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Abstract: Leishmaniasis, a parasitic disease that represents a threat to the life of millions of people
around the globe, is currently lacking effective treatments. We have previously reported on the
antileishmanial activity of a series of synthetic 2-phenyl-2,3-dihydrobenzofurans and some qualitative
structure–activity relationships within this set of neolignan analogues. Therefore, in the present
study, various quantitative structure–activity relationship (QSAR) models were created to explain
and predict the antileishmanial activity of these compounds. Comparing the performance of QSAR
models based on molecular descriptors and multiple linear regression, random forest, and support
vector regression with models based on 3D molecular structures and their interaction fields (MIFs)
with partial least squares regression, it turned out that the latter (i.e., 3D-QSAR models) were clearly
superior to the former. MIF analysis for the best-performing and statistically most robust 3D-QSAR
model revealed the most important structural features required for antileishmanial activity. Thus,
this model can guide decision-making during further development by predicting the activity of
potentially new leishmanicidal dihydrobenzofurans before synthesis.

Keywords: 2-phenyl-2,3-dihydrobenzofurans; Leishmania; 3D-QSAR; QSAR; neolignan analogues

1. Introduction

The World Health Organization (WHO) has recognized Leishmaniasis as a public
health concern, being one of the so-called Neglected Tropical Diseases (NTDs). It has been
estimated that 600,000 to 1 million people are infected every year with the various forms of
Leishmaniasis, primarily in tropical and subtropical regions [1,2], and despite control and
surveillance campaigns, the panorama has worsened lately with clear outbreaks due to
management issues associated with the COVID-19 pandemic [1]. Even though the disease
burden (in disability-adjusted life years, DALYs) had reduced by 5.4% from 2015 to 2019 [1],
it is still considerably high (>600,000 DALYs [3]) with more than 230,000 newly reported
cases in 2021 [1]. Caused by parasites of the genus Leishmania, it exists in several clinical
forms related to the particular species affecting the host [2,4,5]. Current treatments are
inadequate, displaying several drawbacks including, but not limited to, high toxicity and
poor efficacy [3,6,7]. Different institutions and research groups have put great effort into the
search for antileishmanials [3,8–12], however, effective drugs remain to be found, especially
for Visceral Leishmaniasis, the most aggressive form of the disease.

The use of computational methods to aid in solving different problems in drug discovery
pipelines is becoming more and more important, particularly with the advent of artificial
intelligence [13–19]. In silico approaches have, therefore, been applied for the rational design
and discovery of potential drugs against Leishmaniasis [20–25]. Due to the limited knowledge
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about validated targets for Leishmaniasis, ligand-based methods investigating structure–
activity relationships (SARs) may represent a suitable approach. During our research program
for fighting Leishmaniasis using natural products and natural product-like small molecules,
we have reported a series of 2-phenyl-2,3-dihydrobenzofurans, synthetic analogues of natural
dihydrobenzofuran neolignans, with antileishmanial potential [26]. In such a study, from
qualitative inspection of the compounds’ structure and activity, it became evident that an
in-depth study focusing on quantitative structure–activity relationships (QSAR) for this series
of compounds would be interesting. Therefore, we present herein a comparative QSAR
study for antileishmanial 2-phenyl-2,3-dihydrobenzofurans, using different machine learning
methods and molecular descriptors, as well as 3D-QSAR. The various models’ statistical
performance was assessed exhaustively using a comprehensive set of existing quality metrics
and compared between the different approaches. Key structural features conferring activity
were finally deduced from the best-performing model.

2. Results and Discussion
2.1. Data Set

The data set used in the present study comprises a series of seventy congeneric trans-
2-phenyl-2,3-dihydrobenzofurans with antileishmanial potential previously synthesized
and reported by us [26]. According to their structural features, two different groups, A and
B can be easily distinguished (Figure 1). The full list of the individual compounds’ struc-
tures used in this study and their antileishmanial activity are reported in Tables S1 and S2
(Supplementary Materials). Compounds in class A have natural product-like structures
fairly close to neolignans commonly found in plants [27,28], which are biosynthesized as
dimers of phenylpropenoid building blocks. Compounds of class B are synthetic analogues
lacking the characteristic dimeric nature of natural products. The selected compounds
possess widely distributed antileishmanial activity, with IC50 values against axenic amastig-
otes of Leishmania donovani ranging from 0.5 to >200 µM (i.e., covering almost three orders
of magnitude), which makes them amenable for QSAR analyses.

Figure 1. General structures of trans-2-phenyl-2,3-dihydrobenzofurans investigated in the present study.
For all structures of the set of compounds under study, see Tables S1 and S2, Supplementary Materials.

2.2. QSAR Modeling

3D molecular models for each compound (Tables S1 and S2) were obtained by energy
minimization of the lowest energy conformer from a conformational search, using the
semi-empirical AM1 method. The resulting structures were used to calculate molecular
descriptors for the purpose of machine learning (ML)-based QSAR and aligned for 3D-
QSAR modeling. Using the Molecular Operating Environment (MOE) software [29], a
total set of 435 molecular descriptors was obtained. Feature selection through contingency
analysis, as implemented in MOE (Table S3, Supplementary Materials), led to a reduced
set of 107 descriptors, corresponding to those with the highest utility for QSAR modeling
(see Section 3.1 for details; for the full list of descriptors see Table S9, Supplementary
Materials). Multiple Linear Regression (MLR), Random Forest (RF), and Support Vector
Regression (SVR) were used as learning algorithms for the training of descriptor-based
models. On the other hand, the structures prepared as mentioned above were aligned
using Open3DAlign [30], whereupon Open3DQSAR [31] was employed to train 3D-QSAR
models using Partial Least Squares (PLS) regression. Details for each model type are
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presented below. Three different combinations of training/test sets were used in each case
by the random splitting of the samples (percentage ratio of 74/26 unless otherwise stated).

2.2.1. Model Building

As a first approach, MLR was used to train models MLR1-MLR3. In all cases, a maxi-
mum number of 5 to 6 features were employed, thus being within the fifth of the samples
in the training set, as recommended by the Organization for Economic Co-operation and
Development (OECD) [32]. A genetic algorithm (GA) [32–34] was then used for efficient
feature selection. Several independent searches with a different fixed number of features
(3, 4, 5, and 6 descriptors) were performed. From each run, the top five models according
to Q2 (coefficient of determination during leave-one-out cross-validation, CV) were kept
for further analysis (mathematical equations representing models MLR1-MLR3 are shown
in Table S4, Supplementary Materials).

During our second descriptor-based approach, models were independently trained
using RF and SVR (models RF1–RF3 and SVR1–SVR3, respectively). These algorithms,
unlike MLR, are not limited to strict linear correlation and might hence perform better in
the case of nonlinear SAR. Hyperparameter optimization was independently performed in
each case to obtain the best possible outcome (according to CV).

Finally, a CoMFA-like method was applied to generate models 3D1–3D3, based on
Molecular Interaction Field (MIF) calculations and PLS. The three models differed in the
composition of training/test sets at a constant splitting ratio. MIFs were obtained using the
MMFF94 force field, as implemented in the Open3DQSAR [31] software. Feature selection
(see experimental section) led to data matrices typically exceeding 2000 variables. The
optimum number of final latent variables (LV) for PLS was chosen by CV.

2.2.2. Model Validation

It is well-known that a high Q2 on its own does not assure good predictive power [35].
Nor necessarily does a high R2

pred, mainly due to its strong dependence on the selection
of the training set [36]. Therefore, the performance of the generated models was vali-
dated through exhaustive statistical assessment (Table S5, Supplementary Materials) using
thirteen different metrics commonly accepted within the QSAR community (Table S6,
Supplementary Materials). The use of such statistical parameters ensured a comprehensive
assessment of model performance; however, this was accompanied by a practical limitation
in terms of model comparison. Thus, dimensionality reduction by Principal Component
Analysis (PCA) offered a simple solution for a qualitative comparison among models
(Figure S1, Supplementary Materials). It was then evident that SVR and MLR models
performed similarly.

The relative variability among validation metrics was seemingly low as evidenced by
the corresponding coefficient of variation, demonstrating that, for most of the statistical pa-
rameters, all the models performed rather comparably (Table S5, Supplementary Materials).
In addition to directly comparing all the metrics for the validated models, two consensus
scores (F1 and F2) were calculated (Figure 2). We have already shown the utility of such
a strategy for validation and model performance assessment in regression problems [37]
(see Table S7, Supplementary Materials, for score definitions). The F1 score denotes the
number of statistical parameters within typical or commonly established thresholds (i.e.,
the number of positive assessments). F2 assigns either a reward or a penalization for each
statistical parameter included to reflect compliance with established thresholds in order to
assure good performance (the higher F2, the better the model) [37]. Since it was observed
that F1 alone might lead to misinterpretations for models with poor CV statistics, F2 was
exclusively calculated for models with Q2 and R2

pred above 0.5, thus guaranteeing more
stringent criteria.
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Figure 2. Consensus scores F1 and F2 for all the generated models according to [37]. Bars are colored
by model type.

Evidently, important differences among models became obvious through the use of
both consensus scores. According to F1, the 3D-QSAR models (3D1–3D3) clearly out-
performed all the other models, without failing any criteria (i.e., complying with all the
parameters’ thresholds used herein). Models RF1 and RF2 showed compliance with 10 out
of 12 criteria, however, the latter model might suffer from overfitting as suspected from
poor CV statistics (Q2 < 0.5). Models SVR1 and SVR2 showed compliance with 8 validation
criteria, and although MLR1-MLR3 exhibited the same level of compliance, SVR models
afforded generally better F2 scores. Thus, even the best MLR model (MLR1) performed
worse than the best SVR and RF models (SVR1 and RF1, respectively, Figure 2). According
to both consensus scores, F1 and F2, the MIF-based 3D-QSAR is the method of choice for
modeling the data set under study.

The effect of training/test size on model performance was analyzed by changing the
respective ratio from 74:26 to 70:30 (model 3D4) and 80:20 (model 3D5). As can be seen,
the newly generated models displayed higher F2 values (Figure 2) than 3D1–3D3. Thus,
regardless of the training set size, 3D-QSAR models are comparably good predictors.

Owing to their higher F2 scores, the quality of models 3D4 and 3D5 was further
investigated through the determination of their robustness. The progressive scrambling
method [38], as implemented in Open3DQSAR, was used to achieve this ultimate compari-
son. The method calculates a normalized correlation coefficient (Q∗0

2) resulting from the
fitting of Q2 and R2 after progressive scrambling, which can be interpreted in the same
manner as a normal Q2 value [38] (i.e., the higher the better). The calculated Q∗0

2 for models
3D4 and 3D5 was 0.61 and 0.59, respectively. The rather subtle difference would suggest
that both models are equally robust. Nevertheless, subsequent analysis was performed
with 3D4 as the nominally best model.

2.2.3. Applicability Domain for Model 3D4

Once having a valid and robust model in hands, determination of the applicability
domain (AD) was mandatory in order to fulfill another OECD requirement [32]. The AD
in its currently accepted definition is the response and chemical structure space in which
the model makes predictions with a given reliability [39]. Therefore, it constitutes a funda-
mental point to assure the correct use of any model when the prediction of new, unseen
compounds is desired. Within the plethora of existing methods for defining AD [39,40], the
leverage method [39–42] (a distance-based method) was used in the present research. The
corresponding Williams plot (standardized residuals vs. leverage) is shown in Figure 3A. It
becomes obvious that none of the compounds in the test set appeared beyond the “warning
leverage” (denoted h* and represented by the vertical dashed line), indicating that all
of them are within the AD of the model. Leverage values higher than h* in the test set
would have indicated unreliable predictions as a result of substantial extrapolation [39,41].
Notably, compounds 24 and 21 (see Table S1, Supplementary Materials, for structures),
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members of the training set, have leverages higher than h*, showing their significant influ-
ence on the regression model. Both of them were accurately predicted (low standardized
residuals). On the other hand, compound 13 (see Figure 3B) yielded a relatively large
standardized residual, demonstrating that its activity was not entirely well-predicted by
the model, although still located within an accepted range (<2.5σ). Compliance with AD
during model building and validation, as demonstrated above for all the compounds used,
represents yet another strength of model 3D4. The combination of good validation statistics
with proven robustness and well-defined AD, therefore, makes it a reliable model for the
prediction of the antileishmanial activity of dihydrobenzofurans. Activity predictions by
model 3D4 are summarized in Table S8 (Supplementary Materials).

Figure 3. Applicability domain and interpretation of 3D-QSAR model 3D4. (A) Williams plot for
AD definition of the model. Horizontal dashed lines represent 2σ and 3σ. The Vertical dashed line
represents h* (see text for interpretation). (B) Chemical structures of representative potent (compound
13) and non-potent (compound 30) antileishmanials. (C,D) MIF regions showing steric interactions
affecting positively (green) and negatively (yellow) the activity (C), and electrostatic interactions
by positively (blue) and negatively (red) charged regions positively affecting the activity (D). MIFs
with a strong impact on activity according to model 3D4 (LV = 5) are plotted around the structure of
compounds 13 (dark gray) and 30 (light gray).

2.2.4. Model Interpretation

One of the most important goals of QSAR models, in addition to predicting the activity
of new compounds, is their interpretation in order to rationalize the underlying SARs [43].
Interpretation is particularly straightforward in the case of CoMFA and other 3D-QSAR
variants based on MIFs, due to the implicit easiness of visualization [44]. Therefore, an
analysis of the key structural features affecting the antileishmanial activity was carried out
by inspecting the MIFs-derived contour maps for model 3D4. Such maps represent MIF
regions with a high impact on the PLS regression model and are generated by plotting the
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PLS coefficients of MIF regions with absolute values higher than a certain threshold. CoMFA
maps for 3D4 are shown in Figure 3C,D around the structures of compounds 13 and 30, as
representative potent and inactive compounds, respectively (see Figure 3B for chemical
structures). Van der Waals interactions (Figure 3C) around the substituent on position C-5
showed a positive effect on the activity, being probably the most important characteristic
(green contours V1 and V2). This was in very good agreement with previously observed
qualitative SARs [26]. Compounds bearing an acrylate unit were generally more active
than those without it, which, according to the 3D-QSAR model, is partially due to increased
steric bulk in that region. Moreover, compounds with bulky alkoxy groups obtained by
esterification of the acrylate moiety were more active (contour V2). However, the steric
MIFs also indicated a small negative effect on activity in cases where this substituent was
too large (as found for compound 16, yellow contour V3). The presence of substituents on
positions C-3′ and C-5′ (pending phenyl ring) were determined as positively affecting the
antileishmanial activity, too (contour V4). A similar trend was evident for the substituents
on the carboxy group attached to C-3 (green contour V5). On the other hand, analysis of the
electrostatic interaction field (Figure 3D) revealed that the presence of electron-rich chains
on C-5 increased the activity (big red contour E1). In contrast, some electron deficiency on
the aromatic ring near C-5 might improve the activity (blue contour E2). Electron deficiency
on the pending phenyl group resulted in a favorable effect on activity (blue contour E3) as
well, whereas H-bond donors on C-3′ and C-5′ led to superior activity (red contours E4).
The MIFs also indicated that the establishment of H-bonds by the carboxy group on C-3
might improve the activity (both donor and acceptor nature; contours E5).

The steric field contributed to a larger extent to the explanation of the variance in
activity (62.43% steric vs. 37.57% electrostatic) in model 3D4, suggesting that increasing the
lateral chain sizes to a certain optimum played a more important role than, for instance,
changing electron density on the benzofuran moiety. All the observations and conclu-
sions retrieved from this model were in full agreement with the reported qualitative SAR
analyses [26].

3. Materials and Methods
3.1. Data Preparation

A basic preparation of the data set was carried out for all the compounds included
as follows: 2D structures of the trans-2-phenyl-2,3-dihydrobenzofurans were converted
into 3D models assuring a (2R)-configuration in the Molecular Operating Environment
(MOE) software (version 2018.0101) [29]. Since all compounds were synthesized and
tested as racemates, this does not imply that the R-enantiomers are the eutomers. Each
structure was then submitted to energy minimization using the Amber10:EHT molecular
field. Subsequently, a conformational search using the LowMD mode in MOE within an
energy window of 5 kcal/mol and RMSD limit of 0.75 Å was performed. The structures
of the lowest energy conformers were refined by energy minimization using the semi-
empirical AM1 method with the MOPAC module of MOE. The obtained 3D structures
were used for the calculation of the whole set of 435 molecular descriptors available in
MOE. The suitability of the molecular descriptors for QSAR purposes was assessed by
contingency analysis as implemented in MOE. Minimum threshold values of 0.6 for the
contingency coefficient and 0.2 for Cramér’s V, uncertainty, and correlation coefficients
were chosen for the selection of 107 descriptors to be used in the QSAR study (Table S3;
see Table S9, Supplementary Materials, for the final list of descriptors used). Activity data
(Tables S1 and S2, Supplementary Materials) were used in the form of the negative decadic
logarithm (pIC50) of the half-maximal inhibitory concentration (IC50 in mol/L).

3.2. Multiple Linear Regression Models

The data set was divided into training and test sets as follows: the compounds were
sorted in descending order of activity (pIC50) and 18 different bins were defined. From
each bin, a compound was randomly selected and assigned to a test set representing 26%
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of the samples. The process was repeated several times to obtain different training/test set
compositions for model building.

QSAR models were then built for those data sets using the genetic algorithm-driven
variable selection and multiple linear regression analysis (GA/MLR) [32–34]. The GA/MLR
algorithm was obtained from the CCG/MOE SVL exchange website (script GA.svl) [45]. A
fixed number of variables was used in all cases and models with 3 to 7 variables generated
for each training set. For each GA/MLR run, a set of 100 models was generated. Each GA
run had a maximum of 1000 evolution cycles as termination criteria. In each case, the five
models with the highest Q2 during leave-one-out (LOO) cross-validation (CV) were tested
for external predictivity by calculating the activity of the test set compounds.

3.3. Random Forest Models

Random forest (RF) is an ensemble learning method based on the use of a group
of decision trees [46,47]. A bootstrapped sample of data is employed for the training
of each tree, typically considering a randomly selected subset of features during node
splitting. The final predicted property is an average of all the predictions obtained from
the individual decision trees. Reduction in the Gini index or Gini “impurity” drives node
splitting [48]. Data sets prepared as described before were submitted to RF regression
using Scikit-learn [49]. The number of trees in the forest, the minimum number of samples
required to be at a leaf node, the minimum number of samples required to split an internal
node, the maximum number of features to consider for the best split, and the number of
samples to draw from the training set during bootstrap were subject of optimization in
this work. A coarse-to-fine approach was followed to accomplish such a hyperparameter
tuning. During the first instance, random sampling within the selected hyperparameter
space was performed, while the second instance consisted of an exhaustive grid search. Q2

statistics (5-fold CV) guided the selection of the best combination of hyperparameters. The
corresponding Scikit-learn implementations were applied to successfully accomplish this
sequential process.

3.4. Support Vector Machines Models

Support Vector Machines (SVM) attempt to segregate the data set into different classes
of objects defining so-called hyperplanes [50]. Data points located close to the hyperplanes
are denominated support vectors. Minimization of the gap between the support vectors
delimiting a hyperplane (margin) drives the selection of the best hyperplanes. Kernel func-
tions are typically required to help find the hyperplanes through a process of transformation
from a lower to a higher dimensional space (i.e., increasing the dimensionality). Datasets
prepared as described before were submitted to SVM regression using Scikit-learn [49].
The kernel function, the kernel coefficient gamma, the epsilon-tube (if applicable), and the
regularization parameter C [50] were subject to optimization, using the same protocol as
described for RF.

3.5. 3D-QSAR Models

The 3D molecular structures obtained as described above were aligned using the
automatic alignment algorithm implemented in Open3DAlign [30]. Molecular interaction
fields (MIFs) were calculated using the MMFF94 force field with default probes (neutral C
atom in alkyl chain with sp3 hybridization for the steric MIF and a single positive punctual
charge for the electrostatic MIF) with a 1.0 Å grid-step in a box of 28 × 30 × 23 Å (box big
enough as to have a 5 Å out gap around the largest molecule). The number of obtained
variables was reduced according to conventional cutoff limits (±30 kcal/mol). The remain-
ing variables were scaled by the block unscaled weighting [51] algorithm implemented
in Open3DQSAR [31] (version 2.281). Then, a variable selection procedure comprising
Smart Region Definition [52] and Fractional Factorial Design [53] was carried out. Both
algorithms were directly applied in Open3DQSAR. Finally, models were generated by
Partial Least Squares (PLS) regression [54,55], using LOO-CV. The PLS coefficients were
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exported to be visualized in MOE as MIF contours. Different training and test sets were
created by random splitting, where the latter constituted 20, 26, and 30% of the samples.

3.6. Statistical Validation

Quality assurance was assessed by calculating several statistical parameters [56], in
addition to the conventional R2 and Q2, and are denoted as follows: R2

0, R′0
2, k, and

k′ [35], R2
m [36,57], mean absolute error (MAE) [58], R2

pred (=Q2
F1) [59], Q2

F2 [60], Q2
F3 [61],

and the concordance correlation coefficient (CCC) [62]. Definitions for those validation
parameters are included in the Supporting Information (Table S6, Supplementary Materials).
An in-house MATLAB script was employed for the simultaneous calculation of all the
parameters. Thereafter, the models were scored using the global scoring functions F1 and
F2, as previously reported [37] (see Table S7 for definition).

A comparison of the robustness of the two models with the best F2 scores was achieved
using the statistical variation in the progressive scrambling method [38] as implemented in
Open3DQSAR. Assessment of the applicability domain was carried out by the leverage
approach [42,63], using an in-house MATLAB algorithm. The results were displayed as the
corresponding Williams plot [42,63].

4. Conclusions

The promising antileishmanial potential of some 2-phenyl-2,3-dihydrobenzofurans,
together with its evident structural dependence, encouraged us to thoroughly explore the
structure–activity relationships underlying an existing medium size data set.

To this end, a considerable number of different QSAR models for the antileishmanial
activity of the studied compounds were created. Three different machine learning methods
trained on a matrix of 107 molecular descriptors, i.e., MLR, RF, and SVR, as well as 3D-QSAR
based on the compounds’ MIFs were used to generate regression models. A comprehensive
quality assessment by various validation metrics clearly demonstrated that 3D-QSAR
models exhibited the best statistical quality, outperforming all descriptor-based models
obtained with the other approaches. After evaluation of statistical robustness, model 3D4
was chosen to analyze the underlying MIFs for structural information quantitatively related
to the antileishmanial activity. The significant role of an acrylate unit on C-5 was disclosed.
Furthermore, a positive steric effect on the activity by bulky ester groups on that acrylate
was confirmed. Substitutions on C-3′, C-4′, or C-5′ causing electron deficiency on the
2-phenyl ring might increase the activity, while H-bond donors on C-3′ and C-5′ would also
improve it. Finally, the assessment of the applicability domain of the model emphasized
the proper inclusion of all the studied compounds.

In summary, a complete statistical analysis and comparison of various QSAR models
led to an exhaustively validated and robust final model able to predict the antileishmanial
potency of 2-phenyl-2,3-dihydrobenzofurans. The major outcome of this research can thus
be considered as a fundamental first-line tool for further analysis and development of this
kind of compound to fight Leishmaniasis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules28083399/s1, Table S1: Antileishmanial activity and chemical structure of compounds
from class A, Table S2: Antileishmanial activity and chemical structure of compounds from class
B, Table S3: Feature selection by contingency analysis in MOE, Table S4: Equations describing
models MLR1-MLR3, Table S5: Model performance assessment using different validation metrics,
Table S6: Definition of validation parameters used for assessing the performance of the models,
Table S7: Definition of consensus scoring functions, Figure S1: Comparison of models’ performance
using different metrics and PCA, Table S8: Activity predictions by model 3D4, Table S9: Molecular
descriptors considered for model building. References [26,35,37,57,58,60–62,64–67] are cited in the
Supplementary Materials.
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