
A Quadratic Programming Approach to the
Graph Edit Distance Problem

Michel Neuhaus1 and Horst Bunke2

1 LIP6, Université Pierre et Marie Curie
104 avenue du Président Kennedy, F-75016 Paris, France

mneuhaus@iam.unibe.ch
2 Institute of Computer Science, University of Bern

Neubrückstrasse 10, CH-3012 Bern, Switzerland
bunke@iam.unibe.ch

Abstract. In this paper we propose a quadratic programming approach
to computing the edit distance of graphs. Whereas the standard edit
distance is defined with respect to a minimum-cost edit path between
graphs, we introduce the notion of fuzzy edit paths between graphs and
provide a quadratic programming formulation for the minimization of
fuzzy edit costs. Experiments on real-world graph data demonstrate that
our proposed method is able to outperform the standard edit distance
method in terms of recognition accuracy on two out of three data sets.

1 Introduction

In structural pattern recognition, the edit distance measure has been widely
used for error-tolerant graph matching. The successful application of graph edit
distance is mainly due to its intuitive and universal definition. Based on a node
and edge distortion model, the edit distance is defined as the minimum amount of
distortion that is needed to transform a given graph into another one [1,2], which
follows the intuitive understanding that the more dissimilar two graphs are, the
more transformation operations have to be performed. Graph edit distance is
applicable to arbitrarily labeled and arbitrarily structured graphs — and other
data structures such as strings [3], trees [4], and hyper-graphs [5] — and can
therefore be considered a universal matching scheme for complex patterns. In
practice, the flexibility of graph edit distance, which allows us to assign weights to
individual distortion operations based on the type of distortion and the involved
nodes and edges, renders edit distance applicable to various practical graph
matching tasks.

Computing the edit distance of two graphs results in a time and space com-
plexity that is exponential in the number of nodes of the two graphs. Particularly
in the presence of large graphs, the edit distance problem is computationally very
demanding. In recent years, a number of methods have been proposed to ren-
der the computation of graph edit distance feasible. In [6], an approximate edit
distance algorithm for planarly embedded nodes is introduced. The algorithm

F. Escolano and M. Vento (Eds.): GbRPR 2007, LNCS 4538, pp. 92–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Quadratic Programming Approach to the Graph Edit Distance Problem 93

exploits the position node information that is available in many graph represen-
tations in pattern recognition. The approximate edit distance is computed in an
iterative procedure by successively optimizing local matching criteria. Two fast
suboptimal variants of a standard edit distance algorithms are proposed in [7].
The idea is to restrict the matching process to promising candidates by applying
a technique for search tree pruning and a re-weighting of edit costs. These ap-
proaches have in common that they attempt to refine the standard tree search
algorithm for edit distance to speed up the computation.

In the present paper, we propose to circumvent the standard inefficient algo-
rithm altogether by addressing the edit distance problem by means of quadratic
programming. The basic idea is to formulate the minimum-cost optimization
problem of edit distance in the well-known mathematical framework of quadratic
programming [8], which allows us to tackle the complex graph matching problem
using standard optimization methods. In the longer term, it would be desirable
to develop fast (possibly suboptimal) optimizers for the particular edit distance
quadratic programming formulation, which is not covered in this paper. Our
main contribution is an alternative method for the computation of edit distance.

The quadratic programming approach leads us to the notion of fuzzy edit
paths. The result of our method is either a minimum-cost fuzzy edit path or,
after defuzzification, a standard edit path between two graphs. In this respect,
the method we propose in this paper is loosely related to relaxation labeling
techniques for graph matching [9,10], where the idea is to define the matching
problem as a node labeling problem and to apply iterative procedures refining
the labeling until a sufficiently accurate matching is obtained. Unlike these relax-
ation labeling techniques, which are sometimes defined for numerically labeled
or weighted graphs only, the method we propose is applicable to arbitrarily la-
beled graphs and is closely related to the standard edit distance measure. In [11],
a linear programming method for computing the edit distance of graphs with
unlabeled edges that is somehow related to our approach is introduced.

This paper is structured as follows. In Section 2, we briefly introduce graph
edit distance. The proposed quadratic programming formulation of edit distance
is described in Section 3. Experimental results on three real-world graph data
sets are given in Section 4. Finally, in Section 5 a few summarizing conclusions
are drawn.

2 Graph Edit Distance

Graph edit distance is an error-tolerant dissimilarity measure on graphs. The edit
distance method is applicable to arbitrarily labeled graphs, that is, graphs with
any kind of labels attached to nodes and edges. A graph is commonly defined by
a four-tuple g = (V, E, μ, ν), where V denotes a finite set of nodes, E ⊆ V ×V is
a set of directed edges, μ : V → L is a node labeling function assigning each node
a label from alphabet L, and ν : E → L is an edge labeling function. Note that in
practical applications, numerical labels (attribute vectors) usually prevail. The
idea of edit distance is to define a set of basic graph distortion operations, or

94 M. Neuhaus and H. Bunke

edit operations, and define the dissimilarity of two given graphs by the minimal
amount of edit operations that are needed to transform one graph into the other
one [1,2]. While the edit distance concept theoretically allows for a wide range
of edit operations, for most applications it is sufficient to consider the insertion,
deletion, and substitution of nodes and edges only. A node deletion operation,
for instance, refers to the removal of a node and its adjacent edges, and an edge
substitution operation is equivalent to changing the label of an edge. The edit
distance method can be tailored to specific application by assigning each edit
operation a cost value reflecting the strength of the corresponding distortion. For
instance, changing an edge label by a small amount might often be considered a
weaker distortion than the removal of a node together with all edges connected
to this node. In this particular case, the edge substitution would be assigned a
lower cost than the node deletion. The total edit costs of a given sequence of
edit operations transforming one graph into another one, or edit path between
the two graphs, is obtained by summing up the costs of the individual edit
operations. Finally, the edit distance of two graphs is defined as the minimum
cost edit path between them, that is, the least expensive way to edit one graph
into the other one, given an edit operation model and an edit cost function. If
we denote by P (g, g′) the set of edit paths transforming a graph g into a graph
g′ and by C the function assigning costs to edit operations, the edit distance of
g and g′ is defined by

d(g, g′) = min
(w1,...,wk)∈P (g,g′)

k∑

i=1

C(wi) , (1)

where (w1, . . . , wk) represents an edit path consisting of k edit operations.
The simplest way to compute edit distance is obviously to generate all edit

paths between two graphs and determine the one with minimum costs. In more
sophisticated approaches, lookahead techniques or heuristics are used to deter-
mine which edit paths seem to be promising candidates for exploration. A stan-
dard edit distance computation algorithm is based on an A* tree search algorithm
with efficient heuristics [1,7,12]. The idea is to systematically explore all relevant
edit paths by traversing, in a best-first fashion, a search tree with inner nodes
representing partial edit paths and leaf nodes representing complete edit paths.
The flexibility of edit distance, potentially allowing any node of one graph to be
mapped to any node of the second graph, results in exponential computational
costs in terms of time and space complexity. That is, the edit distance of graphs
is typically tractable for graphs with up to about a dozen of nodes only.

3 Quadratic Programming for Graph Edit Distance

Quadratic programming is a particular type of mathematical optimization prob-
lem [8]. It turns out that the graph edit distance problem needs only a few slight
adaptations to fit into the quadratic programming framework, which makes a
new class of algorithms available for the computation of graph edit distance.

A Quadratic Programming Approach to the Graph Edit Distance Problem 95

3.1 Quadratic Programming

Quadratic programming refers to a range of optimization problems satisfying a
general mathematical form. In the following, the quadratic programming prob-
lem will be described and briefly discussed. First, let the set of real matrices of
dimension a×b be denoted by �a×b. For a given dimension n ≥ 1, let us assume
that a symmetric matrix Q ∈ �n×n and a vector c ∈ �n are given. Furthermore
for l, m ≥ 1, let matrices R ∈ �l×n and S ∈ �m×n as well as vectors u ∈ �l

and v ∈ �m be given. The general quadratic programming problem can then be
formulated as [8]

Minimize f(x) =
1
2
x′Qx + c′x for x ∈ �� (2)

such that
Rx = u

Sx ≥ v .

Note that the vector inequality constraint in the last line means that all com-
ponents of the two vectors must satisfy the inequality. Solving the quadratic
programming problem consists of finding an x ∈ �n that minimizes f(x) such
that the given equality and inequality conditions are satisfied. The expression
quadratic programming is due to the fact that the target function f(x) is a
quadratic function of the argument x. The equality constraint can be seen as
a compact representation of l independent equality conditions (one per line of
matrix R), and similarly the inequality constraint is equivalent to m inequality
conditions.

Quadratic programming problems can always be solved, or shown to be un-
feasible, in a finite amount of time. However, the actual complexity of the com-
putation depends strongly on the characteristics of the problem, in particular
on the matrix Q and the number of relevant inequality constraints [8]. If Q is
positive definite, for instance, the quadratic programming problem can typically
be solved as efficiently as linear programming problems. Furthermore, it is also
known in this case that there exists a globally optimal solution, provided that
the equality and inequality constraints are satisfied for at least one vector. The
methods commonly used to solve quadratic programming problems can roughly
be divided into interior point methods, active set methods, and conjugate gra-
dient methods [8]. In our experiments, we use the interior point algorithm from
the Computational Optimization Program Library [13].

A classic example of a quadratic programming problem is the management
of investment portfolios [8]. The idea is to model the tradeoff between risk and
expected return for a collection of investments. Quadratic programming can
be used to derive an investment strategy that predicts high returns with low
variance. The popular support vector machine method for classification and re-
gression is another example. The maximum-margin hyperplane separating two
classes can be found by solving a quadratic programming problem [14], namely
by minimizing the squared norm of the hyperplane weight vector given a number

96 M. Neuhaus and H. Bunke

of linear constraints. In the following, we will apply quadratic programming to
the graph edit distance problem.

3.2 Fuzzy Edit Path

The standard graph edit distance is defined by the minimum-cost edit path
between two graphs. A common interpretation of substitutions in an optimal
edit path is that they indicate which parts of one graph can be identified in the
other graph. That is, a set of node substitutions can be seen as a mapping of
nodes of one graph to nodes of another graph. Analogously, deleted (or inserted)
nodes and edges can be interpreted as those nodes and edges of the first graph
(second graph) that cannot be matched, with sufficient accuracy, to nodes and
edges of the second graph (first graph). Hence, given an edit path between two
graphs, each node and edge is either substituted with another node and edge, or
deleted or inserted.

The basic idea of fuzzy edit paths is to allow nodes and edges of one graph to
be simultaneously assigned to several nodes and edges of another graph. In the
following, let us assume that two graphs g = (V, E, μ, ν) and g′ = (V ′, E′, μ′, ν′)
with |V | = n and |V ′| = n′ are given. Clearly, there exist n · n′ distinct substi-
tutions of a node u ∈ V with a node v ∈ V ′, such a substitution being denoted
by u → v. A fuzzy edit path is defined by assigning a weight to each possible
node substitution. Formally, a fuzzy edit path between g and g′ is a function
w : V × V ′ → [0, 1] satisfying the conditions

∑

v∈V ′

w(u, v) = 1 for each u ∈ V and
∑

u∈V

w(u, v) = 1 for each v ∈ V ′ . (3)

This weighting function w can be understood as a kind of membership function
reflecting how well a node substitution conforms to, or how strongly it violates,
the structure and labels of the two graphs. The interpretation of a fuzzy edit
path that is optimal with respect to some matching criterion is that two nodes
u, v with a large value of w(u, v) are likely to correspond to a good structural
match, while nodes with small values of w(u, v) should rather be considered
unmatchable. The advantage of fuzzy edit paths over standard edit paths is
that they allow us to integrate ambiguity directly in the definition of edit paths,
instead of being forced to settle for one edit transformation for each node and
edge.

In order to construct a standard edit path from a fuzzy edit path, a defuzzifi-
cation procedure can be carried out. A straight-forward defuzzification method
consists in selecting from all fuzzy node substitutions those with large fuzzy
weights. The first node substitution to be inserted into the standard edit path
is obtained by selecting from all fuzzy node substitutions the one with largest
fuzzy weight, say the substitution u → v. In the following steps, all fuzzy node
substitutions involving u and v will no longer be considered. The second node
substitution of the standard edit path is obtained by selecting from the remaining
fuzzy node substitutions the one with largest fuzzy weight. Again, all fuzzy node

A Quadratic Programming Approach to the Graph Edit Distance Problem 97

substitutions containing either one of the two nodes of the selected substitution
are ignored in successive steps. This iterative procedure is continued until no
more node substitutions can be extracted. The remaining nodes are considered
equivalent to node deletions and insertions. Finally, edge operations are inferred
from node operations. Note that in the computation of fuzzy edit paths, edge
edit operation costs will be included in the definition of fuzzy weights attached
to node substitutions. That is, not only the substitution of nodes, but also the
edge structure plays a role in the defuzzification procedure outlined above.

3.3 Quadratic Programming Formulation

In the preceding paragraphs, fuzzy edit paths have been introduced as an exten-
sion to standard edit paths. The remaining question is how to compute a fuzzy
edit path between two graphs that is optimal with respect to some node and
edge matching criterion. The method we propose in this paper is based on a
quadratic programming formulation of the graph matching problem. The basic
idea is to encode node and edge edit costs in a cost matrix and minimize the
overall costs corresponding to a fuzzy edit path.

Again, let the two graphs under consideration be denoted by g = (V, E, μ, ν)
and g′ = (V ′, E′, μ′, ν′), and let |V | = n and |V ′| = n′. It is clear that there
exist n · n′ substitutions between g and g′. In view of this, we construct a real
matrix Q ∈ �

nn′×nn′
where rows and columns are indexed by substitutions

u → v, where u ∈ V, v ∈ V ′. That is, each row, and the corresponding column,
of the matrix is associated with one distinct node substitution. The matrix Q
is then constructed in such a way that diagonal entries hold the costs of node
substitutions, while off-diagonal entries correspond to edge edit costs. The entry
at position (u → v, u → v) is set to the node substitution costs of u → v; the
entry at position (u → v, p → q) is set to the edge edit costs resulting from
substituting u → v and p → q, depending on the existence of edges between
u and p as well as between v and q. It should be noted that edit costs can be
defined for any kind of node and edge labels, including symbols from a finite
alphabet and complex labels such as strings. The proposed approach is thus not
limited to graphs with numerical labels, but applicable to arbitrarily labeled
graphs, which is one of the strengths of graph edit distance.

An example of two graphs with n = n′ = 3 is provided in Fig. 1, where nodes
are labeled with a two-dimensional position attribute and edges are unlabeled.
It is clear that in this example the nine possible distinct node substitutions are
A → a, A → b, A → c, B → a, B → b, B → c, C → a, C → b, C → c. When
constructing the 9 × 9 matrix Q, each row and column is associated with one of
these substitutions. In Fig. 2, an example cost matrix Q is shown for the two
graphs in Fig. 1. Note that in this example, node substitution costs are set equal
to the squared Euclidean distance of the two node labels, and node and edge
insertion and deletion costs are set to a constant value of 10. The substitution
of unlabeled edges can be carried out for free. For example, since node A is
labeled with (1, 1) and node a with (1, 6), the substitution A → a results in
costs QA→a,A→a = 25. Since there exists an edge between A and B as well as

98 M. Neuhaus and H. Bunke

A

(5,10)

(10,4)

(1,1)

B

C

a

(1,6)

(7,1)
b

(10,8)

c

Fig. 1. Two example graphs g (left) and g′ (right)

an edge between a and b, the substitutions A → a and B → b involve no edge
operations costs, hence QA→a,B→b = 0. As node A is not connected to itself by
an edge, the substitutions A → a and A → b involve the insertion of an edge,
which leads to QA→a,A→b = 10.

Recall that fuzzy edit paths are defined in Sect. 3.2 as functions assigning
weights to all possible node substitutions between two graphs. Also, the matrix
Q consists of one row, and column, per node substitution. In view of this, we
define a fuzzy cost function assigning each row of Q a weight according to the
rules stated in Sect. 3.2. That is, each row, and the corresponding column, is
associated with a node substitution and a fuzzy weight. It should be noted that
these fuzzy weights are not pre-defined, but to be determined in the optimization
process. Hence, the idea of the reformulated graph matching problem is to find
fuzzy weights that satisfy the conditions of a fuzzy edit path and minimize
the structural error. To this end, we propose to minimize the expression x′Qx,
where x denotes the n · n′-dimensional vector of fuzzy weights, one for each
row of Q. The minimization is carried out over all fuzzy weights x satisfying
the conditions defined in Sect. 3.2. In this optimization formulation, the weight
associated with a node substitution u → v will influence not only the weighting
of the node substitution costs of u → v (in the diagonal entry Qu→v,u→v), but
also all edge edit costs involving the substitution u → v (in off-diagonal entries
Qu→v,p→q and Qp→q,u→v). Clearly, this optimization process aims at assigning
large weights to node substitutions that involve low node and edge costs, and
assigning small weights to node substitutions that result in high costs. Note that
this optimization principle is not identical to the minimum cost edit path concept
in standard graph edit distance, but the intuitive interpretation of minimizing
penalty costs for structural errors is comparable.

The optimization problem described above can be formulated in the standard
quadratic programming framework. To this end, the matrix Q in Eq. 2 is defined
as the cost matrix Q described above, the solution vector x in Eq. 2 is the weight
vector x mentioned above, and vector c in Eq. 2 is the zero vector. Furthermore, it
is easy to see that the conditions of consistent fuzzy weights can be formulated in
terms of equality and inequality conditions — Rx = u stating that fuzzy weights
sum up to 1 as shown in Eq. 3, and Sx ≥ v restricting considerations to fuzzy

A Quadratic Programming Approach to the Graph Edit Distance Problem 99

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 10 10 10 0 0 10 0 0
10 36 10 0 10 0 0 10 0
10 10 130 0 0 10 0 0 10
10 0 0 85 10 10 10 0 0
0 10 0 10 18 10 0 10 0
0 0 10 10 10 16 0 0 10
10 0 0 10 0 0 32 10 10
0 10 0 0 10 0 10 85 10
0 0 10 0 0 10 10 10 29

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A → a 0.662 Solution
A → b 0.297
A → c 0.041
B → a 0.000
B → b 0.619
B → c 0.381
C → a 0.338
C → b 0.084
C → c 0.578

A → . . . : 0.662 + 0.297 + 0.041 = 1 Constraints satisfied
B → . . . : 0.000 + 0.619 + 0.381 = 1
C → . . . : 0.338 + 0.084 + 0.578 = 1
. . . → a : 0.662 + 0.000 + 0.338 = 1
. . . → b : 0.297 + 0.619 + 0.084 = 1
. . . → c : 0.041 + 0.381 + 0.578 = 1

Fig. 2. Example quadratic programming problem matrix Q (corresponding to the
graphs in Fig. 1) and solution weight vector satisfying fuzzy edit path constraints

weights between 0 and 1. In Fig. 2, the result of the quadratic programming
approach to matching the two graphs in Fig. 1 is shown. The solution vector
clearly satisfies the fuzzy edit path constraints. After defuzzification, we obtain
the same optimal edit path as the standard edit distance algorithm, {A →
a, B → b, C → c}. Note that from the solution vector, it is not only possible
to extract the most likely edit path, but also other edit paths that seem to be
rather likely, such as the one with edit operations {A → b, B → c, C → a} in
our case.

4 Experimental Results

In this section, we evaluate how the proposed method performs in comparison
to the standard edit distance method on three graph data sets representing
letters, images, and diatoms. These data sets are considered difficult because of
non-compact and overlapping classes.

The letter data set consists of line drawings of 15 capital letters. Nodes are
labeled with a position attribute, and edges are unlabeled. The graphs are split
into a training set and validation set each of size 150 and a test set of size 750.
The image data set consists of 5 classes of region adjacency graphs represent-
ing images after processing and filtering [15]. Nodes contain a color histogram
attribute, and edges contain a region adjacency attribute. The diatom data set
contains a total of 162 patterns split into a training set, validation set, and test
set of equal size. The diatom data set is derived from microscopic images of
22 diatom classes. These images first undergo a segmentation process and are
then transformed into graphs [16]. Nodes contain attributes describing region

100 M. Neuhaus and H. Bunke

Table 1. Recognition accuracy on validation set (VS) and test set (TS)

Data set Method Accuracy VS Accuracy TS Running time
Letter Standard 67.3 69.3 12.4’

Proposed 76.7 74.9 • 19.5’
Image Standard 64.8 48.1 9s

Proposed 72.2 59.3 • 18s
Diatoms Standard 86.5 66.7 • 8s

Proposed 54.1 47.2 15s
• Improvement over other method statistically significant (α = 0.05).

features, and edges contain a common boundary attribute. This data set is split
into a training set and validation set each of size 37 and a test set of size 36.

The recognition accuracy of a k-nearest-neighbor classifier based on the stan-
dard edit distance method [1,6] and the quadratic programming method pro-
posed in this paper are given in Table 1. Note that the relevant classification
accuracy is the one on the test set. In two out of three cases, the proposed
method outperforms the standard method significantly, while on the third data
set, the proposed method is clearly inferior. Note that the test set results marked
with a dot are significantly better than the other ones on a statistical significance
level of α = 0.05. These classification results show that the proposed method
based on quadratic programming constitutes a viable alternative to the stan-
dard edit distance method on certain data sets. As far as the running time is
concerned, the proposed method seems to require typically twice the running
time of the standard algorithm. It should be noted, however, that the efficiency
of the proposed method heavily depends on the implementation of the quadratic
programming algorithm at hand.

5 Conclusions

In this paper we propose a novel approach to computing graph edit distance.
The idea is based on fuzzy edit paths between graphs. In contrast to standard
edit distance, the result of the graph matching process is not a transformation
of one graph into the other one (an edit path), but rather for each possible
node substitution a computed fuzzy weight. The higher this fuzzy weight, the
less the corresponding node substitution violates the node and edge structure
and labels of the two graphs. For the computation of fuzzy edit paths from
standard edit operation costs, a quadratic programming algorithm can be used.
The aim is to compute a fuzzy edit path that minimizes the structural error in
a manner similar to the minimization of edit costs in graph edit distance. The
resulting fuzzy edit path can then easily be turned into a standard edit path
by means of a defuzzification procedure. An experimental evaluation on graphs
representing line drawings, images, and diatoms demonstrates that the proposed
method significantly outperforms the standard edit distance method on two out

A Quadratic Programming Approach to the Graph Edit Distance Problem 101

of three data sets, although the standard edit distance algorithm is typically
twice as fast.

In the future, we intend to further study the applicability of quadratic pro-
gramming principles to graph matching. We would like to investigate whether it
may be advantageous to use other quadratic programming formulations of the
minimum-cost edit path problem than the one presented in this paper. Also,
while applying a defuzzification procedure to fuzzy edit path turns out to be
advantageous to directly using fuzzy edit paths for classification, there does not
exist a unique way to turn fuzzy edit paths into standard edit paths. For in-
stance, applying error-minimization techniques such as Munkres’ algorithm for
defuzzification might be a viable alternative to our proposed iterative procedure.

Acknowledgments

The first author was supported by the Swiss National Science Foundation under
grant no. PBBE2-113362.

References

1. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1, 245–253 (1983)

2. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part
B) 13(3), 353–363 (1983)

3. Wagner, R., Fischer, M.: The string-to-string correction problem. Journal of the
Association for Computing Machinery 21(1), 168–173 (1974)

4. Selkow, S.: The tree-to-tree editing problem. Information Processing Letters 6(6),
184–186 (1977)

5. Bunke, H., Dickinson, P., Kraetzl, M.: Theoretical and algorithmic framework for
hypergraph matching. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617,
pp. 463–470. Springer, Heidelberg (2005)

6. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for at-
tributed planar graphs and its application to fingerprint classification. In: Fred, A.,
Caelli, T.M., Duin, R.P.W., Campilho, A., de Ridder, D. (eds.) Structural, Syntac-
tic, and Statistical Pattern Recognition. LNCS, vol. 3138, pp. 180–189. Springer,
Heidelberg (2004)

7. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the compu-
tation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de
Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS,
vol. 4109, pp. 163–172. Springer, Heidelberg (2006)

8. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (2000)
9. Christmas, W., Kittler, J., Petrou, M.: Structural matching in computer vision

using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17(8), 749–764 (1995)

10. Wilson, R., Hancock, E.: Structural matching by discrete relaxation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 19(6), 634–648 (1997)

102 M. Neuhaus and H. Bunke

11. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(8), 1200–
1214 (2006)

12. Tsai, W., Fu, K.: Error-correcting isomorphism of attributed relational graphs
for pattern analysis. IEEE Transactions on Systems, Man, and Cybernetics (Part
B) 9(12), 757–768 (1979)

13. Zhang, X., Ye, Y.: Computational Optimization Program Library: Convex
Quadratic Programming. University of Iowa (1998)

14. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge, MA
(2002)

15. Le Saux, B., Bunke, H.: Feature selection for graph-based image classifiers. In: Mar-
ques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523,
pp. 147–154. Springer, Heidelberg (2005)

16. Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and
merging and its application to diatom identification. In: Hancock, E., Vento, M.
(eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)

	Introduction
	Graph Edit Distance
	Quadratic Programming for Graph Edit Distance
	Quadratic Programming
	Fuzzy Edit Path
	Quadratic Programming Formulation

	Experimental Results
	Conclusions

