·s jd j. When n ≥
j> i, S(i, j) can be calculated in a similar way, because of the symmetry. The elements
of the semiseparable matrix can therefore be calculated in a stable way. In this way, the

matrix presented above in Example 1 can be represented also with this Givens-vector

representation.

Example 2 (Example 1 continued) The Givens-vector representation of the matrix in

Example 1 is the following: (In the £rst row of G the elements c1, . . . ,c4 are stored and
in the second row the elements s1, . . . ,s4.)

G=

(

9.0903 ·10−1 9.7620 ·10−1 9.9999 ·10−1 1.0000
−4.1672 ·10−1 −2.1686 ·10−1 −1.2997 ·10−3 4.8030 ·10−10

)

and

d =
(

1.4012 2.2778 2.5026 1.0000 ·102 1.0000 ·105
)

(7)

When the elements of G and d are known with high relative precision, also all the

elements of the semiseparable matrix can be reconstructed now with high relative pre-

cision.

It is a well known fact that the representation with the generators leads to numer-

ical instabilities, e.g [10], and sometimes there are also theoretical problems involved.

A profound study of the possible representations, advantages, and drawbacks can be

found in [32].

3 The similarity reduction of a symmetric matrix to-

wards a semiseparable one

In this section a brief overview is given of the properties of the algorithm, which trans-

forms a symmetric matrix into a similar semiseparable one. A more elaborate discus-

sion of the properties of this reduction can be found in [29].

The algorithm creates a sequence of semiseparable matrices which increase 1 di-

mension at each step. The overall cost of the algorithm is the same as the reduction

of a symmetric matrix into a tridiagonal one namely O(n3). As already stated in the
introduction, the generated sequence of semiseparable matrices have as eigenvalues the

Ritz-values as generated by the Lanczos algorithm, choosing e1, the £rst vector of the

8



canonical basis, as initial vector. Even though we will not investigate this behaviour

more thouroughly in this paper, one can see that it is worth calculating the eigenval-

ues of the intermediate semiseparable matrices. This can for example be done by the

implicit QR algorithm for semiseparable matrices, as will be explained further on.

A second feature of the reduction algorithm, is the performance of subspace itera-

tion. While reducing the symmetric matrix A to semiseparable form, a type of nested

subspace iteration is performed on the matrix A. Under certain assumptions this sub-

space iteration, will tend to make the matrix block diagonal. This means that, under

some mild assumptions, the resulting semiseparable matrix, can already be approxim-

ated by a block diagonal. This block diagonal structure is extremely useful, when com-

puting the eigenvalues of this semiseparable matrix. The eigenvalues of the complete

semiseparable matrix correspond to the eigenvalues of the separate diagonal blocks.

This division into blocks can reduce the complexity.

The next secion is dedicated to calculating the eigenvalues of an arbitrary semisep-

arable matrix. In Section 5 we will show that the eigenvectors can be calculated by

applying inverse iteration to the semiseparable matrices.

4 An implicit QR algorithm for semiseparable matrices

4.1 The semiseparable form

In the following parts of this section we assume that the semiseparable matrix we are

working with is nonsingular, and representable with two generators. If it is not rep-

resentable with two generators the matrix can be split up in several blocks, all repres-

entable with two generators (see Proposition 2.1). Remark once more that this rep-

resentation with the generators u and v is only needed for theoretical purposes. In the

practical implementation the representation with a vector and a sequence of Givens

transformations is used to overcome numerical instabilities.

For the nonsingularity property, we have to divide the matrices we are working

with in two different classes. The £rst class of matrices, consists of the semiseparable

matrices coming from the reduction of a symmetric matrix into semiseparable form. If

the symmetric matrix we want to reduce is singular, the similar semiseparable matrix

will have zero rows and columns. These can be extracted such that the remaining

semiseparable matrix is nonsingular.

The second class of semiseparable matrices, are arbitrary semiseparable matrices,

not constructed from a symmetric matrix. For this class of matrices one has to check

for singularities during execution of the algorithm. The algorithm consists of two parts,

twice a sequence of n− 1 Givens transformations is performed on the matrices. The
£rst sequence of Givens transformations corresponds to performing a QR step without

shift on the semiseparable matrix. The combination of the £rst and the second step

correspond to performing a QR step on the semiseparable matrix with a shift. After

having performed the £rst n−1 Givens transformations, singularities will be revealed,
because a QR step without shift is performed. This means that after the £rst step we

have a similar semiseparable matrix, from which zero rows and or columns can be

extracted.

9



This short explanation assures that we can assume that the semiseparable matrices

we are working with are indeed nonsingular and representable with two generators.

4.2 Theoretical proof of the implicit QR algorithm

In [29] the attention was restricted to the reduction of a symmetric matrix to semisep-

arable one. Here we design an implicit QR algorithm for £nding the eigenvalues of

semiseparable matrices. A lot of attention is paid to an effective implementation of this

implicit QR algorithm, such that we get an O(n) complexity for every iteration step of
the algorithm.

The implicit QR algorithm is based on the QR factorization of semiseparable plus

diagonal matrices as described in [30]. The Q factor of this reduction consists of 2n−2
Givens transformations. The £rst n− 1 Givens transformations are performed on the
rows of the semiseparable matrix from bottom to top. These Givens transformations,

transform the semiseparable structure into an upper triangular one. When taking into

consideration the diagonal, one can see that these n−1 Givens transformations, trans-
form the diagonal part into an upper Hessenberg one. Recombining the upper triangular

matrix and the upper Hessenberg matrix gives an upper Hessenberg matrix. This mat-

rix will then be made upper triangular by n− 1 Givens transformations from top to

bottom.

In the following part a method is explained to calculate directly the matrix QSQT ,

when S is a semiseparable matrix, i.e., instead of £rst calculating the QR factorization

of S−κI and then multiplying R on the right with Q. (κ is a shift chosen in order to

speed up the convergence of the implicit QR algorithm, e.g., the Rayleigh shift, the

Wilkinson shift).

Because the QR factorization in fact consists of two parts, a £rst reduction to upper

Hessenberg and a second reduction to make the matrix upper triangular, the implicit

QR algorithm will also be divided into two parts.

The proof of the correctness of the approach followed is based on the fact that

applying a QR step to a semiseparable matrix gives again a semiseparable matrix. The

theorem is based on the representation of the semiseparable matrices in terms of the

generators u and v. To prove this for an arbitrary semiseparable matrix S, we split the

matrix up into several diagonal blocks, representable with two generators.

To prove the theorem for u,v representable semiseparable matrices a small theorem
is needed:

Proposition 3.1 Suppose S is a nonsingular symmetric semiseparable matrix, repres-

entable with two generators. Then S can be written as the sum of a rank 1 matrix and

a strictly upper triangular matrix. The upper triangular matrix has nonzero superdi-

agonal elements.

S= uvT +Ru (8)

PROOF: De£ne Ru as S−uvT . The nonsingularity demand corresponds to the fact

that the superdiagonal elements have to be nonzero. (proof can be found in [31]) !

The following theorem states that applying one step of QR to a semiseparable mat-

rix representable by u,v is again a semiseparable matrix.

10



Theorem 3.2 Suppose a nonsingular symmetric semiseparable matrix S, represent-

able with two generators, and a real number κ are given. Suppose the following equal-

ities, where Q is an orthogonal matrix, R is upper triangular, and I is the identity matrix

are satis£ed:

QR = S−κI (9)

Ŝ = RQ+κI. (10)

Then the matrix Ŝ is semiseparable.

PROOF: Following from equation (10) we have:

ŜR = RQR+κIR.

Substituting equation (9) gives

ŜR = R(S−κI)+κIR= RS.

This means that ŜR = RS. Using Proposition 3.1 and the fact that the matrix S is

nonsingular, we can write the following equation

Ŝ = RSR−1 = R
(

uvT +Ru
)

R−1

= (Ru)
(

vTR−1
)

+RRuR
−1

Because RRuR
−1 is strictly upper triangular and the matrix Ŝ is symmetric, the last

equation gives the desired result. !

The next two subsections are dedicated to the construction of the implicit QR al-

gorithm. The £rst n− 1 Givens transformations of the factorization are written as
G1, . . . ,Gn−1 and the second n−1 Givens transformations are denoted asGn, . . . ,G2n−2.

4.3 Applying the £rst n−1 Givens transformations

The £rst n−1 Givens transformations are in fact completely determined by the semisep-
arable matrix. To perform these transformations, the shift κ is not yet needed. When

applying these Givens transformations to the left from the bottom to the top of the

semiseparable matrix S, this matrix becomes upper triangular:

Gn−1 . . .G1S= Su.

Su denotes an upper triangular matrix. Directly applying the Givens transformations

GT
1

. . .GT
n−1 on the right of the matrix Su, will construct a matrix SuG

T
1

. . .GT
n−1 whose

lower triangular part is semiseparable. Because of symmetry reasons the resulting

matrix SuG
T
1

. . .GT
n−1 is a symmetric semiseparable matrix. It can be seen that the

application of the different Givens transformations can be done at the same time, i.e.

instead of £rst applying all the transformations to the left, we apply them left and right

at the same time (more details can be found in Section 4.6):

S(1) = G1SG
T
1

11



followed by

S(2) = G2S
(1)GT

2 .

This process has to be repeated to achieve the desired result.

As stated before, this step corresponds to applying a QR step without shift to the

semiseparable matrix.

4.4 Applying the second n−1 Givens transformations

This step is the hardest of the two and requires some theoretical results. To initialize

this step the knowledge of the Givens transformation Gn is crucial. Gn is the Givens

transformation which will start to reduce the upper Hessenberg matrix Gn−1 . . .G1(S−
κI) to upper triangular form. The algorithm however did not calculate Gn−1 . . .G1(S−
κI) but a semiseparable matrix S(n−1) =Gn−1 . . .G1SG

T
1

. . .GT
n−1. Because however we

use the special matrix representation as mentioned in the £rst section, we know that the

upper left element of the matrix Gn−1 . . .G1S is the £rst element in the vector d from
the representation of the matrix S. It can be seen that the elements in the upper left

positions (1,1) and (2,1) of the matrix Gn−1 . . .G1κI equal

Gn−1

(

κ

0

)

This means that the Givens transformation Gn already can be applied to the matrix

S(n−1), i.e., S(n) = GnS
(n−1)GT

n . From this point we will work directly on the matrix

S(n) and therefore we switch to the implicit approach.

The matrix S(n−1) is a semiseparable matrix and the output of one step of the impli-

cit QR algorithm also has to be a semiseparable matrix. However after having applied

the similarity transformation GnS
(n−1)GT

n the semiseparable structure is disturbed. The

following sequence of Givens transformations which will be applied to the matrix S(n)

will restore the semiseparable structure. Even more: the resulting matrix will essen-

tially be the same as the matrix coming from the QR algorithm. We will show that it

is possible to rebuild a semiseparable matrix out of S(n) without changing the £rst row

and column. The prove the two main Theorems, two properties are needed.

Proposition 3.2 Suppose the following symmetric 3×3 matrix is given,

A=

⎛

⎝

x a d

a b e

d e f

⎞

⎠ , (11)

which is not yet semiseparable. Then there exists a Givens transformation

G=
1√
1+ t2

⎛

⎝

1 0 0

0 t 1

0 −1 t

⎞

⎠

such that the following matrix

GAGT

is a symmetric semiseparable matrix.
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Remark that diagonal matrices are also considered to be semiseparable according

to De£nition 2.

PROOF: We can assume that ae− bd is different from zero, otherwise, the matrix

would already be semiseparable. The proof is constructive, i.e. the matrix G will be

constructed such that the matrix GAGT indeed is a semiseparable matrix. Calculating

explicitly the product GAGT gives the following matrix:

1

1+ t2

⎛

⎝

x at+d −a+dt

ta+d (tb+ e)t+(te+ f ) (−1)(tb+ e)+(te+ f )t
−a+ td (−b+ te)t+(−e+ t f ) (−1)(−b+ te)+(−e+ t f )t

⎞

⎠ .

To be semiseparable, the lower left 2×2 block has to be of rank 1, this means that the
following equation should be satis£ed:

ta+d

−a+ td
=

(tb+ e)t+(te+ f )

(−b+ te)t+(−e+ t f )

Solving this equation towards t gives the following result:

t = −−de+a f

ae−db

!

Proposition 3.3 Suppose the following symmetric 4×4 matrix is given,

A=

⎛

⎜

⎜

⎝

x a 0 d

a b 0 e

0 0 0 f

d e f y

⎞

⎟

⎟

⎠

, (12)

which is not yet semiseparable. Then there exists a Givens transformation

G=
1√
1+ t2

⎛

⎜

⎜

⎝

1 0 0 0

0 t 1 0

0 −1 t 0

0 0 0 1

⎞

⎟

⎟

⎠

such that the upper 3×3 block of the following matrix

GAGT

is a symmetric semiseparable matrix. And the lower left 2×2 block is of rank one.

PROOF: The proof is straightforward, calculating the product GAGT , shows that

the block
(

−a −tb
d te+ f

)
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has to be of rank 1. This corresponds with t = −a f/(ae− bd). (ae− bd) is different
from zero because the matrix is not yet semiseparable. !

One might wonder how both these theorems can be used for larger matrices, this is

proven in the following theorem:

Theorem 3.3 Suppose a symmetric nonsingular matrix A is given, such that the upper

left 2×2 block of the matrix does not satisfy the semiseparable structure of the remaing
part of the matrix.

Then there exists a Givens transformation G:

G=
1√
1+ t2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 · · ·
0 t 1 0 · · ·
0 −1 t 0 · · ·
0 0 0 1
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

such that the upperleft 3×3 block of the matrix GAGT is semiseparable, and the £rst

two columns are dependent, except for the £rst element.

PROOF: The proof is divided in different cases, thereby using both of the above

propositions.

Case 1 Suppose the matrix A is the same as in equation 11, with d and e different from

zero. In this case Proposition 3.2 is applied.

Case 2 Suppose the matrix A is the same as in equation 12. It is clear that d, e and f

have to be different from zero, otherwise there are contradictions with the facts

that the matrix is semiseparable below the upper left 2×2 block or the fact that
the matrix is nonsingular or the fact that the matrix is not yet semiseparable. For

example assume f = 0 and d and e different from zero. Because the complete

lower part is semiseparable, the rank 1 assumption assumes that the complete

columns in which f appears is zero. This is in contradiction with the fact the

the matrix is nonsingular. Or another example, assume all d,e, f equal to zero,
this means that row 3 and row 4 are dependent, what is in contradiction with the

nonsingularity assumption.

In this case Proposition 3.3 is used.

!

Now we are ready to reduce a semiseparable matrix which is disturbed in the upper

left 2×2 block, back to semiseparable form.

Theorem 3.4 Suppose we have an n×n nonsingular symmetric semiseparable matrix

A, representable with two generators, which will be disturbed in the £rst two rows

and columns by means of a similarity Givens transformation G. Then there exists an

orthogonal transformationU withUe1 = e1 such that UGAG
TUT is again a symmetric

semiseparable matrix.
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PROOF: In this theorem a 5× 5 matrix is considered, and we will use the special
Givens transformation from Theorem 3.3. Some more notation is needed to make the

construction of U more easy: Denote with G(i) the orthogonal transformation which

performs a Givens transformation on the rows i and i+1 of the matrix A. To prove that
the algorithm gives the desired result, several £gures are included. Starting with the

matrix A each £gure shows all the dependencies in the matrix. In the following £gure,

the blocks grouped by the full lines represent semiseparable parts in the matrix, and

the elements grouped by the dashed lines represent rank 1 parts. These rank 1 parts

are very important for the progress of the algorithm. The arrows point out the rows

and columns on which there will be performed the Givens transformations to come to

the desired result. The £rst £gure, shows what happens with the matrix A after the

disturbing Givens transformation is applied.

Figure 1: Applying the Givens transformation which disturbs the semiseparable struc-

ture.

The following step consists of calculating the Givens transformation from Theorem

3.3. For case 1 of the theorem, Proposition 3.2 is used and a little explanation is needed

why we get Figure 4. For case 2, we can skip the following comments, and we imme-

diately arrive at Figure 4.

When applying the Givens transformation of the £rst kind, we take a closer look to

see how the dependencies will change. First we apply the transformation G(2) only to

the left of the matrix, to see how the dependencies will change. (See Figure 2.) There

are now two rank 1 parts, the small 2×2 matrix and the larger 3×3 matrix. The small
block has to be of rank 1 because the next Givens transformation G(2) applied to the

right will not change the rank of this block, and after this Givens transformation that

block is part of the semiseparable matrix, and therefore of rank 1. The 3× 3 block
is of rank 1 because the transformation involved the large 3× 3 rank 1 block of the
preceding matrix. This means that after applying the Givens transformation to the left

we have a 2×4 matrix of rank 1 (See Figure 3).

Figure 2: Applying the transformation G(2) to the left.

Applying the transformation G(2) to the right of the matrix, gives the matrix A(2) =
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G(2)A(G(2))T which, because of symmetry reasons has the following structure:

Figure 3: Applying the transformation G(2) to the right

The £gure shows clearly that the upper semiseparable part has increased, while the

lower semiseparable part is reduced in dimension. Very important are the remaining

rank 1 parts. The remaining dependency in these blocks will make sure that the next

Givens transformation will indeed create a semiseparable matrix of dimension 4. The

next Givens transformation G(3) is calculated by using Theorem 3.3 applied to the

matrix A(2) without the £rst row and column. Applying the transformation G(3), this

means calculating A(3) =G(3)A(G(3))T will create a semiseparable block in the middle
of the matrix, however because of the rank 1 parts, the complete upper left 4×4 block
will become dependent. This is shown in Figure 4:

Figure 4: Applying the similarity transformation G(3)

Before performing the £nal Givens transformation, one can also search the rank 1

blocks such that the last Givens transformation will transform the matrix into complete

semiseparable one. !

This £nal theorem produces an algorithm to transform the semiseparable matrix

with a disturbance in the upper left part back to an orthogonal similar semiseparable

matrix. In the next subsection it will be proven that the constructed semiseparable

matrix will be essentially the same as the semiseparable matrix coming directly from

the QR algorithm.

4.5 Proof of the correctness of the approach

We will prove that the matrix constructed with the approach above is essentially the

same as the semiseparable matrix, constructed directly from the QR algorithm.

De£nition 4 Two matrices S(1) and S(2) are called essentially the same if there exists
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a matrix W = diag(±1,±1, . . . ,±1) such that the following equation holds:

S(1) =WS(2)WT .

The following theorem which is proven in [31] states the fact that the approach

mentioned above is correct. This theorem can be seen as an analogue of the implicit Q

theorem for semiseparable matrices.

Theorem 4.1 Suppose A is a nonsingular symmetric matrix and we have the following

two equations:

QT
1 AQ1 = S(1)

QT
2 AQ2 = S(2)

with Q1e1 = Q2e2, where S
(1) and S(2) are two semiseparable matrices and Q1 and

Q2 are orthogonal matrices. Then we can assert that the matrices S
(1) and S(2) are

essentially the same.

PROOF: The proof can be found in [31]. !

We can assert that our matrices are nonsingular, because the procedure, which con-

structs the semiseparable matrix, swaps dependent rows to zero, and then it chases the

zeros to the upper diagonal positions.

4.6 Effective O(n) implementation of the implicit QR algorithm

The implementation can be downloaded at http://www.cs.kuleuven.ac.be/∼marc/. Not
all the details of the implementation are given, but the mathematical ideas, behind the

algorithm are included, and they should make it possible for the reader to implement

this algorithm.

The following function in Matlab1-style notation

[Gnew,dnew]=CRep(G,d)

will perform the £rst sequence of Givens transformations. The input consists of the

Givens vector representation of the matrix, the output is the representation of the new

matrix, but from bottom to top.

Suppose our semiseparable matrix A is built up with the Givens transformations G

and the vector elements d. We will now perform the £rst n−1 Givens transformations
on both sides of the matrix, and we will retrieve the representation of the resulting

semiseparable matrix. The matrix A has the following structure:

⎛

⎝

A(n−1) cn−1R
T
n−1 sn−1R

T
n−1

cn−1Rn−1 cn−1dn−1 sn−1dn−1
sn−1Rn−1 sn−1dn−1 dn

⎞

⎠ (13)

1Matlab is a registered trademark of the Mathworks Inc.
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And the Givens transformations are denoted in the same way as in (6). Remark that

the Givens transformations needed for the £rst step of the QR algorithm are exactly the

Givens transformations GT
j from the representation. This is a huge advantage, because

these Givens transformations do not need to be calculated anymore.

Applying the £rst transformation GT
n−1 to the left of matrix (13) gives us the fol-

lowing equations

d̂1 = s2n−1dn−1+ cn−1dn

and the matrix looks like:

⎛

⎝

A cn−1R
T
n−1 sn−1R

T
n−1

Rn−1 dn−1 sn−1(cn−1dn−1−dn)

0 0 d̂1

⎞

⎠ .

Applying the transformation to the right gives the following equations:

⎛

⎝

A RTn−1 0

Rn−1 d̃n−1 sn−1d̂1

0 sn−1d̂1 cn−1d̂1

⎞

⎠ ,

with d̃n−1 =
(

1+ s2n−1
)

cn−1dn−1−dn.When denoting now the new representation with
Ĝ and d̂, we get:

Ĝ1 =

(

cn−1 −sn−1
sn−1 cn−1

)

and d̂1. This procedure can now be continued to £nd the full new matrix Ĝ and the

vector d̂. Remark once more that this representation is constructed from bottom to top.

The following function

[Gnew,dnew]=PerSeqGiv(G,d,specgiv)

in the algorithm performs in fact the next n−1 Givens transformations on the matrix.
This function starts with one special Givens transformation Ĝ= specgiv. Because the

following sequence of Givens transformations will divide the matrix into two semisep-

arable parts, we have to store twice a semiseparable matrix. The decreasing lower right

semiseparable matrix will be stored in the Givens and vector representation. While

the growing upper left part will also be stored in a the Givens vector representation

Gnew,dnew.
Suppose we want to perform the £rst special Givens transformation Ĝ on the matrix

A, which looks like (this is different from above, because the representation is from

bottom to top now):

⎛

⎝

dn sn−1dn−1 sn−1Rn−1
sn−1dn−1 cn−1dn−1 cn−1Rn−1

sn−1R
T
n−1 cn−1R

T
n−1 A(n−1)

⎞

⎠ (14)
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Applying now the £rst special Givens transformation Ĝ to the left of the matrix (14),

we get the following matrix:

⎛

⎝

ĉdn− ŝsn−1dn−1 (ĉsn−1− ŝcn−1)dn−1 (ĉsn−1− ŝcn−1)Rn−1
ŝdn− ĉsn−1dn−1 (ŝsn−1+ ĉcn−1)dn−1 (ŝsn−1+ ĉcn−1)Rn−1

sn−1R
T
n−1 cn−1R

T
n−1 A(n−1)

⎞

⎠

Applying the Givens transformation Ĝ on the right gives, for

d̂1 = ĉ2dn+ ŝ2cn−1dn−1−2ĉŝcn−1dn−1,
f1 = (ĉsn−1− ŝcn−1)/sn−1,

f2 = (ŝsn−1+ ĉcn−1)/cn−1,

α1 = ĉŝdn+
((

ĉ2− ŝ2
)

sn−1− ŝĉsn−1
)

dn−1,

d̃n−1 = ŝ2dn+
(

2ĉŝsn−1+ ĉ2cn−1
)

dn−1,

the following matrix:

⎛

⎝

d̂1 α1 f1sn−1Rn−1
α1 d̃n−1 f2cn−1Rn−1

f1sn−1R
T
n−1 f2cn−1R

T
n−1 A(n−1)

⎞

⎠

The element d̂1 can already be stored in the Givens vector representation of the new

semiseparable matrix. The lower right reduced semiseparable matrix can still be con-

structed by the old representation and the knowledge of d̃n−1 and the factor f2. The

upper left 3× 3 block can now be used to construct the next Givens transformation
according to Theorem 3.2. One can clearly see that this procedure, can be repeated to

£nd the new diagonal element d̂2 and the £rst subdiagonal element d̂
(s)
1
, and so on.

In the practical implementation the factor f2 is not used, instead the Givens Ĝ

transformation is applied directly on the vector [sn−1,cn−1] from which the value of the
£rst element of f2cn−1R

T
n−1 can be calculated and also the other elements in the same

column.

Also the new representation is built up at the same time, by storing extra informa-

tion concerning the values of α1 and d̃n−1. For a full understanding the software can

be downloaded and investigated.

4.7 The shift

The chosen shift in the QR-algorithm can increase the convergence of the algorithm.

In our implementation the rayleigh shift [23] was choosen.

4.8 The de¤ation criterion

An important, yet uncovered topic, is the de¤ation or cutting criterion. When should

we divide the semiseparable matrix into smaller blocks, without losing too much in-

formation? For semiseparable matrices two things have to be taken into consideration.
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The £rst point of difference with the tridiagonal approach, is the fact that an off

diagonal element in the tridiagonal matrix, has all the information corresponding to the

non-diagonal block in which the element appears. This is straightforward, because all

the other elements are zero. This is however not the case for semiseparable matrices;

in fact they are dense matrices. This means that we should derive a way to calculate the

norms of the off-diagonal blocks in a fast way. Moreover comparing the norms of all

the off-diagonal blocks towards the cutting criterion should in total cost not more than

O(n), otherwise this would be the slowest step in the algorithm, which is unacceptable.
The second issue: whether the norm of the block is small enough to divide the

problem into two subproblems or not. This is a dif£cult problem and in fact we will

test two different cutting criterions, and see what the difference in accuracy is. The

two cutting criterions which will be compared in the numerical experiments section

are the aggressive and the normal cutting criterion [16]. The aggressive criterion al-

lows de¤ation when the norm of the block is relatively smaller than the square root of

the machine precision. The normal criterion allows de¤ation when the norm is relat-

ively smaller then the machine precision. Denoting the machine precision with εM , we

consider the following two de¤ation criteria: The aggressive:

∥S(i+1 : n,1 : i)∥F ≤
√

|didi+1|
√
εM (15)

or the normal de¤ation criterion:

∥S(i+1 : n,1 : i)∥F ≤
√

|didi+1|εM. (16)

When the de¤ation criterion is satis£ed, de¤ation is allowed and the matrix S is divided

into two matrices S(1 : i,1 : i) and S(i+ 1 : n, i+ 1 : n), thereby neglecting the block
S(i+1 : n,1 : i).

In the remaining part of this section we will derive an order n algorithm to compute

the norms of the nondiagonal blocks and to compare them to the current cutting cri-

terion. The semiseparable structure should be exploited when calculating these norms.

An easy calculation shows, that for a semiseparable matrix S with the Givens-vector

representation the following equations are satis£ed:

∥S(2 : n,1 : 1)∥F =

√

(s1d1)
2

∥S(3 : n,1 : 2)∥F =

√

(s2s1d1)
2+(s2d2)

2

= |s2|

√

(s1d1)
2+d2

2

= |s2|
√

∥S(2 : n,1 : 1)∥2F +d2
2

This can be continued and in general we get:

∥SS(i+1 : n,1 : i)∥F = |si|
√

∥S(i : n,1 : i−1)∥2F +d2i . (17)

This formula allows us to derive an O(n) algorithm to compute and compare the norms
of these blocks with the actual cutting criterion.
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5 Computing the eigenvectors

In this section the computation of the eigenvectors will be discussed. We divided this

into two different subsections. In the £rst subsection the eigenvectors of the semisepar-

able matrix S will be approximated by using inverse iteration. In the second subsection

these eigenvectors will be transformed into the eigenvectors of the original matrix A by

performing several orthogonal transformations.

5.1 Inverse Iteration on semiseparable matrices

Suppose we have already a good approximation of the eigenvalues. With inverse iter-

ation applied to the semiseparable matrix and these approximations, the eigenvectors

can be computed rather cheap.

In fact the following problem needs to be solved:

(S−λiI)x= b, (18)

with λi as an approximate eigenvalue.

We will not go into details on how to solve this system in O(n) operations, and in
a stable way. There will only be an outline on how the different steps in the algorithm

work. The system will be solved by computing the QR factorization of the semisepar-

able plus diagonal matrix S−λi = QR. In [30] theoretical results are proven, stating

that the strict upper triangular part of the matrix R is of rank two. The algorithm is

implemented using the Givens-vector representation of the matrix S, the consecutive

Givens transformations to transform the matrix S into upper triangular form are per-

formed on the righthandside b. This gives us the following equation:

QT (S−λi)x= Rx= QTb (19)

The upper triangular matrix R is represented by two sequences of Givens-vector ele-

ments, representing the strict upper triangular part of the matrix R. An extra diagonal

is kept corresponding to the diagonal elements of R. The £nal equation Rx = QTb is

solved by applying backward substitution, because of the special structure of R and the

representation, this system can be solved in O(n) operations.
A more detailed overview of the involved transformations, and tests concerning the

stability and speed of this implementation can be found in [30].

We can solve the system mentioned above now in a stable and accurate way, and

therefore we are able to calculate the eigenvectors of the semiseparable matrix via

inverse iteration. In the numerical tests the following algorithm from [28] is used.

While (true)

Solve the system (SS−κI)y= x ;

x̂= y/∥y∥2;
w= x/∥y∥2;
ρ= x̂Tw; (Rayleigh quotient)

µ= κ+ρ;

κ= µ;
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r = w−ρx̂;

x= x̂;

i f (∥r∥2/∥A∥F ≤ ε) leave while;

end

Starting with a random vector x and the shift κ equal to an approximation of an

eigenvalue coming from the implicit QR algorithm, the eigenvectors can be calculated

fast and accurate.

5.2 The eigenvectors of an arbitrary matrix A

As mentioned before there can still be the need to transform these eigenvectors, corres-

ponding to the semiseparable matrix S back to the eigenvectors corresponding to the

original matrix A.

The most natural way to achieve this goal, is to store the orthogonal transform-

ations performed while reducing the matrix A into the semiseparable matrix S. This

corresponds to keeping either a sequence of n− 1 Householder transformations plus
n(n− 1)/2 Givens transformations, or keeping (when using Givens transformations
instead of Householder transformations) n(n−1) Givens transformations.

Once these transformations are stored, one can compute all or part of the eigen-

vectors, corresponding to the demands.

6 Numerical Experiments

6.1 The experiments

In this section several numerical tests are performed to compare the traditional al-

gorithm for £nding all the eigenvalues with the new semiseparable approach. The

algorithm is based on the QR step as described in the algorithm section, and imple-

mented in a recursive way, if division in blocks is possible because of the convergence

behaviour, then these blocks are dealt with separately.

Before starting the numerical tests some remarks have to be made: £rst of all the

complexity of the reduction of a symmetric matrix into a similar semiseparable one

costs 9n2+O(n) ¤ops more than the reduction of a matrix to tridiagonal form. But as
an advantage we get already a quite good ordering of the eigenvalues and already some

good approximations, as can be seen from the numerical experiments. An implicit QR

step applied to a symmetric tridiagonal matrix costs 31n ¤ops while it costs ≈ 10n

¤ops more for a symmetric semiseparable matrix. However, this increased complexity

is compensated when comparing the number of iteration steps the traditional algorithm

needs with the number of steps the semiseparable algorithm needs. Figures about these

results can be found in [29] and in the following tests.

6.2 The block experiment

This experiment is taken from [23, pag. 153]. Suppose we have a symmetric matrix

A(0) of dimension n= 10 and we construct the following matrices T (m,δ) uxing A(0),
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where m denotes the number of blocks, and δ are the small subdiagonal elements,
between the blocks. For example:

T (3,δ) =





























A
(0)

!

!

A
(0)

!

!

A
(0)





























! = δ.

We get the following results: For m = 10 we compare for the semiseparable and the

tridiagonal approach the maximum number of iterations for any eigenvalue to converge.

This is done for a varying size of δ, A(0) has eigenvalues 1 : 10. Both of the algorithms

use the same normal de¤ation criterion.

δ 10−13 10−12 10−11 10−10 10−9 10−8 10−7

semiseparable QR 3 3 2 2 2 3 3

tridiagonal QR 4 4 4 4 4 4 3

For m= 25:

δ 10−15 10−14 10−13 10−12 10−11

semiseparable QR 4 4 4 3 3

tridiagonal QR 4 5 5 4 4

δ 10−10 10−9 10−8 10−7

semiseparable QR 3 2 2 2

tridiagonal QR 3 4 2 3

For m= 40

δ 10−19 10−18 10−17 10−16 10−15 10−14 10−13

semiseparable QR 4 5 4 4 4 4 4

tridiagonal QR 4 5 4 5 5 4 4

δ 10−12 10−11 10−10 10−9 10−8 10−7 10−6

semiseparable QR 3 1 1 1 3 3

tridiagonal QR 4 5 4 4 4 5

It can be seen clearly that the tridiagonal approach has more dif£culties in £nding

particular eigenvalues. Figure 5 gives a comparison in the complete number of QR

steps for the last experiment (m= 40).

The £gure shows clearly that the semiseparable approach needs less iterations than

the traditional approach. The matrices involved are of size 400. It can be seen that

for δ in the neighbourhood of 10−10 the number of QR steps with the semiseparable

approach are even less than 400. This can also be seen in the table for m= 40.
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10
−20

10
−18

10
−16
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−14

10
−12

10
−10

10
−8

10
−6

350

400

450

500

550

600

650

700

750

800
Semiseparable approach
Tridiagonal approach

Figure 5: Total number of steps compared to several values of δ.

6.3 Stewart’s devil’s stairs

In the following example, we do not apply the QR algorithm, but we only take a look

at the diagonal elements of the semiseparable matrix and the tridiagonal one, after the

reduction step. We will compare these diagonal elements with the real eigenvalues,

which are Stewart’s devil’s stairs. In the following £gure one can see 10 stairs, with

gaps of order 50 between the stairs, all the blocks are of size 10.

0 20 40 60 80 100 120
0

100

200

300

400

500

600
eigenvalues
Semiseparable approach

0 20 40 60 80 100 120
0

100

200

300

400

500

600
eigenvalues
Tridiagonal approach

Figure 6: Stewart’s Devil’s stairs

As explained in [29] it can be seen that the devil’s stairs are approximated much

better by the diagonal elements of the semiseparable than by the diagonal elements of

the tridiagonal matrix.
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6.4 Problem matrices

The following dif£cult matrices can be found in [8]. We take some of the eigenvalue

problems which the traditional QR algorithm cannot solve. We consider the following

matrix: A= DPD, where D= diag(1020,1010,1),

A=

⎛

⎝

1040 1029 1019

1029 1020 109

1019 109 1

⎞

⎠ and P=

⎛

⎝

1 0.1 0.1
0.1 1 0.1
0.1 0.1 1

⎞

⎠ .

The eigenvalues of the matrix A are the following:

Λ= [1.00000 ·1040,9.90000 ·1019,9.81818 ·10−1].

The eigenvalues computed by the routine eig(·) in matlab gives the following results:

[−3.85544 ·1023,9.90002 ·10−1,1.00000 ·1040].
One can see that the eigenvalue solver of Matlab, was only able to calculate one ei-

genvalue correctly. The eigenvalues computed by the semiseparable procedure are the

following:

[1.00000 ·1040,9.81818 ·10−1,9.90000 ·1019]

all these eigenvalues are correct at least up to six digits.

The next matrix we will investigate is constructed in a similar way as the previous

one, suppose we have D= diag(1020,1010,1), A= DPD, µ= 10(−6),

A=

⎛

⎝

1040 9.99 ·1029 9.99 ·1019

9.99 ·1029 1020 9.99 ·109

9.99 ·1019 9.99 ·109 1

⎞

⎠ and P=

⎛

⎝

1 1−µ 1−µ

1−µ 1 1−µ

1−µ 1−µ 1

⎞

⎠ .

The eigenvalues of this matrix are the following: Λ = [1040,2 · 1014,1.5 · 10−6]. The
eigenvalue solver of matlab cannot solve this problem. The implicit QR algorithm for

semiseparable matrices gives the following eigenvalues.

[1.000000000000000 ·1040,1.999999000102929 ·1014,1.499999749837038 ·10−06]

these results are correct up to six digits.

These results show immediately, that although the algorithm is slower, it performs

in several cases much better than the traditional QR with tridiagonal matrices. In some

cases it can be seen that the QR steps do not need to be performed anymore, because

the reduction already reveals all the information.

6.5 Cutting off the last eigenvalue

In the next £gure (7), we compared the accuracy of the eigenvalues, depending on

the cutting off criterion. A sequence of matrices of varying size was generated, with

equal spaced eigenvalues in the interval [0,1]. The eigenvalues for these matrices were
calculated by using a cutting off level at 10(−8) and 10(−16). For both these tests the

absolute error of the residuals was computed and plotted in the next £gure. One can

clearly see, that applying the aggressive de¤ation criterion is almost as good as the

normal de¤ation criterion.
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Figure 7: Comparing different de¤ation criteria

7 Conclusions

In this paper, we have designed an implicit QR algorithm to compute the eigendecom-

position of symmetric semiseparable matrices. To get accurate results in £nite preci-

sion arithmetic, we have indicated the importance of using a suitable de£nition and

corresponding representation of the class of semiseparable matrices. We have ex-

plained the main ideas behind our Matlab implementation which can be downloaded

from http://www.cs.kuleuven.ac.be/∼marc/. In the near future we plan to make an im-
plementation in C++.
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