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Hydroxyl benzoic esters are preservative, being widely used in food, medicine, and cosmetics. To explore the relationship between
the molecular structure and antibacterial activity of these compounds and predict the compounds with similar structures,
Quantitative Structure-Activity Relationship (QSAR) models of 25 kinds of hydroxyl benzoic esters with the quantum chemical
parameters and molecular connectivity indexes are built based on support vector machine (SVM) by using R language. �e
External Standard Deviation Error of Prediction (SDEPext), �tting correlation coe	cient (�2), and leave-one-out cross-validation
(�2LOO) are used to value the reliability, stability, and predictive ability of models. �e results show that �2 and�2LOO of 4 kinds of
nonlinear models are more than 0.6 and SDEPext is 0.213, 0.222, 0.189, and 0.218, respectively. Compared with the multiple linear
regression (MLR) model (�2 = 0.421, RSD = 0.260), the correlation coe	cient and the standard deviation are both better than
MLR. �e reliability, stability, robustness, and external predictive ability of models are good, particularly of the model of linear
kernel function and eps-regression type.�is model can predict the antimicrobial activity of the compounds with similar structure
in the applicability domain.

1. Introduction

1.1. Conceptual Framework. QSAR [1, 2] is used to research
the relationship between the molecular structure and bio-
logical activity and physicochemical characteristics, reveal
the quantitative relationship, predict the activity of unknown
compounds, and direct the synthesis of new materials [3–5].
QSAR is considered as one of the promising technologies and
is widely used at present because of making up the loss of
experimental data, reducing the cost of testing, and achieving
high throughput prediction and screening [6]. Many interna-
tional organizations and regulatory agencies have supported
and promoted the use of QSAR and thought that QSAR
can be used as an alternative to animal experiments. Health
Canada, the United States of Food and Drug Administra-
tion (FDA), Environmental Protection Agency (EPA), the

European Union, and the Organization for Economic Coop-
eration and Development (OECD) apply QSAR to identify
potential health hazards, screening, and priority [7]. A�er
recent years of development, QSAR has become a frontier
topic in medicinal chemistry, environmental chemistry, life
science, analytical chemistry, computer chemistry, and even
pesticide [8–11].

Hydroxyl benzoic esters are important kinds of preser-
vatives, which are widely used in medicine, food, cosmetics,
pesticides, and other �elds [12]. At present, there are about 60
kinds of food preservatives in theworld [13].�e benzoic acid
and sorbic acid are productive in China, but the usage is little
because of the high toxicity of benzoic acid and the high price
of sorbic acid. Hydroxyl benzoic esters have high e	ciency,
low toxicity, compatibility, and other advantages; the per-
formance of antibacterial is stronger than benzoic acid and
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sorbic acid because it has a phenolic hydroxyl [14]. So it is of
great signi�cance to study and apply the antibacterial activity
of hydroxyl benzoic esters.

1.2. Research Status of SVM in QSAR. SVM is a machine
learning algorithm based on statistical learning theory pro-
posed by Cortes et al. [15–17]. SVM can be used for pattern
recognition, regression analysis and function �tting, and so
forth because it possesses favorable mathematical properties,
such as the uniqueness of the solution, nondependence on
the dimension of the input space, and so forth. �e optimal
solution of SVM is superior to the traditional learning meth-
ods. In recent years, SVM is applied to the study of QSAR of
the compound. Hou et al. [18] investigated the QSAR of the
antimalarial activity of PfDHODH inhibitors by generating
four computational models using a multiple linear regression
(MLR) and a SVM based on a dataset of 255 PfDHODH
inhibitors. Sharma et al. [19] drew support from SVM and
MLR studying the activity of HIV-1 capsid inhibitors. SVM
model was foundmore e	cient in prediction. Khuntwal et al.
[20] used MLR and SVM to develop QSAR models for a
dataset of 34 tetrahydrobenzothiophene derivatives. Zhiming
et al. [21] by using ridge regression (RR) and SVM built
QSAR models of bitter tasting thresholds (BTT) and cyto-
toxic T lymphocyte (CTL) and predicted independent test
data. Results showed that the �tting, LOOCV, and external
prediction accuracies were superior to the reported results
of the existing literature. Zhang et al. [22] took the benzene
compounds as the research object, combining the molecular
structure of the quantitative description with MLR or non-
linear regression statistical methods SVM, to build success-
fully the acute toxicity QSAR models and mutagenic QSAR
models of benzene compounds. By comparing the linear and
nonlinear QSAR models, Zhang Xiao-Long discovered that
the stability and prediction ability of nonlinear QSARmodels
are better than those of multiple linear QSAR models. In the
literature, there are very few researches about QSAR of the
hydroxyl benzoic esters. Jiang et al. [23] used MLR to build
the model of QSAR and it can well predict the MIC and t0.5
in the range of atomic number (the number of C among 1–4
on the ester chain of MIC and 1–3 of �0.5). Qiu et al. [24]
optimized the molecular structures of eleven kinds of p-
hydroxyl benzoic esters by using density functional theory
(DFT) B3LYP method of quantum chemistry and then used
stepwise multiple linear regression to select the descriptors
and to generate the best prediction model that relates the
structural features to inhibitory activity. �e QSAR results
showed that the lowest unoccupied molecular orbit �LUMO

and the increase of dipole moment �were the main indepen-
dent factors contributing to the antifungal activity of the com-
pounds. SVM has shown obvious advantages in the QSAR
research, but QSAR study of the compound of hydroxyl ben-
zoic esters is con�ned to the linear model at present; there is
no literature on the nonlinear QSAR analysis of the system.

In this paper, we use the quantum chemical parameters
and molecular connectivity indexes to analyze the antibac-
terial activity of the hydroxyl benzoic esters. �e QSAR
model is established by the SVM algorithm in the R so�ware.

We obtain the structure-activity relationship between the
molecular structural parameters and the antibacterial activity
of Escherichia coli under themost stable con�guration, which
provides a basis of predicting the antibacterial activity of
similar compounds.

2. Method

2.1. Data Preparation

2.1.1. Basic Information ofHydroxyl Benzoic Esters. �is paper
took the 25 hydroxyl benzoate group compounds as the
research object, including 10 o-hydroxyl benzoic esters, 2 m-
hydroxyl benzoic esters, and 13 p-hydroxyl benzoic esters.
�eir details are shown in Table 1.

2.1.2. Terminal Value. �e antimicrobial half-life (�1/2) (h)
at the condition of minimum inhibition concentration of 25
hydroxyl benzoic esters was collected from the literature [23],
in the form of logarithm (lgt1/2) to express its antibacterial
activity. �e results are shown in Table 2.

2.2. Calculation and Selection of Molecular Descriptors. �e
quantum chemical parameters [25] andmolecular connectiv-
ity indexes [26] can well explain the antibacterial activity of
compounds and have good correlation between them; there-
fore, this paper selects them with a clear physical meaning as
the descriptor.

2.2.1. 	e Quantum Chemical Parameters. In this paper, the
quantum chemical parameters are calculated by the latest
Gaussian 09 so�ware [27] that is a quantum chemistry so�-
ware of semiempirical calculation and ab initio calculation of
United States Gaussian company. Gaussian 09 in the calcula-
tion can carry out the molecular structure through the View
Gauss 5 so�ware directly and create the input �les of molec-
ular structures. In the calculation, Gaussian 09 so�ware calls
directly the input �le and translates it into the form of redun-
dant internal coordinates automatically.�e results of the cal-
culation are output by the text. Each time before calculation, a
suitable chemistry model (computational method) should be
established for the system in order to achieve balance in terms
of computational cost and accuracy [27, 28]. �e method of
this paper is B3LYP/6-31GDFT/(d). Because all themolecular
con�gurations are optimal con�gurations and the geometry
optimization is convergent and there is no virtual frequency
by the frequency analysis, therefore, all the data are true and
reliable. Find out the useful quantum chemical parameters
from the output �le. �e values are shown in Table 3.

2.2.2. 	e Molecular Connectivity Indexes. Molecular con-
nectivity indexes which mainly re�ect the number of atoms
in molecules, valence bond and branch information, and so
forth are the constants that are calculated according to the
molecular structure. Each order index has a di�erent mean-
ing. Many studies show that 5Xk

P can characterize a lot of
information, which has a great signi�cance in explaining the
in�uence of structure on biological activity [29, 30]. So, this
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Table 1: �e basic information of hydroxyl benzoate esters.

ID Compound Abbreviation

1 Methyl o-hydroxyl benzoate esters M-o-HB

2 Ethyl o-hydroxyl benzoate esters E-o-HB

3 Propyl o-hydroxyl benzoate esters P-o-HB

4 Isopropyl o-hydroxyl benzoate esters IP-o-HB

5 Butyl o-hydroxyl benzoate esters B-o-HB

6 Isobutyl o-hydroxyl benzoate esters IB-o-HB

7 Isoamyl o-hydroxyl benzoate esters IA-o-HB

8 Octyl o-hydroxyl benzoate esters O-o-HB

9 Benzyl o-hydroxyl benzoate esters Be-o-HB

10 Phenyl o-hydroxyl benzoate esters Ph-o-HB

11 Methyl m-hydroxyl benzoate esters M-m-HB

12 Ethyl m-hydroxyl benzoate esters E-m-HB

13 Methyl p-hydroxyl benzoate esters M-p-HB

14 Ethyl p-hydroxyl benzoate esters E-p-HB

15 Propyl p-hydroxyl benzoate esters P-p-HB

16 Isopropyl p-hydroxyl benzoate esters IP-p-HB

17 Butyl p-hydroxyl benzoate esters B-p-HB

18 Isobutyl p-hydroxyl benzoate esters IB-p-HB

19 Amyl p-hydroxyl benzoate esters A-p-HB

20 Isoamyl p-hydroxyl benzoate esters IA-p-HB

21 Heptyl p-hydroxyl benzoate esters H-p-HB

22 Octyl p-hydroxyl benzoate esters O-p-HB

23 Isooctyl p-hydroxyl benzoate esters IO-p-HB

24 Nonyl p-hydroxyl benzoate esters N-p-HB

25 Benzyl p-hydroxyl benzoate esters Be-p-HB
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results are shown in Table 4.

2.3. Establishment of Models

2.3.1. Partition of Dataset. �e rational division of datasets is
a very hot research topic in the �eld ofQSAR.�ere are a vari-
ety of methods. In this paper, Random Sampling (RS) [31] is
used to divide the rawdata into training set (22 kinds) and test
set (3 kinds, o-hydroxyl benzoic esters, m-hydroxyl benzoic
esters, and p-hydroxyl benzoic esters).�e training set is used
to establish the SVM nonlinear models, and the test set tests
the external prediction ability of the models.

2.3.2. Modeling Method. �rough the R so�ware program,
the training set with 22 compounds is used to build the
nonlinear models by SVM algorithm based on the selected
descriptors. Firstly, we standardize the data and then establish
4 models of kernel for radial, linear, eps-regression, and nu-
regression type, respectively.

2.4.Model Validation. Model validation is very important for
QSAR research, which consists of two aspects: internal vali-
dation to test the �tting ability and robustness of models and

external validation to test the model’s predictive ability. Both
internal and external validations are equally important [32].

2.4.1. Internal Validation. �ere are many methods to esti-
mate a model’s stability, robustness, and internal predictive
ability, such as the �tting correlation coe	cient, cross-
validation, randommodel test, Y random, and various resid-
ual errors (like RootMean Squared Errors (RMSEs), standard
residual error, etc.) [33]. In this paper, the �tting correlation

coe	cient (�2) between the experimental and predicted val-
ues of the training dataset and leave-one-out cross-validation

(�2LOO) are used to test the reliability, robustness, stability,
and whether the models are over�tting or not.

2.4.2. External Validation. A very important purpose of the
QSAR models is to predict the related activity data of new or
even nonsynthetic compounds, in order to guide the design
and synthesis of compounds with desirable activity, or to
screen the compounds.�is requires that themodel has good
predictive ability and generalization ability; however, cross-
validation can only explain the internal predictive ability of
models and good internal prediction ability does not mean
the excellent external prediction ability [34–36]; that is, good

cross-validation �2cv is a necessary but nonsu	cient condi-
tion for the high external predictive ability [35].�e only way
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Table 2: Antimicrobial half-life (�1/2) (h) at the condition of mini-
mum inhibition concentration of hydroxyl benzoic esters.

ID �1/2 lgt1/2
1 66.0 1.819

2 74.0 1.869

3 138.0 2.139

4 115.0 2.060

5 17.0 1.230

6 15.0 1.176

7 20.5 1.312

8 66.0 1.819

9 42.0 1.623

10 12.0 1.079

11 43.0 1.633

12 56.0 1.748

13 76.0 1.880

14 94.0 1.973

15 176.0 2.245

16 156.0 2.193

17 61.5 1.789

18 29.0 1.462

19 34.5 1.537

20 28.0 1.447

21 28.0 1.447

22 39.8 1.599

23 31.0 1.491

24 36.8 1.565

25 29.0 1.462

to evaluate the external predictive ability of the model is to
test the model with the new compound (namely, external test
set that is not involved in the process of descriptor selection
and model establishment). �e parameters of evaluation
model’s external predictive ability include �2ext, external
�2ext, and SDEPext. In this paper, the test set is used to predict
the corresponding lgt1/2 and external predictive ability of the
models is evaluated by SDEPext.

2.5. Extraction of Key Descriptors. We use principal compo-
nent analysis to extract the most critical molecular descrip-
tors of the hydroxyl benzoic esters for antibacterial half-life.

3. Results

3.1. Internal Prediction and Scatter Plot. Four nonlinear SVM
models based on the selected descriptors are established
by using training set. Experimental values and internal
prediction results of lgt1/2 are shown in Table 5 and scatter
plot in Figure 1.

3.2. Parameters of Internal Validation. See Table 6.

3.3. Results of External Validation. lgt1/2 of the test set is
predicted, respectively, by 4 SVM models and the results are

shown in Table 7. SDEPext of the models and the residual
between experimental values and the predicted results of
lgt1/2 are displayed in Table 8. Scatter plots of experimental
values and prediction results by 4 SVM models of 25 com-
pounds of lgt1/2 are shown in Figure 2.

3.4. Results of Principal Component Analysis. See Tables 10
and 11.

4. Discussion and Conclusion

�e degree of freedom and the speed of the preservative
molecule determine the e�ective collision between the central
atom of reactivity and the group or atom of microbial
molecular activity. As a result, the antimicrobial property of
the preservative is essentially determined by the electronic
behavior of the preservative and the microorganism, that is,
the quantum biochemical characterization of preservative.
�erefore, from the perspective of quantum chemistry to
study the relationship between the structure and properties of
compound, the e�ective antimicrobial groups of preservative
can be explained in essence [37]. Jiang et al. [23] use multiple
linear regression to establish the linear model of 25 kinds of
hydroxyl benzoic esters.�e parameters are shown in Table 9.

Results showed that �2 was only 0.421, but the equation had
good linear relationshipwhen the number of C atomswas less
than 4. When the number of C atoms in the ester group is
more than 4, the in�uencing factors become more complex
and cannot be described by simple linear relationship and
may be in nonlinear or diversi�ed relationship. So we use
the R language to write the program and establish 4 kinds of
nonlinearmodels through the SVMmachine algorithm for 25
hydroxyl benzoic esters and predict lgt1/2. Predicted results of
training set are shown in Table 5. �e scatter plot of exper-
imental and predicted lgt1/2 is drawn by using R so�ware.
Figure 1 shows that the predicted and experimental values are
in good agreement and the linearity is obvious. According to

literatures, if the value of�2 is greater than 0.6 [35, 38] and�2
is greater than 0.5, the model is good, and model is excellent
when the values are more than 0.9 [39]. Tropsha et al. [6] rec-
ommend �2 and�2 to be greater than 0.6. Table 6 shows that
both �2 and �2LOO are greater than 0.6 and �2 and �2LOO

of two models with linear kernel function are close to 0.75,
so we may think that the stability, robustness, and internal
predicted ability of the 4 models are better and the models

are not over�tting because�2 is larger than�2LOO by nomore
than 25%. By RS extracting, the para-, ortho-, and metacom-
pound from 25 hydroxyl benzoic esters make up external test
set to test the models, and the prediction results are shown in
Table 7. �e parameters from Table 8 show that the residual
values of lgt1/2 of the test set are in the range of −0.037244∼
0.322733 and SDEPext is 0.213, 0.222, 0.189, and 0.218, respec-
tively. �e results indicate that the 4 models have high exter-
nal predictive ability among themselves; in particular the
model of the linear kernel function and eps-regression type is
better than the other 3 models. Scatter plots of experimental
values and prediction results by 4 SVM models of 25 com-
pounds of lgt1/2 are shown in Figure 2. �e results show that



Bioinorganic Chemistry and Applications 5

Table 3: Quantum chemical parameters of hydroxyl benzoic group at B3LYP/6-31G(d) level.

ID
� ZPE �HOMO �LUMO Δ� � (	�) � (
�) �

(hartree) (KJ/mol) (e V) (e V) (e V) � (
�) � (
�)

1 −535.4 390.3 −0.2384 −0.06313 0.17524
2.736 0.964

105.3
2.560 0.000

2 −574.7 464.7 −0.2370 −0.06142 0.17557
3.026 −1.464

117.8
−2.648 0.000

3 −614.0 539.2 −0.2367 −0.06093 0.17573
3.155 −1.440

130.0
2.808 0.000

4 −614.0 537.7 −0.2359 −0.05991 0.17596
3.091 1.167

130.7
−2.862 0.000

5 −653.3 614.2 −0.2364 −0.06066 0.17576
3.182 −2.906

142.3
1.294 0.000

6 −653.3 613.0 −0.2368 −0.06100 0.17578
3.169 2.434

142.2
−1.990 −0.393

7 −692.6 688.3 −0.2363 −0.06060 0.17574
3.165 2.334

154.6
2.136 0.047

8 −810.6 912.9 −0.2362 −0.06035 0.17580
3.276 −2.377

191.1
2.254 0.000

9 −766.4 603.6 −0.2381 −0.05969 0.17842
1.302 −0.182

165.9
−1.093 0.755

10 −727.1 526.4 −0.2421 −0.06882 0.17325
0.922 0.755

165.9
0.529 0.000

11 −574.7 461.5 −0.2408 −0.05736 0.18346
3.350 3.297

94.45
0.594 0.000

12 −535.4 387.3 −0.2419 −0.05896 0.18293
3.284 3.053

84.22
−1.208 0.0006

13 −535.4 387.8 −0.2450 −0.05006 0.19497
1.278 −1.247

106.0
0.280 0.000

14 −574.7 462.1 −0.2439 −0.04860 0.19528
1.194 −0.169

118.4
−1.182 0.000

15 −614.0 537.0 −0.2436 −0.04820 0.19540
1.201 0.235

130.6
−1.178 0.000

16 −614.0 535.2 −0.2433 −0.04748 0.19577
1.054 0.319

131.3
1.004 0.000

17 −653.3 611.3 −0.2434 −0.04798 0.19545
1.122 −0.995

142.9
−0.519 0.000

18 −653.3 610.6 −0.2439 −0.04838 0.19550
1.288 −1.012

142.8
−0.785 −0.131

19 −692.6 686.3 −0.2433 −0.04789 0.19544
1.1777 −0.8744

155.2
0.7889 0.0000

20 −692.6 685.6 −0.2434 −0.04795 0.19547
1.086 −0.912

155.2
−0.589 0.023

21 −771.3 836.0 −0.2433 −0.04777 0.19550
1.169 −0.179

179.6
−1.155 0.000

22 −810.6 911.2 −0.2432 −0.04772 0.19552
1.089 −1.058

191.7
−0.258 0.000

23 −810.6 910.2 −0.2433 −0.04780 0.19550
1.201 1.113

191.7
0.414 −0.179

24 −849.9 984.9 −0.2432 −0.04770 0.19553
1.169 −0.522

203.9
1.046 0.000

25 −776.4 601.9 −0.2442 −0.04966 0.19452
1.260 −0.697

174.3
−0.916 −0.512
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Table 4: Molecular connectivity indexes of hydroxyl benzoic group.

ID 0
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1 6.073 3.117 2.009 1.226 0.608 0.259 0.190 0.235

2 6.780 3.705 2.238 1.316 0.706 0.311 0.190 0.223

3 7.487 4.205 2.653 1.478 0.770 0.381 0.190 0.223

4 7.650 4.100 2.971 1.436 0.775 0.349 0.426 0.389

5 8.194 4.705 3.007 1.772 0.885 0.426 0.190 0.223

6 8.358 4.561 3.509 1.588 0.818 0.421 0.599 0.629

7 9.065 5.061 3.836 1.969 0.963 0.415 0.599 0.512

8 11.020 6.705 4.421 2.772 1.623 0.904 0.190 0.223

9 9.167 5.262 3.290 2.157 1.187 0.607 0.308 0.407

10 8.460 4.824 3.014 1.898 1.008 0.425 0.258 0.327

11 6.073 3.111 2.042 1.087 0.647 0.255 0.213 0.321

12 6.780 3.699 2.271 1.177 0.780 0.320 0.213 0.309

13 6.073 3.111 2.038 0.904 0.412 0.173 0.213 0.292

14 6.780 3.699 2.267 0.994 0.508 0.237 0.213 0.280

15 7.487 4.199 2.683 1.155 0.572 0.305 0.213 0.280

16 7.650 4.094 3.001 1.114 0.576 0.281 0.449 0.392

17 8.194 4.699 3.036 1.449 0.686 0.350 0.213 0.280

18 8.358 4.555 3.539 1.266 0.620 0.353 0.622 0.446

19 8.902 5.199 3.390 1.699 0.894 0.431 0.213 0.280

20 9.065 5.055 3.865 1.646 0.765 0.384 0.622 0.568

21 10.310 6.199 4.097 2.199 1.248 0.703 0.213 0.280

22 11.020 6.699 4.451 2.449 1.425 0.828 0.213 0.280

23 11.180 6.555 4.637 2.173 1.374 0.792 0.622 0.568

24 11.730 7.199 4.804 2.699 1.601 0.953 0.213 0.280

25 9.1670 5.256 3.609 1.792 0.823 0.467 0.331 0.464
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Figure 1: Scatter plot of experimental values and 4 SVM models’ internal prediction results of lgt1/2. Note. �e horizontal coordinates,
respectively, represent the predicted values of lgt1/2 of 4 SVMmodels, and the longitudinal coordinates express the experimental results.
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Table 5: Experimental values and 4 SVMmodels’ internal prediction results of lgt1/2.

ID lgt1/2 Radial + eps-reg Radial + nu-reg Linear + eps-reg Linear + nu-reg

1 1.819 1.779216 1.781302 1.812285 1.951165

2 1.869 1.827756 1.798580 1.835602 1.744102

3 2.139 1.713926 1.707563 1.769820 1.770619

4 2.060 1.772371 1.768500 1.792442 1.770267

5 1.230 1.599024 1.587027 1.580694 1.487888

6 1.176 1.363148 1.374539 1.355817 1.313377

7 1.312 1.373201 1.398522 1.345323 1.450414

9 1.623 1.585821 1.578657 1.629972 1.523181

10 1.079 1.494724 1.494087 1.112267 1.219324

12 1.748 1.775344 1.796207 1.781397 1.889308

13 1.880 1.858219 1.863383 1.913434 2.022421

14 1.973 1.927762 1.934197 2.059377 2.163645

15 2.245 1.916552 1.925729 2.008084 2.130922

16 2.193 1.831546 1.848498 1.922720 2.069817

17 1.789 1.803731 1.811289 1.822127 1.903807

18 1.462 1.606335 1.624347 1.576873 1.609259

20 1.447 1.525688 1.545616 1.413420 1.445952

21 1.447 1.554127 1.544298 1.663491 1.646921

22 1.599 1.571473 1.551537 1.576665 1.501430

23 1.491 1.524709 1.527338 1.452021 1.384236

24 1.565 1.590526 1.575234 1.531546 1.459150

25 1.462 1.534525 1.549003 1.428528 1.357148

Note. Radial + eps-reg, radial + nu-reg, linear + eps-reg, and linear + nu-reg, respectively, represent the 4 SVM models where kernel function is radial and
linear and type is eps-regression and nu-regression.

Table 6: �2 and �2LOO of 4 SVMmodels.

Parameters Radial + eps-reg Radial + nu-reg Linear + eps-reg Linear + nu-reg

�2 0.614 0.613 0.756 0.740

�2LOO 0.611 0.608 0.747 0.731

Note. Radial + eps-reg, radial + nu-reg, linear + eps-reg, and linear + nu-reg, respectively, represent the 4 SVM models where kernel function is radial and
linear and type is eps-regression and nu-regression.

Table 7: Experimental values and prediction results of test set of lgt1/2.

ID 8 11 19

Compound O-o-HB M-m-HB A-p-HB

lgt1/2 1.819000 1.633000 1.537000

Radial + eps-reg 1.501886 1.762810 1.675167

Radial + nu-reg 1.496267 1.776929 1.691083

Linear + eps-reg 1.559133 1.670244 1.732065

Linear + nu-reg 1.535459 1.711716 1.772964

Table 8: Experimental and predicted values of lgt1/2 residual and SDEPext.

ID 8 11 19 SDEPext

Radial + eps-reg 0.317114 −0.129810 −0.138167 0.213

Radial + nu-reg 0.322733 −0.143929 −0.154083 0.222

Linear + eps-reg 0.259867 −0.037244 −0.195065 0.189

Linear + nu-reg 0.283541 −0.078716 −0.235964 0.218
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Figure 2: Scatter plot of experimental values and 4 SVM models’ prediction results of lgt1/2. Note. �e horizontal coordinates, respectively,
represent the predicted values of lgt1/2 of 4 SVMmodels, and the longitudinal coordinates express the experimental results.

Table 9: �e parameters of the MLR model established by Wang
Deng-Ju.

Method � � �2 �ad RSD

MLR 25 0.649 0.421 0.311 0.260

MLR 8 (
 < 4) 0.969 0.938 0.856 0.076

Table 10: Contribution rate of the �rst three principal components.

Comp. 1 Comp. 2 Comp. 3

Standard
deviation

188.7974802 38.08956667 4.3318149940

Proportion of
variance

0.9602859 0.03908591 0.0005055312

Cumulative
proportion

0.9602859 0.99937176 0.9998772898

the overall prediction of the 4 SVM models is better and,
particularly, the linear relationship between predictive and
experimental value of the model, where kernel function is
linear and type is eps-regression, is the best.

In Table 10, the principal component analysis shows that
the proportion of variance of the �rst principal component
reaches 96.03%; therefore, the �rst principal component is
taken only. Table 11 shows that the �rst principal compo-
nent includes � (total energy), ZPE (zero-point vibrational
energy), and � (polarizability). We consider that �, ZPE, and
� are the key factors for antibacterial half-life of hydroxyl
benzoic esters. � is a kind of structural parameter charac-
terized by molecular deformation tensor under the action of
external electric �eld. It is themost important property that�

Table 11: Loadings of the �rst three principal components.

Comp. 1 Comp. 2 Comp. 3

� 0.467 0.838 0.277

ZPE −0.871 0.491

� (
�) −0.152
� −0.152 −0.238 0.944

is related to the volume of the molecule and � contains infor-
mation about the molecular interaction that is able to charac-
terize the properties of the molecule as an electron acceptor.
Since the coe	cients of � and ZPE are negative, this indicates
that the value of � and ZPE is greater and the antibacterial
half-life of hydroxyl benzoic esters is shorter but E is just the
opposite because the coe	cient is positive.

In summary, QSAR nonlinear model obtained by quan-
tumchemical parameters andmolecular connectivity indexes
can better predict the antibacterial activity of hydroxyl
benzoic esters.�e introduction of SVM algorithm solves the
problem of poor correlation of QSAR and complex nonlinear
relationship between themolecular descriptorswhen formula
weight is large, which provides a basis for the prediction of the
antibacterial activity of compounds with similar structure.

�erefore, the main conclusions of this paper are as
follows:

(1) �e establishment of the 4 kinds of nonlinear mod-
els using 25 hydroxyl benzoic acid esters by SVM
method, through internal and external validation, the
stability, and robustness, and internal and external
predictive ability of 4 kinds of models are good; that
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is, themodels are available andmay predict new com-
pounds in the applicability domain.

(2) �e model of linear kernel function and eps-regres-

sion type has the largest �2 and�2LOO, the minimum
SDEPext, and the optimal linear relationship between
predictive and experimental value of lgt1/2 in 4 kinds
of SVMmodels, which is the optimal model.

(3) SVM algorithm is a good method to solve the prob-
lem of multicollinearity and complex nonlinear rela-
tionship between molecular descriptors in QSAR
modeling.

(4) E, ZPE, and p are the key factors for antibacterial half-
life of hydroxyl benzoic esters.
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