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Abstract

A novel motion-based object-oriented codec for video transmission at very low bit-rates is proposed. The object
motion is modeled by quadratic transform with coe$cients estimated via a nonlinear quasi-Newton method. The
segmentation problem is put forward as a constrained optimization problem which interacts with the motion estimation
process in the course of region growing. A context-based shape coding method which takes into account the image
synthesis error as well as the geometric distortion, is also proposed. Quantitative and subjective performance results of
the codec on various test sequences illustrate the superior performance of the method. ( 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The research activities for very low bit-rate video transmission, in the context of model-based coding, have
been centered around the development of the new international standard, so-called MPEG-4 [24]. This
standard, besides high compression, also addresses content-based functionalities such as interactivity (e.g.,
multimedia data access, manipulation) and scalability (e.g., user or automated selection of decoded quality of
objects in the scene, database browsing at di!erent qualities). Therefore novel video coding schemes are
desired, which can address the content of the video by di!erentiating the objects or the regions of interest in
the scene. These schemes also exploit in general the properties of the human visual system, as well as the
inherent temporal redundancy using more sophisticated motion estimation.

Conventional schemes such as block-based H.261/263 standard, are mostly independent of the scene
content. As far as model-based algorithms are concerned, on one side stand the semantic-based schemes
which are committed to speci"c content, such as those based on head-and-shoulder wireframe models. On
the other side, the object-oriented schemes make no a priori assumptions about the scene content, and are
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therefore applicable to a more general class of images. Object-oriented methods model the real world in
terms of objects which are speci"ed by three sets of parameters de"ning the motion, shape and color (texture)
information. In this respect object-oriented codecs have gained prominence since they both allow for
enhanced functionality and also they have the potential for improved rendition using advanced motion
models.

The three important tasks in an object-oriented coding scheme are object modeling, image analysis and
synthesis, and parameter coding, as shown in the block diagram of Fig. 1. Image analysis purports to segment
the scene into objects. The object modeling part refers to the de"nition of objects and determines the
goal-directed criteria of the segmentation process. Segmentation generally yields arbitrarily shaped and
textured regions corresponding to di!erently moving objects. Finally, parameter coding aims to coding of the
shape, color and motion parameters of resulting objects, whose bit budget should be e$ciently shared among
these three types of parameters.

The most crucial part of an object-oriented coder is the analysis part, in which the scene is segmented into
objects under the chosen object model. The main approaches in the literature can be grouped under two
categories:

Temporal segmentation. The goal of temporal segmentation in an object-oriented coder is to subdivide the
scene into regions each of which corresponds to an object with a di!erent motion characteristic. In [21], the
segmentation depends purely on motion information, and proceeds hierarchically from larger objects to
smaller ones. The scene is "rst divided into background and changed regions. The changed region is further
processed and segmented into model compliance, model failure and uncovered regions [14]. Model
compliance regions correspond to objects for which the motion can be modeled successfully by the chosen
object model, and thus can be compensated without further color coding. On the other hand, model failure
and uncovered regions fail to satisfy the object model, and therefore are subject to color coding. The various
object models utilized in such a scheme are 2D rigid objects with 3D motion [21], 2D #exible objects with 2D
motion [12], 3D rigid objects with 3D motion [21], 3D #exible objects with 3D motion [23]. Although this
scheme, in terms of bit-rate-quality tradeo!, works well for head-shoulder scenes of videophone sequences,
for which it has been designed for, it may fail for scenes of a di!erent content.
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Fig. 1. Block diagram of an object-oriented coder.

Spatial segmentation. The goal of spatial segmentation in an object-oriented coder is to subdivide the scene
into spatially homogeneous regions each of which corresponds to a di!erent object. Thus, rather than the
object motion, the spatial properties of the objects are taken into account for the segmentation. This leads to
an image representation in terms of the primitives, contours and textures. The main motivation for this
scheme is the observation that the most important part of the visual information is represented by contours
[17,33], especially at high compression ratios.

In [26,27], morphological methods are employed in order to achieve a desirable segmentation. However,
motion estimation and segmentation are treated completely independently, that is "rst the segmentation task
is accomplished, followed by motion compensation of the texture and contour information. The advantage of
this scheme, when compared to that in [14], is its generality in terms of the image content. In fact, the
spatio-temporal segmentation makes use of both spatial and temporal characteristics of the objects, resulting
in an oversegmentation which is recuperated by merging the regions with similar motion [19,10]. However,
these schemes, which rely mainly on spatial information, need very accurate segmentation, and may
potentially con#ict with the real motion of the objects.

Our paper is aligned with coders in the `temporal segmentationa group as it is based on region growing
motion segmentation approach which aims to distinguish and to code various objects in the video scene. This
object-oriented codec [35,36] is mainly based on the framework of model compliance and model failure
objects as presented in [12,14]. However, in contrast to [12], where a top-down hierarchy of motion
segmentation was employed, we are using a bottom-up hierarchy. In other words, the object hierarchy is
reverted in the sense that segmentation proceeds from smaller objects to larger ones. The segmentation in
[12] proceeds from larger objects to smaller ones, and consists of only two levels of hierarchy so that it is
applicable only to face-shoulder scenes of the videophone applications. Our scheme in this sense en-
compasses a more general class of video scenes. A second distinction of our work is that a more sophisticated
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Fig. 2. Block diagram of the proposed motion-segmentation based coder (bold line: image #ow; thin lines: parameter #ow). The
quadratic motion estimation block is further expanded in Fig. 6.

motion model is employed in the temporal segmentation. In fact, the motions of objects are modeled via
quadratic transform, which enables a more general and #exible modeling as compared to the other lower
order polynomial models used in the literature such as the a$ne transform and the pure translation. The
quadratic model can represent 3-D motion of parabolic surfaces. A third contribution of the paper is the
formulation of the segmentation problem in terms of the rate-distortion theory as an optimal description
problem. The parametric representation resulting from the quadratic transform model avails us with the
possibility of employing a region growing approach for the iterative solution of the segmentation problem.
Finally a novel shape coding algorithm is developed for e$cient polygonization of segment boundaries
simultaneously taking into account both geometrical as well as image synthesis, and therefore motion
representation distortions. The block diagram of the proposed motion-segmentation based coder is shown in
Fig. 2.

The paper is organized as follows. In Section 2, the problem of quadratic object motion modeling is
considered. In particular, the estimation procedure for the coe$cients of the quadratic transform as
a nonlinear optimization problem is addressed. The quasi-Newton optimization method, which is used for
estimation, is presented in conjunction with a multiresolution and multiframe scheme. Section 3 addresses
the analysis part of the algorithm, which aims to describe the scene in terms of moving objects with arbitrarily
shaped and textured regions. The segmentation problem is formulated by a constrained optimization
problem. The problem of "nding the optimum description under the chosen object model is then solved
suboptimally by an iterative region growing procedure. Section 4 addresses the coding issues of the shape,
motion and color (texture) of the motion segments. A shape coding technique, which is based on polygon
approximation and takes into account not only the geometric shape distortion, but also the synthesis error in
terms of image intensity caused by the shape distortion, is proposed. In Section 5, the simulation results of the
proposed approach are given and its performance on various test sequences is illustrated, both subjectively
and quantitatively. Finally, Section 6 gives the concluding remarks.

2. Quadratic motion estimation

2.1. Object motion modeling

In most video coding schemes, the motion is modeled by a linear combination of 2D polynomial basis
functions [5]. Translational and a$ne models, which correspond to the zeroth- and "rst-order polynomial
transforms, are the most commonly used models in conventional and object-oriented coders. The use of
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higher degree polynomial tranforms such as the quadratic transform [4,16], however, may lead to superior
coding e$ciencies since they are capable of modeling a broader class of object motions and of course,
inherently contain the lower order representations.

The quadratic transform used for object motion modeling, relates the coordinates of an object pixel
between two consecutive image frames at time instances t!1 and t. (This generic time di!erence denotes in
this work the interval between two frames k apart, k"1, 2,2.) Thus, the image intensity I(x, y, t) for an
object region is mapped from I(u(x, y), v(x,y), t!1), where the new coordinates are given by

u(x, y)"a
1
x2#a

2
y2#a

3
xy#a

4
x#a

5
y#a

6
,

v(x,y)"b
1
x2#b

2
y2#b

3
xy#b

4
x#b

5
y#b

6
.

(1)

The use of a quadratic transform for motion modeling is meaningful only under certain physical conditions
of the 3D geometric surface, of the 3D real motion of the objects, and of the projection of objects onto the 2D
image plane. The quadratic transform gives an exact description of the 3D rotation, translation and scaling of
an object with a parabolic surface under parallel projection [4]. Thus, the true object motion is modeled by

U"RX#d, (2)

where U"(;,<,=)T and X"(X,>, Z)T stand for object space coordinates, R is the rotation matrix, and d is
the translation vector. Such a model inherently allows any linear deformation, but fails to model nonlinear
deformations. On the other hand, the parabolic facet for surface modeling can be written as

Z"c
1
X2#c

2
X>#c

3
>2#c

4
X#c

5
>#c

6
. (3)

The parabolic facet assumption (3) and the true object motion model (2) yield the quadratic transformation
in terms of image plane coordinates under parallel projection. The quadratic transform is also a good
approximation for the rigid motion and the linear deformation of an object with a quadratic surface under
central projection [4] (see Fig. 3).

The quadratic transform models the real 3D world in terms of quadratic (parabolic) surfaces moving
rigidly, or deforming linearly. Theoretically, the higher the degree of the polynomial representation, the more
general is the model. One may then inquire whether even higher degree models would not be advantageous.
In general, higher degree models will not necessarily result in a more e$cient coding. First, higher
polynomial representations need more parameters, hence increase the bit-rate. Second, with higher order
polynomials the dimensionality and the nonlinearity of the optimization process employed for the parameter

Fig. 3. Physical interpretation of the quadratic transform.
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estimation increase. Our experiments have in fact shown that using third-order representations, for example,
may yield even less accurate results compared to those of the quadratic transform. Thus, we believe that the
quadratic transform in (1) represents the best compromise between modeling sophistication and coding gain.

2.2. Motion estimation

The motion estimation, in the case of continuous parameter space, is carried out via an optimization
process that utilizes spatio-temporal properties of the image intensity, and is based on di!erential methods.
The error function in motion estimation problem is given by the mean-squared error

E(p, R)" +
x|R

DFD2(x, p), (4)

where R is the support region of the object. The parameter vector p is determined by the quadratic transform
coe$cients in (1), p"(a

1
,2, a

6
, b

1
,2, b

6
)T, DFD denotes the displaced frame di!erence given by

DFD(x,p)"I(x, t)!I(u, t!1), where u is given by the quadratic transform of x. In the sequel, the motion
parameter set will be indicated by the symbol A"a

k
, b

k
, k"1,2, 6. For example, A

i
will be used to denote

the set of 12 motion parameters of the region R
i
. In other words, the motion parameters will be denoted by

p and A, respectively in the context of vector operations and set operations.
The error function in (4) is a nonlinear function, and the minimization of this function is possible only via

nonlinear iterative di!erential methods such as the quasi-Newton method [25,7], as used in our implementa-
tion.

Di!erential algorithms start with an initial value, which is then iterated towards the optimum by
accumulating the information. Newton's method is based on a quadratic model. To illustrate the case let us
consider any arbitrary N-dimensional nonlinear function f ( ) ) of p. Using the truncated Taylor series
expansion of f (p) about the point p

k
, the quadratic model function q

k
(d) can be written, at iteration k, as

f (p
k
#d)+q

k
(d)"f (p

k
)#uT

k
d#1

2
dTH

k
d, (5)

where d"p!p
k
. In (5), u

k
denotes the gradient of the function, and H

k
is the Hessian matrix.

One disadvantage of Newton's method is the need for the second-order derivatives of the function, and the
other is that the Hessian matrix H must be positive de"nite to assure convergence. The latter disadvantage
can be avoided by Newton's method with line search for "nding successive directions along which line
minimizations are performed so that the current point p

k
converges towards the minimum. The so-called

`quasi-Newtona method, which is also based on line minimizations, avoids the computation of the Hessian
matrix at each iteration by updating the inverse Hessian matrix H~1

k
in terms of the value of the function and

its "rst-order derivatives. The kth iteration of the quasi-Newton algorithm can be summarized by the
following three steps:
1. set s
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u
k
,

2. line minimization along s
k
so that p
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"p
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s
k
,

3. update H~1
k

into H~1
k`1

,
where s

k
corresponds to the direction along which the line minimization is carried out at iteration k, and a

k
is

a constant determined by line minimization. The BFGS (Broyden, Fletcher, Goldfarb, Shanno) method for
the update of the Hessian matrix in [7], has been used in steps of the algorithm.

The "rst-order derivative of the error function E(p,R) in (4) can be computed numerically by
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where u
n
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Rx "C
RI
Rx

RI
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The partial derivatives with respect to x and y can be approximated by

RI(x,y, t)

Rx +1

2
(I(x#1, y, t)!I(x!1, y, t)), (9)

RI(x,y, t)

Ry +1

2
(I(x,y#1, t)!I(x,y!1, t)). (10)

A problem in computing the value of E(R, p) and its derivatives is that the mapped coordinates u, v
correspond to real-valued transforms in continuous space whereas I(u, v) is de"ned only on a discrete grid.
The image can be estimated on the grid coordinates by the bilinear interpolation [22]

I(u, v)"(1!a)((1!b)I([u], [v])#bI([u]#1, [v]))#a((1!b)I([u], [v]#1)#bI([u]#1, [v]#1)),

(11)

where ([u], [v]) are the integral parts and (a,b) are the fractional parts of the coordinate (u, v). The gradient
vector in (6) must similarly be estimated on the coordinates (u, v) via interpolation on the original grid. Hence,
Eq. (6) can alternatively be calculated by

RE(p, R)

Rp " +
x
n|R

2(I(x
n
, t)!I(u

n
, t!1))

RI(x
n
, t)

Rx
Rx
Ru
Ru
Rp, (12)

where

A
Rx
RuB

~1"C
2a

1
x#a

3
y#a

4
2a

2
y#a

3
x#a

5
2b

1
x#b

3
y#b

4
2b

2
y#b

3
x#b

5
D. (13)

2.3. Multiscale estimation

The quasi-Newton methods are assured to converge globally in N iterations if the function f (p) to be
minimized is quadratic, regardless of the starting point p

0
. This is generally not the case for the error function

in (4) which is set up for arbitrarily textured images. In other words, the error expression in (4) would be
a quadratic function only when the related region corresponds to a quadratic surface. However, real-world
images, especially textured areas do not form exactly quadratic surfaces. Thus, there may exist many spurious
minima on the trajectory between the starting point to the global minimum. In order to prevent the
quasi-Newton algorithm from getting stuck in a local minimum, we recourse to the following measures:
(a) proper initialization of p, (b) multiresolution scheme, and (c) tracking of motion in skipped frames. Let us
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emphasize once more that with the multiresolutional scheme the lower bands are less textured, and their
regions can be more easily modeled as quadratic surfaces. This is the reason why better initial estimates can
be obtained. In summary, the interplay of spatial and temporal multiresolution guarantees and speeds up the
convergence of the quasi-Newtonian methods.

The proper initialization of p, recalling (1), is based on the following observation:

u(0, 0)"a
6
, v(0, 0)"b

6
. (14)

Thus the coe$cients of the zeroth-order terms corresponding to the translational part are determined by the
displacement of the point (0, 0), i.e., the geometric center of the support region. The vertical and horizontal
displacements of the centroid of a region R, which can be estimated by a classical block matching technique,
correspond to the initial values of a

6
and b

6
, respectively.

A second measure to improve convergence is a multiresolution scheme as in [15,5,16], which spatially
smooths the consecutive images and reduces the number of the minima arising from the high-frequency
components. The estimates obtained from the smoothed images can then be used for a more accurate
estimate in the higher bandwidth images.

Thirdly, the motion information in the skipped frames, which is usually neglected in coding schemes, can
also be incorporated so that the motion parameters evolve temporally through the skipped frames and
converge towards the global minimum. This is needed especially when there exists severe motion as
a consequence of frame skipping.

Consider the problem of motion estimation between two P-frames (predictive coded frames), I
n
and I

n~q,
so that there are q!1 S-frames (skipped frames) in between (Fig. 4). Notice that in this algorithm
the motion estimation proceeds in the backward sense. The skipped frames are only used by the
encoder in order to improve the performance of the estimation, but they are not coded and transmitted
to the receiver. The motion of each object in the scene between the P-frames is determined by a
quadratic transform coe$cient vector which can be denoted by p(q). Suppose that the motion of an object
between the P-frame I

n
and a skipped frame I

n~k
, k(q has been estimated. This already estimated parameter

vector p(k) can then be used as an initial estimate for the quasi-Newton algorithm to predict the motion
between the frames I

n
and I

n~k~1
, represented by the coe$cient vector p(k#1). Thus the evolution of the

shapes of the objects throughout the time interval (n, n!q) are inherently modeled by a tubular surface
where the shape of the object at each discrete time instant corresponds to a cross-section of the surface, as
illustrated in Fig. 4.

Fig. 4. Incorporation of the motion information in the skipped (S) frames. Notice that the motion estimation proceeds backwards.
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Denoting the quadratic coe$cient vector p(m, k) as a function of the resolution level m and the delay k, the
combined multiscale procedure, which is used in our implementations, is given in the pseudo-code as follows:

initialize p(m
.!9

#1, 0) (starting point)
for k"1 : q do

for m"m
.!9

: 1 do
I"h

m
(x, y)*In

(x, y)
I@"h

m
(x, y)*I

n~k
(x, y)

set p
0
(m, k)"p(m#1, k!1)

minimize E(p) for p(m, k) between I and I@
end

end

where h
m
(x, y) is spatial averaging "lter of size m]m, m

.!9
is the number of resolution levels, and

p
0
(m, k) denotes the initial value used for the quasi-Newton estimation of p(m, k). Thus the motion

estimation evolves in a double loop, both from lower to higher resolution, and temporally from present frame
q past one.

Beside the improvement obtained in the estimation performance, the temporal evolution of the shapes of
the objects between S-frames, as illustrated in Fig. 4, may lead to additional advantages. First, the temporal
resolution can be increased at a small additional cost by predicting the skipped frames simply using q extra
motion information. This also results in segmented objects that are more attuned to the real objects of the
scene, and the prediction of the object shapes in the skipped frames via the updated motion parameters can
be utilized for object tracking purposes.

In conclusion, the multiscale approach makes the motion estimation more robust in that the complex
algorithm described in Section 2.2 becomes more stable and noise insensitive. We should also point out that,
although in our coding scheme, backward motion estimation is considered. However, backward and forward
estimations are dual problems so that the same analysis is mostly valid for forward estimation. The forward
estimation is more advantageous for temporal object tracking problem, but it is less robust because of the
resulting ambiguous and con#icting image pixels, and the error accumulation through the reconstruction of
consecutive image frames. On the other hand, the backward estimation has the advantage that object pixels
are guaranteed to be assigned to their corresponding pixels in the previous frame. Moreover, the interpola-
tion problem due to mapping of discrete image grid to a continuous plane can be solved reasonably well by
the bilinear interpolation as in (11).

3. Motion segmentation

The goal of segmentation in an object-oriented coding scheme is to subdivide the scene into objects which
are de"ned by the three parameter sets corresponding to the motion, shape and color (luminance as well as
the chrominance) information. A segmentation process, which relies purely on motion information such as
ours and [14], does not necessarily result in exact physical objects. The resulting regions re#ect rather the 3D
geometric structure and the temporal behaviour of the objects, as functions of the chosen object model, and
may correspond in any one frame to di!erently moving parts of the real objects. These regions are called
model compliance regions, whereas the regions for which the model fails are referred to as model failure
regions. The latter may originate from covered, uncovered, or deformed regions or objects newly moving into
the scene. In summary, the three object types are delineated in terms of their motion behaviour.

The "nal output of the motion segmentation scheme is a disjoint partition P of the whole image plane R in
terms of background, model compliance and model failure regions which are de"ned as follows:
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A region R
i
is said to be a background region, and denoted by RBG

i
, if and only if the frame di!erence

FD(R
i
))¹BG, where

FD(R
i
)" 1

N
i

+
x|Ri

(I
n
(x)!I

n~1
(x))2,

and ¹
BG

is a prede"ned error threshold. The whole background region RBG"6N
BG

i/1
RBG

i
, where N

BG
is the

number of background regions, consists of those patches where the temporal changes are not signi"cant and
correspond to either stationary background or the objects with negligible motion. A region R

i
LR!RBG is

said to be a model compliance region, denoted by RMC
i

, if and only if min
A
E(R

i
,A))¹

MC
, where ¹

MC
is the

error threshold determining whether the motion model fails or not. A region R
i
LR is said to be a model

failure region, denoted by RMF
i

, if and only if min
A
E(R

i
, A)'¹

MC
, and consequently, no parameter set A

i
can

be associated with such a model failure region. In conclusion, the whole partition is given by

R"RBGXRMCXRMF, (15)

where RMC"6N
MC

i/1
RMC

i
and RMF"6N

MF
i/1

RMF
i

. The total number of MC and MF regions are denoted by
N

MC
and N

MF
, respectively.

In an object-oriented coding scheme a region with its motion, shape and color properties is called an
object. Model compliance and model failure objects are de"ned below: A model compliance object OMC

i
,

associated with a model compliance region RMC
i

, is de"ned by two parameter sets, SMC
i

for the boundary shape
of the support region and AMC

i
for the motion information. A model failure object OMF

i
, associated with

a model failure region RMF
i

, is de"ned by two parameter sets, SMF
i

for the boundary shape of the support
region and CMF

i
for the color information. Thus, the motion and the shape of MC objects, and the shape and

the color of MF objects are coded and transmitted.
Finally, the segmentation information is described by a labeling de"ned as follows: The labeling map

L : R2PR associates each region R
i
with a label such that

L(x,y)"G
0 if (x, y)3RBG,

!i if (x, y)3RMF
i

,

i if (x, y)3RMC
i

.

3.1. Segmentation as an optimization

An object-oriented coder should optimize the tradeo! between cost and quality of coding. Thus both the
modeling error in MC regions, the coding cost of the partition information and the size of resulting MF
regions should be kept as small as possible. The overall segmentation-estimation problem can be formulated
by the following constrained optimization problem:

min
P

J#jG subject to ∀i, E(RMC
i

,AMC
i

))E
.!9

, (16)

where

J(RMC,AMC)"
N

MC

+
i/1

E(RMC
i

,AMC
i

) (17)
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and

G"G(SMC,SMF,AMC,CMF). (18)

This optimization problem then becomes the problem of "nding a partition P of R such that the function
J#jG is minimized under the given constraint, where j is a weighting constant. Here, J denotes the
modeling error which is given by the model compliance regions and the associated motion parameters. In
(17), AMC"6N

MC
i/1

AMC
i

denotes the concatenation of the object motion vectors.
The coding cost, or equivalently the bit-rate G in (18) depends on the total shape parameter set S of the

MF and MC regions, the whole motion parameter set of the MC regions and the color of the MF regions.
Recalling that the cost of color coding is relatively high, the size of the MF regions and the number of the
resulting MC regions should be kept as small as the resulting modeling error in (17) allows. Moreover,
smooth boundary contours are desired, since the shape coding cost (18) also increases with the complexity
and details of the contours. Finally, note that (17) assumes errorless parameter coding, i.e., the error resulting
from parameter coding is not included in the objective function.

The solution of this sizeable nonlinear optimization problem, which can also be considered as an optimum
description problem, is only possible via iterative procedures in which the segmentation and estimation
processes are employed in interaction. Although such iterative approaches to this optimization problem can
only yield suboptimal solutions, in practice, one obtains adequate performance.

3.2. A novel motion segmentation

The segmentation methods in object-oriented schemes, using motion information, are usually hierarchi-
cally structured [14,4], that is proceeding from larger objects to smaller ones. The hierarchy proceeds from
the gross temporally changed and unchanged regions of the scene, to increasingly "ner di!erentiation of
changed regions using motion compliance. This hierarchical procedure is iterated until all the objects are
di!erentiated so as to satisfy the object model, including all di!erently moving parts of the physical objects,
the objects under occlusion or the objects occluding larger moving objects. This hierarchical procedure can
be visualized in Fig. 5.

In the spatio-temporal segmentation schemes such as [19], the scene is "rst oversegmented into spatially
homogeneous atomic regions. These atomic regions are then successively merged using the motion informa-
tion, though the concepts of model compliance and model failure are not used. The segmentation scheme,
thus, can be regarded as proceeding from smaller objects to larger ones.

The segmentation scheme proposed in this paper, is based on pure motion information keeping the
framework of model compliance and model failure regions of [14]. However, the object hierarchy is reverted
so as to proceed from smaller objects to larger ones, thus allowing a more #exible segmentation which is
closer to the optimum partition and which is applicable to a more general class of image sequences. The
bottom-up scheme is superior to the top-down approach in that (a) object detail can be controlled at any
resolution level, (b) the chance of missing small but semantically relevant objects, such as eyes and mouth in
videophony is minimized, and (c) the scheme is independent of the scene content. On the contrary, the
top-down scheme can miss semantically important details and it is too much oriented towards head-and-
shoulder scenes. The proposed scheme is based on region growing and region merges with re-estimation of
the motion parameters after a joint operation.

In brief, the proposed segmentation technique, which employs a pixelwise region growing process, relies
purely on motion information so that no initial spatial segmentation is needed. The segmentation scheme as
illustrated in Fig. 6 consists of six subtasks, two initial blocks for change detection and splitting into seed
blocks, three blocks in the loop for motion estimation, merging and region growing, respectively, and one
"nal block for eliminating spurious details. In the sequel these subtasks are detailed:
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Fig. 5. Illustration of the object hierarchy in an object-oriented coding scheme.

3.2.1. Change detection map
The change detection subtask aims to di!erentiate the temporally changed and unchanged regions of the

scene. Unchanged regions denoted by RBG correspond to either stationary background or the objects with
no apperant motion. In the change detection algorithm the image is "rst thresholded using the absolute
di!erence of the low-pass "ltered (3]3) versions II

n
(x, y) and II

n~1
(x, y) of consecutive images. Thus any FD

below a threshold ¹
CH

is labeled as background (L(x
k
, y

k
)"0), any above is initially declared as model failure

(L(x
k
, y

k
)"!1). The label map is further subjected to (3]3) median "ltering in order to smooth the

boundaries between the changed and unchanged regions, and to remove some of the isolated pixels. In the
binary map (0,!1) any small region whose size is smaller than a prede"ned threshold, which was not
removed by median "ltering, is assigned to its surrounding region label.

3.2.2. Seed blocks
The region growing process starts from seed blocks that have motion model error E(RMC

i
, AMC

i
))¹

MC
.

Thus the changed regions (regions with label `!1a) are split into non-overlapping blocks B
i
of constant size

(e.g. 7]7), each subjected to a motion estimation process in terms of the quadratic model parameters. If
a block B

i
partly consists of unchanged pixels, then the estimation is carried out only for the part

corresponding to the changed pixels. Those blocks for which the model error is below the prede"ned
threshold ¹

MC
are labeled as the seed blocks of the objects in the scene. The seed blocks are assumed to fall

inside the object regions and prone to further growth. The blocks for which the model error is above the
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Fig. 6. Flowchart of the motion-based region growing segmentation.

threshold ¹
MC

are assumed to fall either onto the boundaries of di!erently moving objects or into the model
failure regions. These boundary blocks are not assigned any label and are handled in the following steps.

The size of the blocks in the initial partition should be chosen large enough such that the number of pixels
in the blocks su$ces for an accurate estimation of the 12 quadratic transform coe$cients, but small enough
to delineate the objects of interest in the scene. So the algorithm is as follows:

for each block B
i
do

EH"min
Ai

E(B
i
, A

i
)

if EH)¹
MC

then L(x, y)"i ∀(x, y)3B
i

end

The output of this algorithm, as illustrated in the second silhouette in Fig. 6, is a rough segmentation of the
scene into MC regions, MF regions and background, which needs to be further re"ned.

3.2.3. Region growing
To re"ne the rough partition resulting from `seed blocksa stage, a merging and pixelwise growing process

of the model compliance regions into both the neighboring model failure and model compliance regions, is
executed.
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Region growing of MC regions into MF regions. Since the color information of MF objects is expensive to
code, these regions should be minimized in both size and number. The initial roughly segmented MF regions
may partly contain MC pixels, either because a block B

i
may sit astride an MF and a neighboring MC

region, or astride two neighboring MC regions, each having di!erent motion vectors, for which a unique
motion cannot be determined. To this e!ect in order to reduce the MF pixels, neighboring MC regions are
grown into MF regions to identify MF pixels that would rightly belong to a MC region according to the
associated motion. The resulting algorithm is as follows:

for each MF pixel (x, y) neighboring to RMC
i

do
if E((x, y),AMC

i
))¹

MC
then L(x, y)"i

end

The above process is iterated until there remains no MF pixel (x, y) such that E((x, y),AMC
i

))¹
MC

, for any
neighboring RMC

i
.

Region growing of a MC region into another MC region. Neighboring MC regions are also grown into each
other for those pixels of region i that would be better represented by the motion model of region j. The pixels
at the boundary of a region RMC

i
are tested for the motion parameters AMC

j
associated with the neighboring

region RMC
j

, and provided that the resulting error is less than that of AMC
i

, the pixel is assigned to the
neighboring region. Then the following procedure is iterated:

for each pixel (x, y)3RMC
i

neighboring to RMC
j

do
if E((x, y),AMC

j
)(E((x, y),AMC

i
) then L(x, y)"j

end

Region growing of a MF region into a MC region. The MC regions of the initial segmentation may also
involve MF pixels. Thus a region growing process should be employed so that MF regions grow into MC
regions by checking the modeling error. The iteration of the following procedure aims to exploit these MF
pixels:

for each MC pixel (x, y)3RMC
i

neighboring to RMF
j

do
if E((x, y),AMC

i
)'¹

MC
then L(x, y)"!j

end

Rexnement of the background regions. The threshold ¹
CH

of the change detection algorithm is set to be
smaller than the background discrimination threshold ¹

BG
to prevent spurious background regions resulting

within homogeneous gray level patches in the MC regions. Therefore, the boundary between the MC regions
and the background should also be re"ned by the following algorithm:

for each MC pixel (x, y)3RMC
i

neighboring to RBG do
if DI

n
(x, y)!I

n~1
(x, y)D)E((x, y),AMC

i
) then L(x, y)"0

end

and

for each BG pixel (x, y)3RBG neighboring to RMC
i

do
if DI

n
(x, y)!I

n~1
(x, y)D'E((x, y),AMC

i
) then L(x, y)"i

end
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In addition, during the region growing process, each MC region RMC
i

for which the frame di!erence
becomes less than the background discrimination threshold, that is FD(RMC

i
))¹BG, should wholly be

assigned to the background.

3.2.4. Rexnement loop
As seen in Fig. 6, the initial segmentation scheme is re"ned in a loop of merging, region growing, and

motion estimation blocks to attain an optimal partition, and hence the bit-rate versus quality tradeo!s. The
re"nement loop has the following characteristics:

1. Region growing process is based on the assumption that the motion parameter set estimated for a MC
region is also valid for the outside pixels near its boundary. Thus the motion estimation procedure inherently
estimates an object surface f (X,>,Z)"0, for which the motion parameter set is denoted by A

f
. All yet

unlabeled boundary pixels are also considered part of this surface so long f (X
k
,>

k
,Z

k
)+0 is approximately

satis"ed, hence the same A
f

is also valid for (X
k
,>

k
, Z

k
). Usually, as the regions grow away from their initial

support region their surface structure also changes such that this approximation will eventually lose its
validity. When a MC region cannot be further grown by the current parameter set A

f
, i.e., by the current

surface representation f (X,>,Z)"0, a new set of motion parameters, denoted by A
g
, are estimated so that

the resulting model is a better re#ection of the grown object surface g(X,>, Z)"0. Therefore, at each cycle of
the region growing loop, a re-estimation of the motion model parameters of the MC regions which have
grown (or have become smaller) considerably (e.g., 10%) at the previous cycle is carried out.

2. The MC regions, which have newly been neighbors by having swallowed the intervening regions in the
growth process, can potentially be merged at the successive cycles of the loop.

3. In the re"nement loop the error threshold ¹
MC

can gradually be increased as one cycles through the
loop. With this gradual increase, the ambiguous MF pixels that are simultaneously contended by two
di!erent MC regions can be correctly attributed to the MC region yielding a lower compensation error.
Gradual increase of ¹

MC
can also be utilized for adjusting the cost-quality tradeo!, that is the error threshold

is increased gradually until the total size of MF regions becomes su$ciently small.

3.2.5. Motion re-estimation
In order to avoid the computational load of the quasi-Newton minimization at each cycle, a strategy which

is similar to the one used in [16] is adopted. The method presented in [16] is utilized for region merging
process, whereas the method described below aims to re-estimate the motion parameters of each model
compliance region by making use of its already estimated parameters in previous iterations.

Let RI MC
i

denote the updated version RMC
i

so that (RI MC
i

!RMC
i

) X (RMC
i

!RI MC
i

) corresponds to the pixels
which are removed or added by the motion "eld extension. The problem is to minimize the mean square error
function given by

+
(xk,yk)|RI MC

i

(I
n
(x

k
, y

k
)!I

n~1
(u8

k
, v8

k
))2 (19)

and to obtain a new parameter vector p8 "[a8 , bI ] by using the already estimated p. The trick leading to a fast
solution is that u

k
and v

k
are already su$ciently good estimates, which are given by

u
k
"aTq

k
, v

k
"bTq

k
(20)

for all (x
k
, y

k
)3RI MC

i
, where q

k
"[x2

k
, y2

k
, x

k
y
k
,x

k
, y

k
, 1].
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The Taylor series expansion of I
n~1

(u8
k
, v8

k
) around (u

k
, v

k
) gives

I
n~1

(u8
k
, v8

k
)"I

n~1
(u

k
, v

k
)#RIn~1

(u
k
, v

k
)

Rx (u8
k
!u

k
)#RIn~1

(u
k
, v

k
)

Ry (v8
k
!v

k
), (21)

where the second and higher order terms can be neglected since the initial estimates u
k
and v

k
are su$ciently

good. The above linear approximation, together with (19) yields the following equation for each (x
k
,y

k
)3RI MC

i
:

RI
n~1

(u
k
, v

k
)

Rx u8
k
#RIn~1

(u
k
, v

k
)

Ry v8
k
"I

n
(x

k
, y

k
)!I

n~1
(u

k
, v

k
)#RIn~1

(u
k
, v

k
)

Rx u
k
#RIn~1

(u
k
, v

k
)

Ry v
k
. (22)

Overall, this results in an overdetermined system of linear equations:

Qp"z, (23)

where the kth rows of Q and z are given by

C
RI

n~1
(u

k
, v

k
)

Rx
RI

n~1
(u

k
, v

k
)

Ry D?[1 x
k

y
k

x
k
y
k

x2
k

y2
k
] (24)

and

z(k)"I
n
(x

k
, y

k
)!I

n~1
(u

k
, v

k
)#RIn~1

(u
k
, v

k
)

Rx u
k
#RIn~1

(u
k
, v

k
)

Ry v
k
. (25)

Solution of (23) in terms of a and b, thus the new parameter set AI associated to RI MC
i

can be obtained by the
well-known least-squares method.

3.2.6. Merging
As far as the #exibility of the object model allows, the number of the MC regions should be kept small to

curb the coding cost of motion and shape parameters. Successive merging of neighboring MC regions for
which the motions can be represented by a single set of motion parameters can be achieved as follows:

for each neighboring RMC
i

and RMC
j

do
EH"min

A
E(RMC

i
XRMC

j
, A)

if EH)¹
MC

then do
L(x,y)"i, ∀(x, y)3RMC

j
AMC

i
"AH

end
end

The above merging algorithm should be iterated so that the model compliance regions grow gradually by
merging until no neighboring MC regions with similar motion are left. The motion re-estimation for AH is
again carried out as in the previous step. The minimization strategy for merging is based on the fact that the
motion of the regions to be merged is already known from the previous steps of the segmentation algorithm.
Consider two neighboring MC regions RMC

i
and RMC

j
, and the associated quadratic transform coe$cient

vectors p
i
"[a

i
, b

i
], p

j
"[a

j
, b

j
]. The problem is the determination pH such that

+
(xk,yk)|RMC

i
XR

MC
j

(I
n
(x

k
, y

k
)!I

n~1
(uH

k
, vH

k
))2 (26)
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by using the already known u
k
and v

k
. When expanded by Taylor series around the already known (u

k
, v

k
) for

each (x
k
, y

k
)3RMC

i
XRMC

j
, which are su$ciently good estimates, the dependence of I

n~1
(uH

k
, vH

k
) on u8

k
!u

k
and

v8
k
!v

k
becomes linear and the solution can be obtained by the least squares solution. This scheme for region

merging turns out to be better than, for example, motion "eld extension [28] whereby the motion parameters
for the whole merged region are equated to the motion parameters of the larger of the two regions. Another
alternative is to write a linear system of equations which is given by

uH
k
"u

k
, vH

k
"v

k
(27)

for all (x
k
, y

k
)3RMC

i
XRMC

j
and to solve for pH. One can make recourse to these latter schemes, as in our

implementation, only when the merging method which is based on the Taylor series expansion as expounded
in (23), fails.

3.2.7. Post-processing of the segmentation
A growth constraint is imposed to region growing of the re"nement loop, that demands that every

acquired pixel must have at least three other neighbors of the same label. However, despite this growth
constraint, the region boundaries can still be too active, and some post-processing of region contours is
needed to eliminate the spurious details of the segmentation output, corresponding to small regions or
regions with noisy boundaries, which unnecessarily increase the coding cost. Region boundaries are
smoothed as follows:

f Majority xltering. In a 3]3 mask, the label of a pixel is changed to the label most frequently occurring.
f Morphological closing with a disk structuring element of a small radius [11], e.g. r"1, smooths the

boundaries, fuses narrow breaks and long thin gulfs, eliminates small holes, and "lls gaps on the
boundaries. Closing operation is applied successively to each region in the segmentation map. The order of
the operation is important for the accuracy of the segmentation, since the closing operation has the e!ect
of enlarging the regions: First, the MF regions should be closed, then the MC regions and "nally the
background regions.

f Eliminating the small regions. The regions, either MF, MC or background, which are smaller than
a prede"ned threshold size, are eliminated by merging. The MF and background regions smaller than the
threshold are merged into the neighboring larger regions with the most similar motion. The small MC
regions are treated di!erently since they may still involve parts belonging to di!erent larger MC regions.
Thus, these are set to be unlabeled and consequently a region growing loop is restarted for those regions.

3.3. Discussion of motion segmentation

The proposed purely temporal segmentation process stands somewhere in between spatio-temporal
schemes and the top-down temporal proposed in [19] and [14], respectively.

There are several shortcomings of the top-down algorithm in [14]. The "rst one is due to the hypothesis
that the objects corresponding to higher steps of hierarchy dominate those of lower hierarchy in size. This
hypothesis may cause problems since di!erently moving but connected regions of the scene do not
necessarily have to dominate each other. In this case of di!erently moving but connected regions not
dominating each other, the motion estimation process may result in inaccurate results. Second, even in the
case the objects at di!erent hierarchy levels really dominate each other, inaccurate results may still occur;
sharp temporal changes may indeed a!ect the performance of the motion estimation process, regardless of
the size of the objects. In addition, such a hierarchical scheme is capable of di!erentiating only the regions
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with strongly diverse motions, and usually results in too few MC regions. For example, in a videophone
scene, the head and shoulder are together treated as a single object and the deformable features such as eyes,
and mouth as MF objects. Such a hierarchical structure proceeding from larger objects to smaller ones will in
general lead a solution for (16) far from the optimum, and is constrained since it is applicable to only
head-shoulder scenes.

On the other hand, spatio-temporal schemes rely on spatially homogeneous atomic regions. These atomic
regions demand very accurate initial spatial segmentation since no further re"nement is done. The spatial
segmentation, as in [19] for example, utilizes very sophisticated and powerful morphological methods.
However, a segmentation which does not properly take into account the temporal information can
potentially con#ict with the real motion in the scene. An example of this phenomenon is the case of a spatially
homogeneous region containing di!erently moving objects. Indeed, the coding schemes of [19,27] do not
much rely on the estimated motion parameters for the synthesis, but more on the color (texture) coding of the
homogeneous object regions.

Our motion-based region growing scheme, which proceeds from smaller objects to larger ones, overcomes
the above mentioned shortcomings of both spatial segmentation schemes and motion-based top-down
schemes.

4. Parameter coding

The motion and shape of MC regions, and the shape and color of MF regions need to be coded e$ciently.
The shape of the background region needs not to be considered since it is simply the complement of the union

of MC and MF regions:RBG"RMC XRMF"R!(RMC XRMF). Recall that MC (model compliance) regions
are de"ned so that their motion can be represented well enough by the motion model under the chosen error
criteria. Thus, motion model error residues need not to be coded neither.

4.1. Shape polygonization

The shape of an object can be determined by its boundary contour, and the corresponding segment label
information can be retrieved by "lling inside the closed contour. Chain codes [8,6], spline approximation
[13] and polygonization [18,30] are the most common methods utilized for contour coding in object-
oriented coding. Chain codes are usually used for lossless or very accurate representation purposes whereas
the methods based on polygonization and spline representation yield only approximate solutions. However,
the coding cost of the latter techniques are much less compared to chain coding.

We present here a novel shape coding strategy which is based on an approach in [31]. The boundary
contour is approximated by polygon vertices, which are then coded di!erentially. Such a coding scheme
inherently performs smoothing on the original contour and reduces signi"cantly the coding cost.

Despite the smoothing actions on the contour as detailed in Section 3.2, the resulting contours can still
pro"t from the simpli"cation and smoothing of polygonization. However, the tradeo! between the coding
cost and quality should carefully be taken into account.

4.1.1. Formulation of the problem
An original boundary is an ordered set of connected pixels, which can be denoted by

S"Ms
1
,2, s

l
,2, s

NS
N, where N

S
is the number of the pixels on the boundary. The goal is to approximate

the boundary by an ordered set of vertices, <"Mv
1
,2, v

k
,2, v

NV
N, where N

V
is the number of vertices.

The vertices v
k
are coded di!erentially in terms of the successive di!erences of the vertex coordinates. Thus

the total bit-rate (number of bits) C is the sum of the individual bit-rates c(v
k~1

, v
k
) corresponding to
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consecutive bit expenditures and can be written as

C(v
1
,2, v

NV
)" NV

+
k/1

c(v
k~1

, v
k
), (28)

where c(v
0
, v

1
) is set to zero.

Each couple of consecutive vertices v
k~1

and v
k

de"nes a line segment, i.e., an edge of the polygon
representation. Let P(v

k~1
, v

k
) be the ordered set of the resulting connected pixels of the polygon edge de"ned

by v
k~1

and v
k
such that P(v

k~1
, v

k
)"Mp

1
"v

k~1
, p

2
,2, p

j
,2, p

N
k
P
"v

k
N, where Nk

P
denotes the number of the

pixels in the kth edge of the polygon. Then the set of all polygon pixels becomes P"6NV

k/1
P(v

k~1
, v

k
).

Polygon approximation causes geometric shape distortion, which can be e!ectively quanti"ed by the
Hausdor! metric, i.e. the absolute distance between S and P

k
such that

D
k
(v

k~1
, v

k
)"maxG max

pi|P(vk~1,vk)

min
sj|S

d(p
i
, s

j
), max

si|S

min
pj|P(vk~1,vk)

d(s
i
, p

j
)H, (29)

where d(p
i
, s

j
) is the Euclidean distance between the pixels p

i
and s

j
. Then the overall distortion is given by

D(v
1
,2, v

NV
)" max

k|M1,2,NV
N

D
k
(v

k~1
, v

k
). (30)

The goal of shape coding is to optimize the tradeo! between the bit-rate C and the shape distortion D,
which can be formulated as a constrained optimization problem such that

min
v1,2, vNV|R

C(v
1
,2,v

NV
) subject to D(v

1
,2, v

NV
))D

.!9
. (31)

The vertices v
1
,2, v

NV
are preferably chosen to lie on the boundary such that v

k
3S as in [30], or within

a band of width 2D
.!9

as in [31]. The pixels in this band are ordered such that every pixel is associated to
a boundary pixel s

l
and considered to be a vertex candidate. The optimization problem (31) then becomes

a shortest path problem for a directed acyclic graph and is solved via an e$cient algorithm based on the
observation that given a certain vertex of a polygon, the selection of the next vertex is independent of the
selection of the previous vertices [30].

The main criticism of this formulation is that (31) de"nes a context-free optimization problem in the sense
that it does not take into account the reconstruction error of the region. Recall that the goal is the
minimization of the mean square synthesis error, while shape optimization as in [31,30] does not necessarily
optimize the coder performance.

Our boundary shape coding algorithm takes into account both the geometrical distortion as well as
synthesis error, as explained below. We start with the following de"nition.

De5nition 4.1. Let R, S and ¹ denote, respectively, a generic model compliance region, its boundary and the
band of ordered sets ¹(s

l
). The subset ¹(s

l
) associated to a boundary pixel s

l
is the set of ordered pixels ti

l
with

coordinates (x, y)3R if and only if one of the following two conditions is satis"ed:

1. (x, y)3RM , and

d((x, y), s
l
))D@

.!9
,

E((x, y),A))E
.!9

,
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there exists no (x@, y@)3RM such that

d((x@, y@), s
l
))d((x, y), s

l
) and E((x@, y@),A)'E

.!9
,

2. (x, y)3R and d((x, y), s
k
))D

.!9
,

where RM denotes the complement, i.e., the exterior of R and E((x,y), A) is the synthesis (modeling) error at
(x, y), and A is the motion parameter set associated to R. E

.!9
is the tolerated synthesis error due to shape

approximation, and D@
.!9

and D
.!9

are the maximum tolerated geometric shape distortions towards the
outside and the inside of the boundary, respectively.

The construction of ¹ is e!ected by sliding two circular disks with radii D@
.!9

and D
.!9

along the boundary
and associating the pixels inside the disks with the boundary pixels as long as the constraints, in terms of the
geometric distortion and synthesis error, are satis"ed as shown in Fig. 7. Notice that for the second condition
in De"nition 4.1, the synthesis error requirement is automatically satis"ed since the pixel is inside a model
compliance region. Each ¹(s

l
) turns out to be the union of two partial circular disks with radii o@(s

l
)(D@

.!9
for the outer one, and o(s

l
)"D

.!9
for the inner. D@

.!9
is chosen as much larger than D

.!9
so that the sets ¹(s

l
)

form a band which is wider in the outside of R. Due to De"nition 4.1, the outer part of each ¹(s
l
) becomes the

outer sector of the maximal circular disk within which the motion parameter A complies. These sectors are
illustrated in Fig. 7.

The shape coding problem can then be reformulated as follows:

min
(v1,2,vNV)|T

C(v
1
,2, v

NV
) (32)

subject to

D
065

(v
1
,2, v

NV
))D@

.!9
, D

*/
(v

1
,2, v

NV
))D

.!9
, E(v

1
,2, v

NV
))E

.!9
,

where D
065

and D
*/

denote the shape distortion corresponding to parts of the polygon which are outside and
inside of the original boundary, respectively. Note that the vertices are such that (v

1
,2, v

NV
)3¹ and ¹(s

l
)'s

are not disjoint so that they may have common pixels, unlike the band de"ned in [31]. In (32), E(v
1
,2, v

NV
) is

the maximum synthesis error due to the polygonization, and given by

E(v
1
,2, v

NV
)" max

(x,y)|RP~R

E((x, y),A), (33)

where R
P

denotes the region inside the polygon, and R the region of the original shape. The optimum
polygon tends mostly to widen towards the outside, allowing only a small distortion inside, and the di!erence
R

P
!R corresponds to these extra pixels.
The advantage of this formulation compared to that in (31) [31,30] is that the geometric distortion

constraint is more relaxed towards outside so that D@
.!9

is chosen quite larger as compared to D
.!9

. Secondly
the polygonization in (32) takes explicitly into account the synthesis error.

The construction of the band for model failure regions is carried out in a similar way, though, of course, an
associated motion parameter A does not exist. Since the color coding of the model failure regions is
expensive, augmentation of these regions towards outside must be more controlled, hence a smaller value of
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Fig. 7. Construction of the sensivity band for shape polygonization. The outer tolerance band has width controlled both by geometric
distortion and by the motion compensation constraints (o@)D@

.!9
). The inner band is controlled only by geometric distortion (D

.!9
)

since inside the motion compensation holds true.

D@
.!9

is chosen than that in the case of model compliance regions. For example, D@
.!9

"D
.!9

is one such
option.

The subsets ¹(s
l
), i.e. the sets of vertex candidates, are ordered sets, which is required for a computationally

e$cient algorithm. When a vertex candidate is not lying on the boundary contour, we order the associated
pixels ti

l
of the subset ¹(s

l
) to s

l
in the order of increasing distance d(ti

l
, s

l
). Thus the ordering of the pixels in

each ¹(s
l
) is such that if i(j then d(ti

l
, s

l
))d(tj

l
, s

l
).

4.1.2. The coding algorithm
Since the optimum choice of a vertex is independent of the previously determined vertices, the coding

algorithm can be de"ned edgewise. Let vH
k

be the optimum kth vertex associated to the boundary pixel
denoted by s

v
H
k
, and assume that vH

k~1
and its associated boundary pixel s

v
8
k~1

are also given. Recall that the
relationship between any (vH

k
, s

v
H
k
) pair is that of a polygonal vertex and the closest boundary pixel.

De5nition 4.2. The regions R
065

(v
k
) and R

*/
(v

k
) are de"ned as the set of pixels which are outside and inside of

the region R, respectively, and which lie between the polygon edge P(v
k~1

, v
k
) and S. These regions are

bounded by the line segments P(v
k~1

, v
k
), P(s

vk
, v

k
), P(s

vk~1
, v

k~1
) and the curve determined by the set of

boundary pixels between s
vk~1

and s
vk
. R(v

k
) denotes R

065
(v

k
)XR

*/
(v

k
).

It follows from the above de"nition that R
P
!R"6NV

k/1
R

065
(v

k
) and R!R

P
"6NV

k/1
R

*/
(v

k
), where R(v

k
)'s

are all disjoint (see Fig. 8).
Our aim is to end up with a computationally e$cient shape coding algorithm which approximates the

original noisy boundary S with a polygon P lying inside the band ¹ as de"ned in De"nition 4.1. It is also
required that inside the approximate polygon there should be no holes, i.e., no pixels where the motion model
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Fig. 8. Illustration of the di!erence between the polygon and the original boundary. Note that R(v
k`1

)"R
065

(v
k`1

) since R
*/
(v

k`1
) is

missing.

fails. To de"ne such an algorithm, below we introduce some propositions which are in fact geometrical
consequences of the construction of the band ¹ as proven in [34]. Therefore, one should keep in mind that
the following observations hold for circular subsets ¹(s

l
), and are not necessarily valid for an arbitrary choice

of the windowing shape, as in the case of, for example square windows.

Proposition 4.1. If P(v
k~1

, ti
l
)W¹(s

m
)O0 ∀s

m
between s

vk~1
and s

l
, then P(v

k~1
, ti

l
)L¹.

Thus, the polygon edge de"ned by the vertices v
k~1

and ti
l
is assured to lie inside the band ¹ if it has

a common pixel with each vertex candidate set of the boundary pixels in between.

Proposition 4.2. Each pixel in R(v
k
"ti

l
) satisxes the constraints of optimization in (32), if

P(v
k~1

, ti
l
)W¹(s

m
)O0 ∀s

m
between s

vk~1
and s

l
.

Proof. For any (x, y)3R(v
k
"ti

l
) which is not in the edge set P(v

k~1
, v

k
), consider the line perpendicular to the

line of the edge P(v
k~1

, v
k
). This line either cuts the partial shape contour or the line segments P(s

vk
, v

k
),

P(s
vk~1

, v
k~1

). If it cuts one of the line segments, say P(s
vk
, v

k
), then d((x, y), s

vk
)(d(v

k
, s

vk
) so that (x, y)3¹

l
.

If it cuts the partial shape contour, then the intersection boundary pixel s
m

on the partial shape contour
satis"es d((x, y), s

m
)(d((x@, y@), s

m
), ∀(x@, y@)3P(v

k~1
, ti

l
) so that by Proposition 4.1 and the given condition,

(x, y)3¹(s
m
). Considering De"nition 4.1, this implies ∀(x, y)3R(v(k)"ti

l
), E((x, y),A))E

.!9
(if outside), and

d((x, y), s
m
)(D@

.!9
.

The implication of this proposition is that once the band ¹ has been constructed for the boundary of
a region R, it su$ces to check the polygon edge pixels and the related subsets for the given condition to
assure that all the pixels in R

P
satisfy the constraints of optimization.

De5nition 4.3. An admissible vertex ti
l
3¹ satis"es the constraints of optimization, and ti

l
NR(v

k~1
).

Recalling that the subsets of ¹ are not disjoint, the requirement ti
l
NR(v

k~1
) in the above de"nition is for

keeping track of the original shape, as a precaution to the possibility of choosing the next optimum vertex
v
k
from the pixels in the region R(v

k~1
).
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Proposition 4.3. If there exists no ti
l
3¹(s

l
) such that ti

l
is admissible then there exists no ti

m
3¹(s

m
) such that ti

m
is

admissible for m'l.

The above proposition stands as a stopping rule for the shape polygonization algorithm. Thus the
algorithm does not necessarily visit all the boundary pixels, that is does not visit those remaining pixels that
have no potential to become a vertex.

Argument 4.1. If s
l
3S is the furthest possible boundary pixel from s

vk~1
for which a ti

l
3¹(s

l
) is admissible, then

vH
k

which is nearly optimum, is in ¹(s
l
).

When the admissible vertices are constrained so as to belong to the original boundary, i.e., D@
.!9

"0 and
D

.!9
"0, the proof of the above argument is very straightforward. Since the vertices are coded di!erentially,

the optimization problem turns out to be "nding the shortest path between two boundary pixels under the
imposed constraints. Thus the next optimum vertex is always the furthest possible boundary pixel, in view of
the fact that the shortest path between two points is the line segment connecting them. However, when
D@

.!9
A0, though rarely, the polygon can unnecessarily #uctuate from the original shape towards outside in

order to achieve the furthest s
l
. Meanwhile the optimum vertex, which can only be found by exhaustive

search which is computationally unfeasible, may indeed be in ¹
m

such that m(l. This, in turn, may result in
a higher bit-rate and in unnecessary distortions. A remedy for this undesired phenomenon is to constrain the
admissible vertices more strictly, by extending De"nition 4.3 as follows:

De5nition 4.4. A pixel ti
l
3¹ is an admissible vertex if and only if it complies with De"nition 4.3, and

moreover d(ti
l
, s

l
))D

.!9
.

It follows from the above de"nition that the polygon vertices are forced to be more faithful to the original
shape than the polygon edges which can be placed anywhere in the constructed band ¹. Recalling
D@

.!9
AD

.!9
, the polygon vertices are chosen to be very close to the original boundary pixels s

l
. In addition,

the second requirement of admissibility in De"nition 4.3 need not be checked when, for example, D
.!9

"1 as
in our implementations.

Argument 4.2. If ti
l
3¹(s

l
) is admissible then vH

k
Otj

l
∀ j'i.

The above argument is a consequence of the pixel ordering, that is, if j'i then d(tj
l
, s

l
)*d(ti

l
, s

l
). The

optimum vertex should be as faithful, i.e., close, as possible to the original shape for the sake of minimizing
both the bit-rate, i.e., the path length, and the shape distortion. A consequence of Argument 4.2 is also that
there is no need to check all the vertex candidates in order to "nd the optimum vertex.

Let the initial vertex v
1

be a point on the boundary, say s
1
, which is ideally chosen as to be the boundary

pixel with the largest curvature, and let N
T(sj)

denote the number of pixels in the subset ¹(s
j
). In view of the

above discussion, given the vertex v
k~1

associated to s
l~1

, a nearly optimum vertex v
k
can be found by the

following algorithm:

set v
k
"s

l
;

for j"l to N
S
;

for i"1 to N
T(sj)

;
if ti

j
is admissible (by De"nition 4.4)

set v
k
"ti

j
;

break; (By Proposition 4.2)
if v

k
has not been set at iteration j break; (By Proposition 4.3)
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Due to Proposition 4.3, the algorithm does not necessarily visit all the boundary pixels; if a boundary pixel
s
j
having no admissible vertex in ¹(s

j
) is encountered, the iteration breaks. Similarly, all the vertex candidates

ti
j
associated to a boundary pixel s

j
are not necessarily checked due to Proposition 4.2; if an admissible vertex

is found in ¹(s
j
), ignoring the remaining pixels, the iteration breaks and the algorithm proceeds with the next

boundary pixel s
j`1

.

4.1.3. Summary of the coding algorithm
The proposed shape coding algorithm is actually straightforward although the description of its imple-

mentation seems to be complicated. The idea underlying the algorithm can be summarized as follows: Given
an optimum current vertex v

k~1
, the next optimum vertex v

k
is the furthest possible pixel which is in the close

neighborhood of the original shape, and which also satis"es the two constraints of the optimization. The "rst
constraint is that the geometric shape distortion of the resulting polygon edge P(v

k~1
, v

k
) should be less than

prede"ned values. These error thresholds are generally chosen to be smaller for the distortion towards inside
the region than that of the distortion towards outside, in order to avoid unlabeled ambiguous pixels. The
second constraint relates to the resulting synthesis error, given by the motion parameters. In other words, an
optimum vertex v

k
is chosen such that the additional pixels imported into the region, denoted by R

065
(v

k
) in

Fig. 8, have to comply with the parameter A of the MC region within a synthesis error bound E
.!9

. Once the
band ¹ is constructed around the boundary shape as de"ned in De"nition 4.1, by Proposition 4.2 it su$ces
to check whether each subset ¹(s

l
) associated to the boundary pixels s

l
between s

vk~1
and s

vk
intersects with the

polygon edge P(v
k~1

, v
k
), in order to assure that the resulting polygon edge satis"es the constraints of the

optimization.

4.1.4. Vertex encoding
The vertices are coded di!erentially so that only the xy coordinate di!erences of the consecutive

vertices are considered. A maximum di!erence of 16 is allowed for each coordinate; if the di!erence is larger
than 16, then the vertex edge is partitioned into co-linear vertices. Moreover, due to the #exibility of placing
the vertices within a neighborhood, they can be chosen at pixels with only even (or odd) coordinates.
Consequently, each vertex coordinate can be di!erentially coded with 4 bits, i.e., each vertex costs of 8 bits
totally.

Depending upon the value of D
.!9

which determines the maximum tolerated shape distortion towards
inside, the shape coding process may result in unlabeled pixels in the segmentation, that is pixels not
belonging to any region R. These unlabeled pixels are assigned to the nearest R

i
, which could be of model

compliance, model failure or background type. Conversely, due to the shape approximation, some pixels
which may end up belonging to more than one region. Such ambiguous pixels are handled as follows: If one
of the multiple regions covering the ambiguous pixels is a model failure region, the pixel is assigned to this
model failure region. If not, then the pixel is compensated by the associated motion parameter set of the
model compliance region whose boundary is the furthest from that pixel. Another possibility is to compen-
sate the pixel by taking the average of the individual displacement vectors resulting from the motion
parameters of the overlapping MC regions.

Two instances of the shape coding algorithm are illustrated in Fig. 9. One can notice that the
polygon approximation simpli"es the original contour by covering most of the concavities. In Fig. 10,
the performance of the shape coding process is illustrated for whole segmentation maps resulting
from two di!erent test sequences. The compression gain may di!er mainly depending upon the com-
plexity and the context of the original contour. The average bit expenditures have come out to be 0.87 and
0.96 bits per contour point for Miss America and Carphone sequences, respectively. These "gures, however,
drop to 0.74 and 0.82 bits per contour point if only the shape coding of model compliance regions is
considered.

752 Y. Yemez et al. / Signal Processing: Image Communication 15 (2000) 729}766



Fig. 9. Instances of the shape coding algorithm. The original contours of 220 and 241 pixels in the illustrations (a) and (b) are
approximated by 16 and 20 vertices, respectively.

4.2. Color coding

E$cient coding of color of the MF objects is an important problem in object-oriented coding schemes.
Classical block-based coding methods relying on DCT are not very convenient, since the resulting regions to
be coded are arbitrarily shaped, and hence many blocks will have a hybrid support, that is partly MF and
partly non-MF.

One solution to the coding of arbitrarily shaped regions is the region-based DCT transform coding,
proposed by Gilge et al. [9]. The transform utilized in this technique is based on two-dimensional DCT base
functions which are orthonormal with respect to the region of support. In [32], an approximate shape-
adaptive technique has been proposed, which is based on prede"ned orthogonal base functions and does not
require any orthogonalization, but in turn it is not statistically optimum. The advantage of this technique is
its low computational complexity compared to the region-based DCT transform in [9].

Another solution to the problem of color coding in object-oriented schemes has been proposed in [29],
which is based on a hybrid-adaptive DCT/DPCM scheme. The arbitrarily shaped region is split into blocks
some of which are not complete, i.e., consist of pixels belonging to the outside of the region. The idea is that
the sparse blocks which mostly consist of outside pixels can be coded more e$ciently via DPCM coding. On
the other hand, for the blocks which are almost complete, block-based DCT can be utilized to better exploit
the spatial correlation.

Since the hybrid DCT/DPCM coding is more e$cient compared to those in [9,32], we chose the hybrid
DCT/DPCM method for our object-oriented coding scheme. Both DCT and DPCM coding techniques are
applied to all blocks of each object separately for luminance and chrominance pixels. The method resulting in
a shorter bit-stream is selected, assuring constant quality and "xed DCT and DPCM quantization step sizes
for all the blocks of an object as in [29].
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Fig. 10. Original and coded segmentation maps; Miss America (left), Carphone (right). In the above pair the bit expenditure for lossless
chain coding is given, while in the "gures below the bit total corresponds to the number of vertices ]8.

4.3. Motion parameter coding

The motion of each object i is represented by a parameter set of m"12 coe$cients,
A

i
"Ma

1
,2, a

6
, b

1
,2, b

6
N. However, the resulting coe$cients have varying contributions in reducing the

prediction (compensation) error, hence the coe$cients with negligible contribution can be eliminated from
the set A

i
to obtain a reduced set of parameters AI

i
. Some of the base functions Mx2, y2, xy,x, y, 1N can be

eliminated by checking the resulting additional prediction error. We use the coe$cient removal procedure of
[16], which is based on the elimination of the coe$cients one by one, starting from those with higher degree
terms. For each parameter set AI

i
which is initially set to A

i
, the algorithm is as follows:

1. Find E
.*/

"E(R
i
, AI

i
).

2. Remove a coe$cient and its associated base function from the set AI
i
.

3. Minimize E(R
i
,AI

i
) and determine the minimum value EI

.*/
, via the method used for region merging.

4. If DE
.*/

!EI
.*/

D(e, replace the removed coe$cient and the associated base function.
5. Iterate steps 1, 2, 3 and 4 for each coe$cient.

The motion estimation procedure of Section 2 results in real-valued coe$cients which have to be
quantized and converted into a bit-stream. Prior to the estimation, the coordinates of the bounding box of
each region are normalized to [!1, 1]][!1, 1] so that the coe$cients A

i
are all in the same range. Thus,

a uniform quantizer can be designed adaptively, again by checking the resulting e!ect of the quantization on
the prediction error. The region scaling factor need not be transmitted since it can be deduced from the shape
information which is also available at the receiver.
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The eliminated coe$cients can be coded with a single #ag bit. The nonzero coe$cients which are
concentrated around zero, are coded with eight bits, 7 bits for the quantizer and one bit for the sign #ag.
Three bits are spent to switch between eight di!erent quantizer step sizes. The rest of the nonzero coe$cients
are coded by a code length of 15}20 bits.

The coe$cient removal procedure not only reduces the bit budget, but also eliminates the error due to the
quantization of small valued coe$cients, since the procedure iteratively updates the remaining nonzero
coe$cients. The above-described motion parameter coding method yields nearly optimum experimental
results which will be presented in the next section.

5. Experimental results

The performance of the proposed approach has been tested on the well-known test sequences Miss
America, Claire, Carphone and Foreman in the QCIF format. Miss America and Claire sequences are typical
video-telephony sequences with relatively small motion and stationary background, whereas Carphone and
Foreman sequences contain more severe motion, moving background and tilting of the camera. Each
sequence of 100 frames with the original frame rate 30 fr/s has been frameskipped by 6 so that the resulting
sequence becomes sampled at the rate 5 fr/s. Though only the motion estimation-segmentation data is
transmitted for every "fth frame, the motion information of the skipped frames has been also incorporated by
the multiframe analysis to improve the estimation-segmentation performance.

The quality performance of the coding scheme is illustrated in Figs. 11}14 at di!erent bit-rates. Bit-rate
adjustment is obtained by tuning two main parameters of the segmentation scheme. The "rst parameter is the
maximum allowed mean square error ¹

MC
for the model compliance regions, which mainly determines the

number of resulting MC regions and the size of model failure regions. The threshold ¹
MC

has been chosen to
vary in the range between 20 and 80 in our experiments. The MC regions have been coded only by their shape
and motion parameters, neglecting the errors resulting from motion modeling. The second parameter is the
constant quality required for color coding of the model failure regions, which varies between 33 and 36 dB. In
all the experiments, the minimum allowed size in pixel count for the model failure has been set to 20, in order
not to cause disturbing distortions in the small, but semantically important parts of the scene such as eyes
and mouth, whereas the minimum size for the model compliance regions has been chosen so as to vary
between 50 and 100.

Examples for the resulting segmentation maps, which illustrate the object di!erentiation capability of the
scheme at di!erent bit-rates, are displayed in Figs. 15}18, where the darkest regions, the white regions and the
gray regions correspond to model failure, background and model compliance regions, respectively. These
examples re#ect the semantics of the scene satisfactorily. To give an idea or justify the region growing step in
the motion segmentation algorithm the following pixel exchange tra$c can be quoted. The average
percentages of the exchanged pixels with respect to the QCIF size as a result of the region growing process in
Section 3.2, have come out to be 5% between MC regions, and 7% between MC and MF regions for the Miss
America sequence, whereas these percentages have been respectively 12% and 17% for the Carphone
sequence.

Figs. 11 and 12 show that the quality of the coded sequences are quite good even at very low bit-rates for
Miss America and Claire sequences, although there seem to exist small distortions at 16 kbit/s. The initial
frames of Claire and Miss America sequences have been coded by intra-frame coding, however the overhead
of intraframe coding is not included in the displayed results. On the other hand, the resulting bit-rates for
Carphone and Foreman sequences are comparatively larger, and the quality of the coded frames deteriorates
as the bit-rate decreases towards modem speeds. The evidence for this deterioration can be observed in the
results given in Tables 1}4, where the total size of model failure regions comes out to be much smaller for
Miss America and Claire sequences as compared to those sequences with more severe motion, with
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Fig. 11. Coder performance for Miss America sequence at di!erent bit-rates. In the order from top to down, original frames and coded
frames at 37, 23 and 16 kbit/s, respectively.
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Fig. 12. Coder performance for Claire sequence at di!erent bit-rates. In the order from top to down, original frames and coded frames
at 36, 28 and 17 kbit/s, respectively.
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Fig. 13. Coder performance for Carphone sequence at di!erent bit-rates. In the order from top to down, original frames and coded
frames at 79 and 50 kbit/s, respectively.

proportional increases in the cost of color coding. Moreover, the number of MC regions for Foreman and
Carphone sequences is a lot larger due to the nonstationary background, which in turn makes motion and
shape coding more expensive.

Displayed segmentation maps in Figs. 17 and 18 show that there may exist many spurious model failure
regions which are mainly due to sharp spatial changes where small displacement errors, which are not
perceptually important, lead to very large synthesis errors. Thus, one can expect that elimination of these
spurious MF regions, would cause signi"cant decrease in the associated coding cost.

In order to illustrate the e$ciency of our motion parameter coding scheme, the entropy of the motion
coe$cients AI

i
(i.e., after pruning with zeros) and the resulting average codeword lengths for di!erent

sequences are given in Table 5. Our average codeword lengths are within 10% of the corresponding
entropies, that is the motion parameter coding scheme is close to the optimum. It is also as expected but
interesting to observe that the entropies of the motion parameters get larger as the motion in the scene
becomes more severe. The ratio of the number of removed zero coe$cients to the total number of coe$cients
is also included in Table 5. Let us point out that removal of coe$cients corresponds to the simpli"cation of
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Fig. 14. Coder performance for Foreman sequence at di!erent bit-rates. In the order from top to down, original frames and coded
frames at 100 and 65 kbit/s, respectively.

the motion model; for example if the coe$cients of the second-order terms are all removed, the model
becomes an a$ne case. The last column of Table 5 implies that the full quadratic model is needed in
two-thirds of the time while in one-third of the cases simpler models can be used.

We illustrate how the performance of the coding scheme changes in time by Figs. 19 and 20, where the
percentage of MF regions and the PSNR values for Miss America, Claire, Carphone and Foreman
sequences, are displayed as a function of time at 23, 28, 79 and 65 kbit/s, respectively. Carphone and Foreman
graphs in Fig. 19 reveal that there may be #uctuations in the percentage of MF regions over time.

Simulation results indicate that the subjective quality is better than that of the schemes that rely on spatial
segmentation [27,3]. The reason is that in these contour-texture coding schemes, the emphasis is on the
problem of object tracking, giving relatively less importance to the resulting quality. The performance re-
mains very dependent on the accuracy of the spatial segmentation, which in turn also necessitates a consider-
able e!ort and bit budget for the compensation of the contour prediction errors resulting from the projection.

We have also performed experiments in order to justify the use of quadratic model vis-à-vis a$ne motion
model. The motion estimation scheme, the decision criteria employed during the segmentation phase, and the
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Fig. 15. Polygonized segmentation maps of Miss America sequence at 16 kbit/s (the "rst row) and 23 kbit/s (the second row).

Fig. 16. Polygonized segmentation maps of Claire sequence at 17 kbit/s (the "rst row) and 28 kbit/s (the second row).

parameter coding strategy have all been kept the same for both cases. The only di!erence was that the a$ne
model had only six parameters to be estimated and the coe$cients of the second-order terms were assumed
to be zero. During the experiments, we have observed that a$ne modeling may sometimes lead to a better
motion representation for an object region, depending upon the size, the true motion, and the surface
geometry of the region. This is actually due to the fact that the dimension of the optimization problem in
a$ne case is smaller than that of the quadratic model, which in turn reduces the complexity and increases the
robustness of the optimization. Thus, in order to make use of a$ne modeling in the cases where it is more
appropriate for motion modeling compared to quadratic transform, we have employed a joint strategy so
that during the motion estimation-segmentation scheme, both a$ne and quadratic modeling have been
considered and accomplished separately for each motion estimation, and the one which results in a smaller
mean squared error has been chosen as the model of that coding instant. Recall that in the previous

760 Y. Yemez et al. / Signal Processing: Image Communication 15 (2000) 729}766



Fig. 17. Polygonized segmentation maps of Carphone sequence at 50 kbit/s (the "rst row) and 79 kbit/s (the second row).

Fig. 18. Polygonized segmentation maps of Foreman sequence at 65 kbit/s (the "rst row) and 100 kbit/s (the second row).

experiments of which the results have already been presented in Tables 1}4, we had used purely the quadratic
model. The performance "gures of the coding scheme with the joint motion estimation strategy vis-à-vis
those with purely a$ne model are compared in Table 6. The model failure regions in the initial partition of
the image window from where the region growing process takes start, has been forced to be of equal size in
two cases so that the comparison is not in#uenced by initial conditions. In our experiments, the size of model
failure regions was initially 10% of the whole image window for Miss America and Claire sequences, and 20%
for Carphone and Foreman sequences. The percentage of the number of MC regions which "nally ended up
with a purely a$ne model in the case of joint a$ne-quadratic modeling varied between 10% and 15% for
di!erent sequences. The corresponding bit expenditures for shape, motion and color are given in Table 7.

In Table 6, we observe that the transmission bit-rates are higher than those of the previous experiments,
and in turn the coding quality is better. The reason of this is that the shape information in this new set of
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Table 1
Quantitative performance "gures of the coding scheme for Miss America sequence at 5 fr/s (average values per frame). The bit-rate can
be found by the sum of shape, motion and color bit expenditures multiplied by the frame rate

Bit-rate Shape Motion Color MC MF PSNR
(kbit/s) (bit) (bit) (bit) (number) (% size) (dB)

16 1456 594 1070 9 1.4 34.7
23 1616 560 2292 8 2.7 35.6
37 1893 736 4637 10 6.1 36.2

Table 2
Quantitative performance "gures of the coding scheme for Claire sequence

Bit-rate Shape Motion Color MC MF PSNR
(kbit/s) (bit) (bit) (bit) (number) (% size) (dB)

17 1281 628 1397 9 1.5 34.8
28 1774 876 2800 12 2.6 36.3
36 1773 887 4486 12 4.3 37.3

Table 3
Quantitative performance "gures of the coding scheme for Carphone sequence

Bit-rate Shape Motion Color MC MF PSNR
(kbit/s) (bit) (bit) (bit) (number) (% size) (dB)

50 3856 1866 4100 25 4.9 29.7
79 4165 1894 9375 25 10.3 31.5

Table 4
Quantitative performance "gures of the coding scheme for Foreman sequence

Bit-rate Shape Motion Color MC MF PSNR
(kbit/s) (bit) (bit) (bit) (number) (% size) (dB)

65 3895 1899 6955 24 8.6 30
100 4426 2037 13179 26 14.6 31.2

Table 5
E$ciency of the motion parameter coding scheme: entropy and resulting average bit-lengths for the 12 quadratic motion parameters,
and percentage of the removed coe$cients

Sequence Entropy Average bit length Removed coe$cients

Miss America 5.25 5.81 37%
Claire 5.48 5.97 37%
Carphone 5.76 6.21 33%
Foreman 6.00 6.66 29%
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Fig. 19. MF region sizes in individual frames, as a percentage of the QCIF size.

Fig. 20. PSNR values for individual frames.

experiments has been coded with a higher precision in order to have a more accurate comparison which is as
free as possible of errors that may result from shape approximation and elimination of very small regions.
The PSNR "gures achieve an improvement of 0.7 dB in performance for Miss America and Foreman
sequences, and 0.4 dB for Claire and Carphone sequences. We should remind that the PSNR value for each
image is calculated over the whole frame. Thus although the PSNR improvements seem small, they
correspond to regions or objects of the scene for which the motion can be modeled better by a second-order
model. The cost of this improvement in PSNR "gures is the slight increase in the resulting bit-rates which
originates from the additional coding load of the second-order motion model parameters as observed in
Table 7. However, this additional cost is tolerable for the resulting PSNR improvements.
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Table 6
Comparison of the performance "gures of the coding scheme for purely a$ne and joint a$ne-quadratic motion estimation

Purely a$ne Joint a$ne-quadratic

Sequence Bit-rate MC MF PSNR Bit-rate MC MF PSNR
(kbit/s) (number) (% size) (dB) (kbit/s) (number) (% size) (dB)

Miss America 37.9 16.4 4.6 36.8 38.6 17.2 4.2 36.9
Claire 35.5 17.1 3.1 37.3 38.0 17.6 3.0 37.5
Carphone 78.9 38.5 7.2 32.9 80.6 41.9 6.3 33.4
Foreman 108.5 48.7 14.3 32.1 110.2 50.5 12.1 32.2

Table 7
Bit expenditures per frame for purely a$ne and joint a$ne-quadratic motion estimation

Purely a$ne Joint a$ne-quadratic

Sequence Bit-rate Motion Shape Color Bit-rate Motion Shape Color
(kbit/s) (bits) (bits) (bits) (kbit/s) (bits) (bits) (bits)

Miss America 37.9 558 3257 3775 38.6 954 3320 3452
Claire 35.5 622 3082 3404 38.0 1339 3116 3149
Carphone 78.9 1369 8457 5963 80.6 2608 8223 5294
Foreman 108.5 1965 9485 9995 110.2 3440 9604 8600

6. Conclusions

A novel video coding scheme, in the VLBR range, has been advanced, that exploits the temporal
redundancy by a combination of quadratic motion modeling, region growing segmentation and an e$cient
polygonization scheme. The result is an object-oriented coding scheme, whose advantages and novelties can
be summarized as follows:
1. The segmentation problem is formulated as an optimization problem aiming to "nd the optimal

description of the scene in the rate-distortion sense in terms of model compliance and model failure objects
de"ned with their motion, shape and color parameters. This de"nes a joint problem of motion estimation
and segmentation, which has been solved near optimally via an iterative procedure.

2. The object hierarchy [14,4] has been inverted in the sense that the segmentation proceeds from smaller
objects to larger ones. By making use of the motion parameters estimated interactively with the
segmentation process, a region growing process is started which iteratively rede"nes the object boundaries
and enlarges the initial object seed blocks. The reversed hierarchy and region growing process result in
a more #exible segmentation scheme as compared to those in [14,4], by being able to identify more generic
motion segments. Thus it is applicable to image sequences of any content, i.e., not necessarily limited to
head-and-shoulder scenes.

3. The object motion is represented by the quadratic transform model [16,4], which is a more general and
therefore #exible polynomial model as compared to the other lower order polynomial representations,
namely the translation and the a$ne transformation. Quadratic transform provides a representation for
the rigid motion and linear deformation of objects with quadratic facets, thus avails us of the possibility to
obtain an accurate motion modeling for larger and more complex objects, which is favorable for both
coding cost and quality considerations.
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4. The performance of quasi-Newton estimation of the quadratic transform coe$cients is improved by
a combined multiresolution and multiframe analysis. The motion information in the skipped frames is
incorporated so that the motion parameters evolve temporally. The multiframe analysis tends to increase
the coherency of the objects resulting from the motion segmentation with the true objects, hence better
object tracking can be realized.

5. E$cient coding of the object shape is crucial since object-oriented methods have to allocate a considerable
part of the available bit budget for shape representation unlike the block-based coders such as H.263. In
this work, a context-base shape coding technique is proposed. The context-based denotes here the fact
that the shape coding takes into account not only the geometric shape distortion, but also the image
synthesis error. In other words, during the shape coding process, the segmentation map is reconsidered
and re"ned so that spurious details of the map are omitted to achieve a more e$cient coding.

In conclusion, a complete object-oriented codec has been proposed. Further issues to be addressed in future
research list as follows:

The quality performance of our codec is quite good at very low bit-rates when applied to image sequences
with limited motion content as in Claire and Miss America sequences. However, the size of model failure
regions and the number of model compliance regions increase, as in the case of Foreman and Carphone
sequences, the performance deteriorates disturbingly at the very low bit-rates, or alternatively, for satisfac-
tory quality higher speeds are needed. Simulation results show that a considerable part of the bit budget must
be allocated to the shape information in this case.

The shape coding e$ciency can be further improved by executing the shape coding algorithm simulta-
neously for each object region in the scene. This puzzle tree organization of regions can be more advantage-
ous in reducing shape redundancy by coding the common boundaries only once.

A second avenue of improvement could be the use of so called Voronoi or Dirichlet diagrams [1,2,20],
which can e$ciently be utilized in the object tracking problem. A Voronoi diagram is a construct of image
points each of which de"nes a convex polygonal territory which is the region of the image plane nearer to it
than to any other data point. Such a representation corresponds to a diagram of neighboring regions which
can easily be modi"ed by adding or deleting points. Thus, in the context of object-oriented video coding, it
can be utilized for the representation of a segmentation map at di!erent resolution levels and for its
modi"cation so as to adapt to the temporal changes in the scene. Once a Voronoi diagram is constructed for
the initial frame, the de"ning points (the seeds) can be projected to the consecutive frames via estimated
motion parameters so that the projected points de"ne a new segmentation map, which then can be modi"ed
by adding or deleting points mainly at the object boundaries. The mapping of a Voronoi diagram is quite
robust, which does not yield ambiguous or con#icting pixels, or nonconvex overlapping regions. Thus our
pixelwise region growing technique can be extended so as to proceed more smoothly in terms of Voronoi
polygons, resulting hopefully in regions with less spurious details.
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