
A Quadratic Propagator for the Inter-Distance Constraint

Claude-Guy Quimper
University of Waterloo

School of Computer Science
cquimper@uwaterloo.ca

Alejandro López-Ortiz
University of Waterloo

School of Computer Science
alopez-o@uwaterloo.ca

Gilles Pesant
École Polytechnique de Montréal

Department of Computer Engineering
pesant@crt.umontreal.ca

Abstract

We present a new propagator achieving bound consistency
for the INTER-DISTANCE constraint. This constraint ensures
that, among a set of variables X1, . . . , Xn, the difference be-
tween two variables is at least p. This restriction models, in
particular, scheduling problems in which tasks require p con-
tiguous units of a resource to be completed. Until now, the
best known propagator for bound consistency had time com-
plexity O(n3). In this work we propose a quadratic propaga-
tor for the same level of consistency. We then show that this
theoretical gain gives savings of an order of magnitude in our
benchmark of scheduling problems.

Introduction
The cumulative scheduling problem with one resource of ca-
pacity C consists of a set of tasks T1, . . . , Tn to which we
associate four integer variables: a release time ri, a deadline
di, a processing time pi and a capacity requirement ci. Each
task Ti must start at time ti such that ri ≤ ti ≤ di − pi. Let
Ω(t) be the set of tasks in process at time t, i.e. the tasks Ti

such that ti ≤ t ≤ ti + pi. We have the resource capacity
constraint

∑
Ti∈Ω(t) ci ≤ C. This problem is NP-Hard even

in the case where C = 1 which we call, in this particular
case, the disjunctive scheduling problem.

Edge finders (Carlier & Pinson 1994; Mercier & Van Hen-
tenryck 2005) have largely been used to solve scheduling
problems. This technique reduces the intervals [ri, di] by
detecting time zones that must be allocated to a subset of the
tasks making these zones unavailable for other tasks. The
goal is to increase release times and reduce deadlines with-
out eliminating any feasible solution. The problem is said to
be bound consistent when intervals [ri, di] have been fully
shrunk, i.e. when there exists at least one feasible schedule
in which task Ti starts on time ri and at least one feasible
schedule in which task Ti finishes on time di. It is NP-Hard
to make a scheduling problem bound consistent, even in the
disjunctive case. For this reason, edge finders try to reduce,
in polynomial time, the size of the intervals without neces-
sarily achieving bound consistency. A backtracking search
assigns starting times to tasks and uses the edge finder to
reduce the size of the search tree.

Copyright c© 2006, American Association for Artifi cial Intelli-
gence (www.aaai.org). All rights reserved.

We study the disjunctive scheduling problem when all
tasks have the same processing time pi = p. This problem
can be solved in polynomial time (Garey et al. 1981) but
traditional algorithms only return one solution that generally
does not satisfy the side constraints. These side constraints
can even make the problem NP-Hard. The flexibility that
constraint programming offers to encode such problems is
an asset. A single INTER-DISTANCE constraint can encode
the disjunctive scheduling problem. This constraint ensures
that starting times are pairwise distant by at least p units of
time. The global constraint offers a stronger pruning than
the O(n2) associated binary constraints |Xi − Xj | ≥ p.

Artiouchine and Baptiste (Artiouchine & Baptiste 2005)
recently proposed an O(n3) propagator that enforces bound
consistency on the INTER-DISTANCE constraint. By achiev-
ing bound consistency, their propagator prunes the search
space better than edge finding algorithms resulting in
smaller choice points in the backtracking search and a bet-
ter time performance. We propose in this work a quadratic
propagator that is faster both in theory and in practice, even
for small instances.

Throughout the paper, we will consider the set [a, b] as
the interval of integer values between a and b inclusively.
If a > b, then the interval [a, b] is empty. We nevertheless
say that the lower bound of the interval is min([a, b]) = a
and the upper bound is max([a, b]) = b as for non-empty
intervals.

We first present some notions about how bound consis-
tency can be enforced on the INTER-DISTANCE constraint.
We then explain how the computation can be simplified.
Based on this simplification, we present our algorithm and
a data structure that ensures the quadratic behaviour of our
propagator. Finally, we present some experiments proving
the efficiency of our propagator.

The INTER-DISTANCE Constraint
Régin (Régin 1997) first introduced the
INTER-DISTANCE constraint. The expression
INTER-DISTANCE([X1, . . . , Xn], p) holds if and only
if |Xi − Xj| ≥ p for all i �= j. When p = 1, the
INTER-DISTANCE specializes into an ALL-DIFFERENT
constraint (Régin 1994; Mehlhorn & Thiel 2000;
López-Ortiz et al. 2003). Régin (Régin 1994) showed
that a single global constraint, in many cases, causes

123

more domain reduction than the n(n−1)
2 equivalent bi-

nary constraints. This observation also applies to the
INTER-DISTANCE constraint which is the general case.
Artiouchine and Baptiste provided the first propagator for
the bound consistency of the INTER-DISTANCE constraint.
The running time complexity of this propagator is cubic.

We use the following problem as a running example.

Example 1 Consider a problem with n = 3 tasks T1, T2,
and T3 with processing time p = 6 and the following release
times and deadlines.

r1 = 2 r2 = 10 r3 = 4
d1 = 12 d2 = 20 d3 = 21

After propagation of the constraint
INTER-DISTANCE([T1, T2, T3], p), we obtain the fol-
lowing release times and deadlines.

r1 = 2 r2 = 14 r3 = 8
d1 = 8 d2 = 20 d3 = 14

Here, task T1 must finish before or at time 8 in order to
allow tasks T2 and T3 to meet their deadlines. Task T2 can-
not start before time 14 since the two other tasks are not
completed before this time. Finally, task T3 must be exe-
cuted between tasks T1 and T2 forcing its release time to be
increased and its deadline to be reduced.

Garey et al. (Garey et al. 1981) designed an algorithm
that finds a solution satisfying the INTER-DISTANCE con-
straint in O(n log n) steps. Their algorithm proceeds in two
phases. In the first phase, the algorithm computes a set of re-
gions F in which no tasks are allowed to start. We call these
regions the forbidden regions. Their number is bounded by
n, the number of tasks. Once these forbidden regions are
computed, the second phase uses a greedy strategy to sched-
ule the tasks.

Artiouchine, Baptiste and Garey et al. use two basic func-
tions as main pillars of their algorithm. Let ect(F, r, q) be
the earliest completion time of a schedule of q tasks starting
at or after time r without ever starting in a forbidden region
contained the set of forbidden regions F . Symmetrically, let
lst(F, d, q) be the latest starting time of a schedule of q tasks
finishing at or before time d without ever starting in a forbid-
den region in F . Computing ect(F, r, q) and lst(F, d, q) can
be done in O(q) steps using the following recurrences where
ect(F, r, 0) = r and lst(F, d, 0) = d.

ect(F, r, q) = min{t �∈ F | t ≥ ect(F, r, q − 1)} + p

lst(F, d, q) = max{t �∈ F | t ≤ lst(F, d, q − 1) − p}
Using these two functions, Artiouchine and Bap-

tiste describe two types of adjustment intervals neces-
sary and sufficient to maintain bound consistency on the
INTER-DISTANCE constraint. We first define ∆(r, d) to be
the set of tasks whose release times and deadlines are con-
tained in the interval [r, d]. An internal adjustment interval
is an interval in which no task is allowed to start. The set of
internal adjustment intervals is a superset of the forbidden
regions F . Theorem 1 formally defines the internal adjust-
ment intervals.

Theorem 1 ((Artiouchine & Baptiste 2005)) Given two
time points r, d, and an integer 0 ≤ q < |∆(r, d)|,
no task can start in the interval Ir,d,q with endpoints
lst(F, d, q + 1) + 1 and ect(F, r, |∆(r, d)| − q) − 1.

The external adjustment intervals are intervals in which a
subset of the tasks are not allowed to start. They are formally
defined in Theorem 2.

Theorem 2 ((Artiouchine & Baptiste 2005)) Given two
time points r, d and an integer 0 ≤ q < |∆(r, d)|, a task
i �∈ ∆(r, d) cannot start in the interval Er,d,q with endpoints
lst(F, d, q + 2) + 1 and ect(F, r, |∆(r, d)| − q) − 1.

Table 1 shows the internal and external adjustment inter-
vals from Example 1.

Internal Adjustment Intervals
ri\dj 12 20 21

2 {[7, 7]} {[9, 7], [15, 13]} {[3, 7], [9, 13], [16, 19]}
4 ∅ {[15, 9]} {[9, 9], [16, 15]}
10 ∅ {[15, 15]} {[16, 15]}

External Adjustment Intervals
ri\dj 12 20 21

2 {[−3, 7]} {[3, 7], [9, 13]} {[−3, 7], [3, 13], [9, 19]}
4 ∅ {[9, 9]} {[3, 9], [9, 15]}
10 ∅ {[9, 15]} {[9, 15]}

Table 1: Internal and external adjustment intervals generated
by a pair of time points (ri, dj) from Example 1. Intervals
are written in decreasing order with respect to parameter q.
The forbidden regions are F = {[−3, 1], [3, 3], [9, 9]}.

Artiouchine and Baptiste formally proved that the inter-
nal and external adjustment intervals are necessary and suffi-
cient to enforce bound consistency on the INTER-DISTANCE
constraint.

Towards a Quadratic Propagator
Internal and external adjustment intervals in the worst case
may be computed with up to n possible release times r, n
possible deadlines d and produce O(n) adjustment inter-
vals each. Therefore, O(n3) adjustment intervals could be
checked in the worst case, hence the cubic time complexity
of the Artiouchine-Baptiste propagator.

In reality, the union of all internal and external adjustment
intervals consists of a maximum of O(n2) disjoint intervals.
It is therefore possible to ignore intervals that are subsets of
already discovered intervals in order to achieve a quadratic
complexity. To avoid computing redundant adjustment in-
tervals, we introduce the notion of dominance between two
pairs of time points. When a pair of time points dominates
another pair, the adjustment regions of the dominant pair
contain some adjustment regions of the other pair.

Definition 1 (Dominance) A pair of time points (ri, dj)
dominates a pair of time points (rk, dl) if we have
min(Iri,dj,q) ≤ min(Irk,dl,q) and max(Iri,dj,q) ≥
max(Irk,dl,q) for all 0 ≤ q < min(|∆(ri, dj)|, |∆(rk, dl)|).
We write (ri, dj) � (rk, dl).

124

Notice that we usually have |∆(ri, dj)| �= |∆(rk, dl)|.
The definition of dominance only applies for q below
min(|∆(ri, dj)|, |∆(rk, dl)|). Also, for a fixed deadline d,
the dominance operator (≺) is transitive, i.e. if (ri, d) ≺
(rj , d) and (rj , d) ≺ (rk, d) hold, then (ri, d) ≺ (rk, d)
holds. In Example 1 we have (2, 21) � (4, 21).

The following lemmas describe a property of the ect and
lst functions that will allow us to efficiently decide if a pair
of time points dominates another one.

Lemma 1 If ect(F, ri, q1) ≤ ect(F, rj , q2) then
ect(F, ri, q1 + k) ≤ ect(F, rj , q2 + k) for any k ≥ 0.

Proof: The proof is by induction on k. The base case
k = 0 is trivial. Suppose that the lemma holds for k − 1.
We have ect(F, ri, q1 + k) = ect(F, ri, q1 + k− 1)+ p + si

where si is a (potentially null) shift caused by the (po-
tentially empty) forbidden region Fi = [ect(F, ri, q1 +
k − 1), ect(F, ri, q1 + k − 1) + si] ⊆ F . Similarly we
have ect(F, rj , q2 + k) = ect(F, rj , q2 + k − 1) + p + sj

where sj is the shift caused by the forbidden region Fj =
[ect(F, rj , q2+k−1), ect(F, rj , q2+k−1)+sj] ⊆ F . If si is
large enough to obtain ect(F, ri, q1+k) ≥ ect(F, rj , q2+k),
then we have Fj ⊆ Fi. Since both forbidden regions in-
tersect, both functions are shifted to the same value and
we obtain ect(F, ri, q1 + k) = ect(F, rj , q2 + k) which
completes the induction step. �

Lemma 2 If lst(F, di, q1) ≤ lst(F, dj , q2) then
lst(F, di, q1 + k) ≤ lst(F, dj , q2 + k) for any k ≥ 0.

Proof: Symmetric to the proof of Lemma 1. �

We now describe three different situations in which a pair
of time points dominates another one. The first case is de-
scribed in Lemma 3.

Lemma 3 Consider the pairs of time points (r, di) and
(r, dj) such that di < dj . If k = |∆(r, di)| = |∆(r, dj)|
then (r, di) � (r, dj).

Proof: We have lst(F, di, 0) < lst(F, dj , 0) and by
Lemma 2 lst(F, di, q + 1) ≤ lst(F, dj , q + 1). This implies
min(Ir,di,q) ≤ min(Ir,dj ,q) for any 0 ≤ q < k and since we
have max(Ir,di,q) = max(Ir,dj ,q) we have (r, di) � (r, dj).
�

From Lemma 3 we conclude that (10, 20) � (10, 21) in
Example 1. Similarly, we have the following Lemma.

Lemma 4 Consider the pairs of time points (ri, d) and
(rj , d) such that ri < rj and k = |∆(ri, d)| = |∆(rj , d)|.
Then (ri, d) ≺ (rj , d).

Proof: We have ect(F, ri, 0) < ect(F, rj , 0) and by
Lemma 1 ect(F, ri, k − q) ≤ lst(F, rj , k − q). This
implies max(Iri,d,q) ≤ max(Irj ,d,q) for any 0 ≤ q < k
and since we have min(Iri,d,q) = min(Irj ,d,q) we have
(ri, d) ≺ (rj , d). �

In Example 1, Lemma 4 detects (4, 20) ≺ (10, 20). We
show a last case where a pair of time points dominates an-
other one.

Lemma 5 Let (ri, d) and (rj , d) be two pairs of time points
such that |∆(ri, d)| = |∆(rj , d)| + k and ect(F, ri, k) ≤
ect(F, rj , 0). Then (rj , d) � (ri, d).
Proof: Clearly, for 0 ≤ q < |∆(rj , d)|, the internal ad-
justment intervals Iri,d,q and Irj ,d,q share the same lower
bound. For the upper bounds, we have the following:

max(Iri,d,q) = ect(F, ri, |∆(ri, d)| − q) − 1
= ect(F, ri, |∆(rj , d)| + k − q)) − 1

and by Lemma 1

≤ ect(F, rj , |∆(rj , d)| − q) − 1
≤ max(Irj ,d,q)

Therefore we have (rj , d) � (ri, d). �

In Example 1, we have (10, 20) � (2, 20) from Lemma 5.
Lemma 5 is crucial to obtaining a quadratic algorithm.

Consider a deadline d and a sequence of release times r1 <
r2 < . . . < rk such that (r1, d) ≺ (r2, d) ≺ . . . ≺ (rk, d).
There can be up to O(n2) internal adjustment intervals as-
sociated to these pairs of time points. Nevertheless, the
union of all O(n2) intervals can be given by the union of
only O(n) intervals. Given two integers j and q such that
1 ≤ j ≤ k and 0 ≤ q < |∆(rj , d)|, we first notice that the
following intervals all share a same lower bound. The union
of the intervals is therefore equal to the interval whose upper
bound is the greatest.

j⋃

i=1

Iri,d,q = [min(Irj ,d,q), max
1≤i≤j

max(Iri,d,q)]

= [min(Irj ,d,q), max(Irj ,d,q)]
= Irj ,d,q

We see that up to O(n) adjustment intervals can be con-
tained in a single interval. Using this observation, we com-
pute the union of all adjustment intervals formed by the pairs
(r1, d), . . . , (rk, d) using the following equation. To sim-
plify the notation, we let |∆(rk+1, d)| = 0 since rk+1 is
undefined.

k⋃

i=1

|∆(ri,d)|−1⋃

q=0

Iri,d,q =
k⋃

i=1

|∆(ri,d)|−1⋃

q=|∆(ri+1,d)|

Iri,d,q (1)

Notice that the left hand side of Equation 1 has O(n2)
intervals while the right hand side has only O(n) inter-
vals. Indeed, the number of intervals to union is given by∑k

i=1(|∆(ri, d)|− |∆(ri+1, d)|). The telescopic series sim-
plifies to |∆(r1, d)| − |∆(rk+1, d)| = |∆(r1, d)|. In Exam-
ple 1 since we have (2, 20) ≺ (10, 20) we obtain the follow-
ing:

(I2,20,0 ∪ I2,20,1) ∪ (I10,20,0) = I2,20,1 ∪ I10,20,0

= [9, 7] ∪ [15, 15]
= [15, 15]

125

A Quadratic Propagator
General Scheme
The idea behind the algorithm is the following. We process
each deadline in increasing order. If two deadlines di and dj

are equal and their associated release times satisfy rj ≤ ri,
we process both deadlines at the same time but use di as a
reference. For every deadline di, we compute the longest
sequence of release times rx1 < rx2 < . . . < rxk

such that
(rx1 , di) ≺ (rx2 , di) ≺ . . . ≺ (rxk

, di). Using this sequence
and Equation 1, we compute the union of all internal adjust-
ment intervals generated by the pairs of time points whose
deadline is di. To build the sequence, we iterate through all
release times in non-decreasing order. Two cases can occur
where we can safely skip a release time rj .

Case 1 (dj > di): Suppose that the deadline dj associ-
ated to rj has not been processed yet, i.e. dj > di. For
such a release time rj , two cases can occur. We choose the
smallest release time rk whose deadline has already been
processed and such that rk > rj . If such a rk exists,
then |∆(rj , di)| = |∆(rk, di)| and Lemma 4 insures that
(rk, di) � (rj , di). All adjustment intervals from (rj , di)
will be taken into account when iterating through rk . If no
such rk exists, then we have ∆(rj , di) = ∅ and no adjust-
ment intervals are associated to the pair (rj , di). In either
case, the pair (rj , di) can be ignored.

Case 2 (rj > ri): A release time rj greater than ri can also
be safely ignored. Let dl be the deadline processed before
di. Since |∆(rj , di)| = |∆(rj , dl)| Lemma 3 insures that
we have (rj , dl) � (rj , di) and adjustment intervals from
(rj , di) have already been taken into account when process-
ing dl.

Suppose while processing di we find the subsequence
(rj , di) ≺ (rk, di), we add to the set Ui the tuples (j, q) for
|∆(rj , di)| ≤ q < |∆(rk, di)|. Each tuple (j, q) ∈ Ui will
be later used to create the adjustment intervals Irj ,di,q and
Erj ,di,q. According to Equation 1, these intervals are the
only useful ones. Following (Artiouchine & Baptiste 2005),
external adjustment intervals are computed in an order that
ensures that the processed variable is not contained in any
∆(ri, dj) considered so far.

Algorithm 1 prunes the release times. Notice that vari-
ables are indexed in non-decreasing order of release times.
Should two tasks share the same release time, the task
with the smallest deadline has the smallest index. Follow-
ing (Puget 1998), one can prune the upper bounds by creat-
ing the symmetric problem where task T ′

i has release time
r′i = −di and deadline d′

i = −ri. Algorithm 1 can then
prune the lower bounds in the symmetric problem, which
prunes the upper bounds in the original problem.

We assume that the forbidden regions F have already
been computed in O(n log n) (see (Garey et al. 1981))
and that release times are sorted such that ri ≤ ri+1 and
ri = ri+1 ⇒ di ≤ di+1. The function lst(F, di, q) can be
implemented with a table L where lst(F, ri, q) = L[i][q].
Such a table requires O(n2) steps to initialize and supports
function evaluation in constant time. We use a similar table

Let D be the set of deadlines sorted in increasing order.
If two deadlines are equal, exclude from D the one
whose associated release time is the smallest.
P ← ∅, A ← ∅, Ui ← ∅, ∀ 1 ≤ i ≤ n
for di ∈ D do

P ← P ∪ {j | dj = di}
l ← min(P)
for j ∈ P ∩ [l, i] do

a ← |∆(rj , di)|
b ← |∆(rl, di)|
if ect(F, rl, b − a) < rj then

Ui ← Ui ∪ {(l, q) | a ≤ q < b}
l ← j;

Ui ← Ui ∪ {(l, q) | 0 ≤ q < |∆(rl, di)|}
for (j, q) ∈ Ui do A ← A ∪ Irj ,di,q1

for all deadlines di in non-decreasing order do
r′i ← min{t �∈ A | t ≥ ri}2

if di ∈ D then
for (j, q) ∈ Ui do A ← A ∪ Erj ,di,q3

∀i, ri ← r′i
Algorithm 1: Enforcing bound consistency for the
INTER-DISTANCE constraint. We assume that the forbid-
den regions F have already been computed and that release
times are sorted such that ri ≤ ri+1 and ri = ri+1 ⇒ di ≤
di+1.

to evaluate ect(F, r, q). The function |∆(rj , di)| can triv-
ially be computed in O(n) steps. The function |∆(rj+1, di)|
can later be computed in O(1). The running time complexity
of Algorithm 1 is O(n2) provided that Lines 1, 2, and 3 have
time complexity O(n). The next section describes how the
adjustment data structure A can meet these requirements.

Keeping Track of Adjustment Intervals
To guarantee a quadratic running time, we must carefully
design the data structure A that contains the adjustment in-
tervals. We use a doubly-linked list containing all adjust-
ment intervals sorted by lower bounds, including empty in-
tervals. Each interval Iri,dj,q has a pointer next(Iri,dj,q)
and previous(Iri,dj,q) pointing to the next and previous in-
tervals in the list. The first interval has its previous pointer
undefined as the last interval has its next pointer undefined.
Each interval has also a pointer nextQ(Iri,dj,q) pointing
to Irk,dj,q+1 where rk and ri might be equal. If the inter-
val Irk,dj,q+1 does not exist, the pointer is undefined. The
data structure initially contains an empty interval with lower
bound −∞ used as a sentinel.

We implement Line 1 of Algorithm 1 as follows. We in-
sert the intervals in decreasing order of lower bounds. Since
we process variables by increasing deadlines, the lower
bound of Irj ,di,0 is larger or equal to any lower bound in-
serted in A and is therefore inserted at the end of the linked
list.

Suppose we have inserted the interval I1 = Irj ,di,q and
we now want to insert the interval I2 = Irk,di,q+1. Al-
gorithm 2 computes the insertion point in the linked list.

126

The algorithm follows the previous pointers starting from
I1 until it either finds the insertion point or finds an inter-
val Ira,db,q whose nextQ pointer is assigned. In the latter
case, the algorithm follows the nextQ pointer to finally fol-
low the next pointers until the insertion point is reached.
When following the nextQ(Ira,db,q) pointer, the algorithm
necessarily goes to or beyond the insertion point since we
have min(Ira,db,q) < min(I1) and by Lemma 2 we have
min(nextQ(Ira,db,q)) ≤ min(nextQ(I1)) and therefore
min(Ira,db,q+1) ≤ min(I2).

I1Ira,db,qIra,db,q+1 insert. point

nextQ

I ← previous(Irj ,di,q)
I2 ← Irj ,di,q+1

while nextQ(I) is undefined ∧min(I) > min(I2) do
I = previous(I)

if min(I) > min(I2) then
I ← nextQ(I)
while min(next(I)) < min(I2) do

I ← next(I)

Insert I2 after I
Algorithm 2: Compute the insertion point of Irj ,di,q+1

provided that Irj ,di,q has already been inserted.

We show that Algorithm 2 inserts a sequence of O(n) in-
tervals in the linked list A in O(n) steps. There is a max-
imum of n intervals in A whose nextQ pointer is unde-
fined, therefore the first while loop runs in O(n). Let I4

be an interval explored by the second while loop. The in-
terval I4 lies between nextQ(I) and the insertion point.
By Lemma 2, if an interval I3 was pointing to I4 with its
nextQ pointer, the interval I3 would lie between I and I1.
Since I3 �= I , we conclude that no intervals point to I4

with its nextQ pointer. There is a maximum of n such
intervals. The second while loop runs in O(n). We there-
fore showed that Line 1 can be implemented in O(n) steps.
Since min(Eri,dj ,q) = min(Irk,dj ,q+1), Line 3 can be im-
plemented by simply changing the upper bounds of internal
adjustment intervals that were already inserted in A.

Line 2 of Algorithm 1 can be implemented in O(α(n))
steps where α is the inverse of Ackermann’s function. We
create a union-find data structure S with elements from 1 to
n. For each element i, we associate a time ti initially set to
ri and a pointer pi initially unassigned. When inserting ad-
justment intervals in A in decreasing order of lower bounds,
we simultaneously iterate in decreasing order the sets in S.
If an interval I is inserted such that ti ∈ I , we set ti to
max(I) + 1. We then follow the next pointers from I to
check if other intervals intersect ti. If ti becomes greater or
equal to ti+1, we merge the set in S containing i with the
set containing i + 1. The pointer pi is used to keep track of
the last interval I tested with ti in order to not check twice
a same interval. When executing Line 2 of Algorithm 1, we
simply retrieve from S the set s containing i and return tj

where j = max(s).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

T
im

e
(s

)

n

Scalability Test

Artiouchine-Baptiste
Our propagator

Figure 1: Running time of the Artiouchine-Baptiste propa-
gator (O(n3)) and our propagator (O(n2)) as a function of
the number of tasks. For this scalability test, we set all re-
lease times to ri = 0 and deadlines to di = 6n.

Experiments
We implemented our algorithm using the ILog Solver C++
library, Version 4.2 (ILOG 1998)1. The library already
provides a propagator for the INTER-DISTANCE constraint
called IlcAllMinDistance and offers two levels of consis-
tency, namely IlcBasic and IlcExtended. We also imple-
mented the Artiouchine-Baptiste propagator (Artiouchine &
Baptiste 2005). All experiments were run on a Pentium III
900 MHz with 256 Mb of memory. All reported times are
averaged over 10 runs.

Scalability Test
In order to test the scalability of our propagator, we first con-
sider a scheduling problem with a single INTER-DISTANCE
constraint over n tasks whose release times are ri = 0 and
deadlines are di = np for all tasks. This problem has a triv-
ial solution and is solved without backtracking. We clearly
see on Figure 1 that our propagator has a quadratic behaviour
while the Artiouchine-Baptiste propagator has a cubic be-
haviour. This observation is supported by the study of the
third and second derivative.

Runway Scheduling Problem
We then study the runway scheduling problem (Artiouch-
ine, Baptiste, & Dürr 2004). In this problem, n airplanes
have certain time intervals in which they can land. Airplane
number i has si time intervals [r1

i , d1
i], . . . , [r

si

i , dsi

i]. Fol-
lowing (Artiouchine & Baptiste 2005), we create for each
airplane a variable ti with domain [r1

i , dsi

i] representing the
landing time and a variable ci with domain [1, si] represent-
ing the landing time interval. We have the constraints ci ≥
k ⇐⇒ ti ≥ rk

i and ci ≤ k ⇐⇒ ti ≤ dk
i . Finally, we

1The code discussed in this section is available upon request
from the fi rst author.

127

n # Our solution A.-B. IlcBasic IlcExt.

15 1 0.09 0.16

15 40 0.07 0.12 19.27 64.32

30 54 0.42 1.65

45 20 0.59 3.40

60 40 2.38 18.72

75 30 4.04 37.67

90 10 5.64 60.84

Table 2: Time in seconds to solve some representative prob-
lems from the benchmark. n is the number of variables. #
is the problem number in the benchmark. Blank entries rep-
resent problems that remained unsolved after 2 minutes of
computation.

n a b c d Our solution A.-B. Fails

20 10 10 5 6 0.11 0.25 28

20 10 10 5 6 0.09 0.17 4

30 8 15 3 6 3.40 14.26 2111

40 7 10 5 6 0.95 4.74 183

50 10 10 5 6 0.72 4.23 5

50 10 10 5 6 0.63 3.81 27

55 7 10 5 6 1.03 6.68 16

60 8 15 3 6 1.27 9.46 11

20 10 10 5 6 0.09 0.29 34

20 8 6 3 6 0.09 0.19 13

40 10 20 3 6 0.70 3.54 67

40 7 10 5 6 0.47 2.14 19

50 10 10 5 6 3.99 26.66 435

50 8 6 3 6 0.83 5.26 35

55 8 15 3 6 0.89 6.19 16

60 8 15 3 6 1.18 8.95 25

60 8 15 3 6 1.64 12.54 44

Table 3: Time in seconds to solve the runway problems
where landing time intervals have size a, the gap between
landing time intervals is of size b, and where c ≤ si ≤ d
holds.

have the constraint INTER-DISTANCE([t1, . . . , tn], p) that
ensures a gap of p between each landing. For security rea-
sons, we want to maximize the time p between each land-
ing. We first solve the problem with p = 1 and double the
value of p until the problem becomes infeasible. Suppose
the problem becomes infeasible for the first time at p = 2x.
We perform a binary search in [x, 2x) to find the greatest p
satisfying the problem.

Using the same benchmark as (Artiouchine & Baptiste
2005), we obtain the running times listed in Table 2 on
random runway problems where the sizes of intervals and
the gap between intervals may vary. For problems with
90 airplanes, we obtain savings of an order of magni-
tude. Some propagators could not solve all problems
within 2 minutes. All problems that could be solved with
the propagators provided in ILog could also be solved by
the Artiouchine-Baptiste propagator. All problems solved
by the Artiouchine-Baptiste propagator could be solved at
greater speed by our propagator.

We then consider the runway problem where all intervals
have the same length (see Table 3). In these problems, Ilog
propagators were unable to solve problems in less than two

minutes. We obtain an improvement over the Artiouchine-
Baptiste propagator proportional to n. This observation is
compatible with the running time complexities of the algo-
rithms.

Conclusion
We presented a new propagator achieving bound consis-
tency for the INTER-DISTANCE constraint. The running
time complexity of O(n2) improves by a factor of n the pre-
vious best known propagator. This theoretical improvement
gives practical savings in scheduling problems.

It is still an open problem whether there exists an
O(n log n) propagator for the INTER-DISTANCE constraint
achieving bound consistency. It would also be interesting to
study how the constraint could be generalized for the cumu-
lative scheduling problem. For some optimization problems,
it would be convenient to consider p as a constrained vari-
able on which we could enforce bound consistency.

References
Artiouchine, K., and Baptiste, P. 2005. Inter-distance
constraint: An extension of the all-different constraint for
scheduling equal length jobs. In Proceedings of the 11th In-
ternational Conference on Principles and Practice of Con-
straint Programming, pp. 62–76.
Artiouchine, K.; Baptiste, P.; and Dürr, C. 2004. Runway
scheduling with holding loop. In Proceedings of Second
International Workshop on Discrete Optimization Methods
in Production and Logistics, pp. 96–101.
Carlier, J., and Pinson, E. 1994. Adjustment of heads and
tails for the job-shop problem. European Journal of Oper-
ation Rsearch 78:146–161.
Garey, M.; Johnson, D.; Simons, B.; and Tarjan, R. 1981.
Scheduling unit-time tasks with arbitrary release times and
deadlines. SIAM Journal on Computing 10(2):256–269.
ILOG. 1998. ILOG Solver 4.2 user’s manual.
López-Ortiz, A.; Quimper, C.-G.; Tromp, J.; ; and van
Beek, P. 2003. A fast and simple algorithm for bounds
consistency of the alldifferent constraint. In Proceedings
of the Eighteenth International Joint Conference on Artifi-
cial Intelligence, pp. 245–250.
Mehlhorn, K., and Thiel, S. 2000. Faster algorithms for
bound-consistency of the sortedness and alldifferent con-
straint. In Proceedings of the Sixth International Confer-
ence on Principles and Practice of Constraint Program-
ming, pp. 306–319.
Mercier, L., and Van Hentenryck, P. 2005. Edge finding
for cumulative scheduling. Submitted for publication.
Puget, J.-F. 1998. A fast algorithm for the bound con-
sistency of alldiff constraints. In Proceedings of the Fif-
teenth National Conference on Artificial Intelligence, pp.
359–366.
Régin, J.-C. 1994. A filtering algorithm for constraints of
difference in CSPs. Proceedings of AAAI-94 pp. 362–367.
Régin, J.-C. 1997. The global minimum distance con-
straint. Technical report, ILOG.

128

