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Université Paris-Est

Laboratoire d’informatique Gaspard-Monge, CNRS

77454 Marne-la-Vallée Cedex 2, France

perrin@univ-mlv.fr

Černý’s conjecture asserts the existence of a synchronizing word of length at most (n−
1)2 for any synchronized n-state deterministic automaton. We prove a quadratic upper

bound on the length of a synchronizing word for any synchronized n-state deterministic
automaton satisfying the following additional property: there is a letter a such that for
any pair of states p, q, one has p·ar = q ·as for some integers r, s (for a state p and a word
w, we denote by p ·w the state reached from p by the path labeled w). As a consequence,

we show that for any finite synchronized prefix code with an n-state decoder, there is a
synchronizing word of length O(n2). This applies in particular to Huffman codes.
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1. Introduction

Synchronized automata are deterministic and complete finite-state automata admit-

ting a synchronizing word, that is a word which takes each state of the automaton

to a single special state. Černý conjecture claims that each n-state synchronized

automaton has a synchronizing word of length at most (n− 1)2 [9]. An extension

of this conjecture due to Pin [16, 18] was shown to be false by Kari [13]. The con-

jecture has been shown to be true for particular classes of automata like the class

of circular automata by Dubuc [10] (see also [17]). The linearisation of automata is

used in [19] where a 2(n−1)2 bound is optained for regular automata. A n(n−1)/2

1
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upper bound has been obtained by Trahtman [24, 25] for aperiodic automata. This

upper bound was improved to n(n+1)/6 by Volkov [27]. We refer to [28] for a recent

beautiful thorough survey on synchronizing automata and Černý’s conjecture.

In a previous note [1], the first author gave a proof of a quadratic bound for

circular automata which is simpler than the one given in [10]. Nevertheless, it does

not allow one to get the tight (n− 1)2 bound. The proof uses rational series.

The formulation of the problem in terms of rational series is also used in [1] to

provide a simple proof of a result from Kari [14] which proves Černý’s conjecture

for automata with an underlying Eulerian graph.

Later, the result on circular automata was generalized by Carpi and d’Alessandro

to a larger class called strongly transitive automata [6] and [7], see also [4]. Their

proof uses rational series as in [1]. They use the same methods to generalize the

result of Kari to unambiguous automata. Carpi and D’Alessandro investigated the

synchronization problem for the class locally strongly transitive deterministic au-

tomata in [8].

In this paper, we prove the existence of a quadratic upper bound for the length

of a synchronizing word for a class of finite automata called one-cluster. This means

that, for some letter a, there is only one cycle with all edges labeled by a. The proof

is an extension of the argument of [1] and uses again rational series. We here slightly

improve the upper bound on the size of a shortest synchronizing word obtained in

[3] from 2n2 − 6n+ 5 to 2n2 − 7n+ 7.

The class of one-cluster automata contains in particular the automata associated

with finite prefix codes. We thus obtain the existence of a quadratic bound on the

length of a synchronizing word for a finite maximal synchronized prefix code. This

applies in particular to Huffman codes.

Let us mention two recent results connected to our work (we thank Hugo Vaccaro

for pointing out these references to us). First, it is proved in [12] that almost all

finite maximal prefix codes are synchronizing. Next, in [5], it is proved that a finite

maximal synchronized prefix code with n codewords of maximal length h has a

synchronizing word of length O(nh log n). This bound is not comparable with ours.

Indeed, since log n ≤ h ≤ n− 1, one has n(log n)2 ≤ nh log n ≤ n2 log n.

A preliminary version of this paper appeared in [3].

2. Automata and series

Let A be a finite alphabet and A∗ be the set of finite words drawn from the alphabet

A, the empty word ǫ included. A (finite) automaton A over some (finite) alphabet

A is composed of a finite set Q of states and a finite set E of edges which are triples

(p, a, q) where p, q are states and a is a symbol from A called the label of the edge.

Note that we do not specify a set of terminal states and that, for this reason, our

automata are sometimes called semi-automata.

An automaton is deterministic if, for each state p and each letter a, there is at

most one edge starting in p and labeled with a. It is complete deterministic if, for
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each state p and each letter a, there is exactly one edge starting in p and labeled

with a. This implies that, for each state p and each word w, there is exactly one

path starting in p and labeled with w. We denote by p · w the state which is the

end of this unique path.

An automaton is irreducible if its underlying graph is strongly connected.

A synchronizing word for a deterministic complete automaton is a word w such

that for any states p, q, one has p · w = q · w. A synchronizing word is also called

a reset sequence or a magic sequence, or also a homing word. An automaton which

has a synchronizing word is called synchronized (see an example on the right part

of Figure 1).

1 2

3 4

1 2

3 4

Fig. 1. Two complete deterministic automata labeled on A = {a, b}. A thick plain edge is an edge
labeled by a while a thin dashed edge is an edge labeled by b. The automaton on the left is not

synchronized. The one on the right is synchronized; for instance, the word aaa is a synchronizing
word.

Let A = (Q,E) be a complete deterministic automaton. For any word u ∈ A∗,

we denote by Mu the transition matrix of the action of u on the states Q. It is

defined by:

(Mu)pq =

{

1 if p · u = q,

0 otherwise.

Note that if u, v are two words, we have

Muv = MuMv.

We define the rank of a word u as the cardinality of Q · u. Note that since the

automaton is complete deterministic, this rank is non null, and that a word is

synchronizing if and only if his rank is 1.

A circular automaton is a deterministic complete automaton on the alphabet A

such that there is a letter a of A which induces a circular permutation of the states,

i.e. such that Ma is a circular permutation matrix.

We shall consider the set of non commutative formal series with coefficients in

a ring K (with K = Z or K = Q), which are applications from A∗ to K. If S is

such a series, the image of a word u of A∗ by S is denoted by 〈S, u〉 and called the

coefficient of u in S.

As an example, the series S on {a, b}∗ with coefficients in Z defined by

〈S, u〉 = |u|a − |u|b maps a word u ∈ {a, b}∗ to the difference between the number

of occurrences of a and b in u.
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A K-linear representation of dimension d of a series S is a triple (λ, µ, γ) where

λ ∈ K1×d, µ is a morphism from A∗ to Kd×d, and λ ∈ Kd×1, such that

〈S, u〉 = λµ(u)γ.

A series s is K-rational if it has a K-linear representation. Its rank on K is the

minimal dimension of all its linear representations.

For example, the series S defined on {a, b}∗ by 〈S, u〉 = |u|a − |u|b is rational of

rank 2. The triple (λ, µ, γ) defined by

λ =
[

1 0
]

, µ(a) =

[

1 1

0 1

]

, µ(b) =

[

1 −1

0 1

]

, γ =

[

1

0

]

is a Z-linear representation of S of dimension 2.

Černý’s conjecture gives an upper bound on the size of a shortest synchronizing

word in a synchronized automaton.

Conjecture 1 (Černý 1964) A synchronized n-state deterministic complete au-

tomaton has a synchronizing word of length at most (n− 1)2.

The conjecture was proved by Dubuc for circular automata.

Proposition 1 (Dubuc 1998) A circular synchronized n-state deterministic

complete automaton has a synchronizing word of size at most (n− 1)2.

3. One-cluster automata

In the sequel A = (Q,E) denotes an n-state deterministic and complete automaton

over an alphabet A. We fix a particular letter a ∈ A.

Let R be the subgraph of the graph of A made of the edges labeled by a. The

graph R is a disjoint union of connected component called a-clusters. Since each

state has exactly one outgoing edge in R, each a-cluster contains a unique cycle,

called an a-cycle, with trees attached to the cycle at their root. For each state p

of an a-cluster, we define the level of p as the distance between p and the root of

the tree containing p. If p belongs to the cycle, its level is null. The level of the

automaton is the maximal level of its states.

A one-cluster automaton with respect to a letter a is a complete deterministic

automaton which has only one a-cluster. Equivalently, an automaton is one-cluster

if it satisfies the following condition: for any pair of states p, q, one has p ·ar = q ·as

for some integers r, s.

Note that a one-cluster automaton whose level is null is circular.

Let C be a cycle of A and P be a subset of C. A word u is said to be P -

augmenting if

card(Pu−1 ∩ C) > card(P ),

where we denote Pu−1 = {q ∈ Q | q · u ∈ P}.

We now prove the existence of a quadratic upper bound on the size of a shortest

synchronizing word in a synchronized automaton.
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Let A be a synchronized n-state deterministic complete automaton. If A is one-

cluster, then it has a synchronizing word of length at most 2n2 − 7n+ 7.

We prove the proposition for irreducible automata. The case of reducible au-

tomata easily reduces to this one. Let A = (Q,E) be a deterministic complete and

irreducible n-state automaton.

Since Černý’s conjecture is proved for circular automata, we may assume that

the level ℓ of the automaton is greater than or equal to 1.

Let C be the a-cycle and let m be the length of C. Let P be a subset of C. Note

that a word u is a P -augmenting word if and only if

C Mu P t > CP t,

where P,C denote the characteristic row vectors of the sets P,C. Indeed,

C Mu P t =
∑

r∈C,s∈P

(Mu)rs = card{r ∈ C | r · u ∈ P} = card(Pu−1 ∩ C).

Similarly, CP t = card(P ).

We denote by S the series defined by:

〈S, u〉 = C MuP
t − C P t,

By definition, one has 〈S, u〉 > 0 if and only if u is a P -augmenting word.

Lemma 3. The series S has rank on Q at most n.

Proof. The series S is Z-rational since it is the difference of two Z-rational series

(the second one is actually a constant). It has the following linear representation

(λ, µ, γ) with λ ∈ Z1×2n, µ : A∗ → Z2n×2n, λ ∈ Z2n×1,

λ = (C,−C), µ(u) =

[

Mu 0

0 I

]

, γ =

[

P t

P t

]

,

since 〈S, u〉 = λµ(u)γ. The rank of S on Q is bounded above by the dimension of the

Q-vector space generated by the row vectors (CMu,−C). This space is included in

the vector space generated by the vectors (CMu−C,0) and the row vector (C,−C),

where 0 is the null column vector of size n. Thus the rank of S is at most equal to

the dimension of the vector space V generated by the vectors C(Mu − I), plus one.

We now show that the dimension of V is at most n − 1. Since the automaton A

is complete deterministic, for any u ∈ A∗, Mu1 = 1, where 1 is the column vector

with coefficients 1 of size n. This implies that C(Mu − I) · 1 = 0. Thus the vectors

of V are orthogonal to the vector 1. The dimension of V is thus at most n−1. This

proves that the rank of S on Q is at most n.

We denote by T the Z-rational series defined by

〈T, u〉 = 〈S, uaℓ〉,
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where ℓ denotes the level of the automaton A. If (λ, µ, γ) is a Q-linear representation

of S of dimension n, then (λ, µ, µ(aℓ)γ) is a representation of T . Thus the rank of

T on Q is at most n.

Lemma 4. For any subset P of C such that P 6= ∅ and P 6= C, there is a P -

augmenting word of length at most 2(n− 1).

Proof. Since A is synchronized and irreducible, there is a synchronizing word u

such that Q·u is a single state r belonging to P . Let k be a positive integer such that

km ≥ ℓ, where m is the length of the cycle C. We have Q · uakm−ℓaℓ = r · akm =

r. Hence uakm−ℓaℓ also is a synchronizing word focusing to r. Let R denote the

characteristic row vector of r. Since q · u = r for all q ∈ Q and since C has m

elements, we have CMu = mR. Moreover, since r ∈ C, RMam = R. We have

〈T, uakm−ℓ〉 = 〈S, uakm〉

= CMuakmP t − CP t

= CMuMakmP t − CP t

= mRMakmP t − CP t

= mRP t − CP t

= m− card(P ) 6= 0.

As a consequence T is non null.

Since T has rank at most n on Q, there is a word v of length at most n− 1 such

that 〈T, v〉 6= 0 (see [11] , [20] or [21]).

If there is word v of length at most n − 1 such that 〈T, v〉 > 0, then vaℓ is a

P -augmenting word and the claim is proved. Otherwise, there is a word v of length

at most n− 1 such that 〈T, v〉 < 0.

Since ℓ is the level of A, the vector CMvaℓ is a linear combination of elements

of C and the sum of its coefficients is equal to m.

We have

m−1
∑

i=0

〈T, vai〉 =
m−1
∑

i=0

〈S, vaℓai〉 =
m−1
∑

i=0

C(Mvaℓai − I)P t,

= (

m−1
∑

i=0

CMvaℓMai −
m−1
∑

i=0

C)P t,

= (CMvaℓ(

m−1
∑

i=0

Mai)−mC)P t,

= (
∑

r∈C

rMvaℓ

m−1
∑

i=0

Mai −mC)P t,

= (
∑

r∈C

C −mC)P t = 0.
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Indeed, for any r in C, the state q = r · vaℓ is in C and for any state q in C, the

row of index q of the matrix
∑m−1

i=0 Mai is the row vector C.

As a consequence, there is a word w of length at most n + m − 2 such that

〈T,w〉 > 0. Hence there is a P -augmenting word of length at most n+m− 2 + ℓ.

Thus, in all cases, there is a word of length at most n + m − 2 + ℓ which is

P -augmenting.

To prove Proposition 2, we show that A has a synchronizing word of length at

most 1+2m(n− 2). Indeed, let P1 be reduced to an arbitrary state of C. If P1 = C

(that is to say if m = 1), then Q · aℓ ⊆ P1, and thus aℓ is a synchronizing word.

Otherwise, by Lemma 4, there exists a word u1 of length at most n+m− 2+ ℓ

which is P1-augmenting. Set P2 = P1u
−1
1 ∩C. If P2 6= C, there is a word u2 of length

at most n+m− 2 + ℓ which is P2-augmenting, and so on. In this way, we build a

sequence u1, . . , ut−1 of words and a sequence P1, . . , Pt of sets of states, with t ≤ m,

such that, for 1 ≤ i < t,

• ui is a Pi-augmenting word of length at most n+m− 2 + ℓ;

• Pi+1 = Piu
−1
i ∩ C;

• Pt = C.

Then the word aℓut−1 . . u1 is a synchronizing word of length at most ℓ+(m−1)(n+

m−2+ℓ). Indeed, Q·aℓut−1 . . u1 ⊆ C ·ut−1 . . u1 ⊆ Pt−1 ·ut−2 . . u1 ⊆ . . P2 ·u1 ⊆ P1.

Since m ≤ n− ℓ and m ≤ n− 1, we have

ℓ+ (m− 1)(n+m+ ℓ− 2) ≤ ℓ+ (m− 1)(2n− 2)

≤ n−m+ 2mn− 2n− 2m+ 2

≤ 2mn− n− 3m+ 2

= (n− 2)(2m− 1) +m

≤ 1 + 2m(n− 2)

≤ 1 + 2(n− 1)(n− 2) = 2n2 − 6n+ 5.

We slightly improve this bound by giving a better upper bound on the size of the

first augmenting word u1.

Let q be a state of C. We denote by Rq the Z-rational series defined by

〈Rq, u〉 = 〈Sq, ua
(n−m)〉,

where 〈Sq, u〉 = C Muq
t −C qt and q is the row-characteristic vector of the state q.

The series Rq has rank at most n. One can show, as for T , that Rq is non null.

If there a state q of C and a word u of length at most n−1 such that 〈Rq, u〉 > 0,

then ua(n−m) is a {q}-augmenting word of length 2n−m−1. Otherwise, 〈Rq, u〉 ≤ 0

for any word u of length at most n− 1 and any state q of C.
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Let u ∈ A∗ of length at most n− 1.
∑

q∈C

〈Rq, u〉 =
∑

q∈C

〈Sq, ua
(n−m)〉

=
∑

q∈C

(CMuMa(n−m)qt − Cqt)

= CMuMa(n−m)Ct − C · Ct

= C · Ct − C · Ct = 0.

The last but one equality results from n−m ≥ l which implies CMuMa(n−m) = C.

As a consequence, 〈Rq, u〉 = 0 for any state q of C. Since Rq has rank at most

n, Rq is null, a contradiction. Thus there a state q of C and a word u of length at

most n− 1 such ua(n−m) is a {q}-augmenting word of length 2n−m− 1. Thus we

get a {q}-augmenting word of length at most 2n−m− 1.

With this improvement, we obtain a synchronizing word of length at most ℓ +

(2n−m− 1) + (m− 2)(n+m− 2 + ℓ). We have

ℓ + (2n−m− 1) + (m− 2)(n+m− 2 + ℓ)

≤ n−m+ 2n−m− 1 + (m− 2)(2n− 2)

≤ n−m+ 2n−m− 1 + 2nm− 4n− 2m+ 4

≤ 2mn− n− 4m+ 3

= m(2n− 4)− n+ 3

≤ (n− 1)(2n− 4)− n+ 4

≤ 2n2 − 7n+ 7,

which completes the proof.

4. Application to finite prefix codes

In this section we show how the previous result can be applied to the automaton

associated to a finite prefix code.

A prefix code on the alphabet A is a set X of words on A such that no element

of X is a prefix of another word of X.

A prefix code is maximal if it is not contained in another prefix code on the

same alphabet. As an equivalent definition, a prefix code X is maximal if for any

word u in A∗ has a prefix in X or is a prefix of a word of X.

For a deterministic automaton A and an initial state i, the set XA of labels of

first return paths from i to i is a prefix code. If the automaton is complete, the

prefix code is maximal.

Conversely, for any finite prefix codeX, there exists a deterministic automatonA

such that X = XA. Moreover, the automaton A can be supposed to be irreducible.

If X is a maximal prefix code, the automaton A is complete.
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The automaton A can be chosen as follows. The set of states is the set Q of

prefixes of the words of X. The transitions are defined for p ∈ Q and a ∈ A by

p ·a = pa if pa is a prefix of a word of X, and by p ·a = ε if pa ∈ X. This automaton,

denoted AX is a decoder of X. Let indeed α be a one-to-one map from a source

alphabet B onto X. Let us add an output label to each edge of AX in the following

way. The output label of (p, a, q) is ε if q 6= ε and is equal to α−1(pa) if q = ε. With

this definition, for any word x ∈ X∗, the output label of the path i
x
−→ i is the word

α−1(x).

Let us show that, as a consequence of the fact that X is finite, the automaton

A is additionally one-cluster with respect to any letter.

Indeed, let a be a letter and let C be the set of states of the form i · aj . For

any state q, there exists a path i
u
−→ q

v
−→ i. We may suppose that i does not occur

elsewhere on this path. Thus uv ∈ X. Since X is a finite maximal code, there is an

integer j such that uaj ∈ X. Then q · aj = i belongs to C. This shows that A is

one-cluster with respect to a.

A maximal prefix code X is synchronized if there is a word x ∈ X∗ such that

for any word w ∈ A∗, one has wx ∈ X∗. Such a word x is called a synchronizing

word for X.

Let X be a synchronized prefix code. Let A be an irreducible deterministic

automaton with an initial state i such that XA = X. The automaton A is synchro-

nized. Indeed, let x be a synchronizing word for X. Let q be a state of A. Since A

is irreducible, there is a path i
u
−→ q for some u ∈ A∗. Since x is synchronizing for

X, we have ux ∈ X∗, and thus q · x = i. This shows that x is a synchronizing word

for A.

Conversely, let A be an irreducible complete deterministic automaton. If A is

a synchronized automaton, the prefix code XA is synchronized. Indeed, let x be a

synchronizing word for A. We may assume that q · x = i for any state q. Then x is

a synchronizing word for X.

Proposition 5. Let X be a maximal synchronized prefix code with n codewords on

an alphabet of size k. The decoder of X has a synchronizing word of length at most

O((n
k
)2).

Proof. The automaton AX is one-cluster. The number N of its states is the number

of prefixes of the words of X. Thus N = (n − 1)/(k − 1) since a complete k-ary

tree with n leaves has (n − 1)/(k − 1) internal nodes. By Proposition 2, there is a

synchronizing word of length at most 1 + 2(N − 1)(N − 2), whence O((n
k
)2).

Example 6. Let us consider the following Huffman code X = (00 + 01 + 1)(0 +

10+ 11) corresponding to a source alphabet B = {a, b, c, d, e, f, g, h, i} with a proba-

bility distribution (1/16, 1/16, 1/8, 1/16, 1/16, 1/8, 1/8, 1/8, 1/4). The Huffman tree

is pictured in the left part of Figure 6 while the decoder automaton AX is given in

its right part. The word 010 is a synchronizing word of AX .



June 1, 2010 19:50 WSPC/INSTRUCTION FILE cernyJournalFinal

10

a b d e

4c 7f g h

3 6 8i

2 5

1

4 7

3 6 8

2 5

1

Fig. 2. A synchronized Huffman code X on the left and its decoder AX on the right.

When the lengths of the codewords in X are not relatively prime, the automa-

ton AX is never synchronized (see Example of Figure 6). When the lengths of the

codewords in X are relatively prime, the code X is not necessarily synchronized.

However, there is always another Huffman code X ′ corresponding to the same length

distribution which is synchronized by a result of Schützenberger [22]. One can even

choose X ′ such that the underlying graph of AX and AX′ are the same. This is a

particular case of the road coloring theorem of due to Trahtman [26] (see also [2]).

The particular case corresponding to finite prefix codes was proved before in [15].

Our result guarantees that the Huffman decoder has a synchronizing word of

length at most quadratic in the number of nodes of the Huffman tree.

a b d e

4 c 7 f g h

3 6 8 i

2 5

1

4 7

3 6 8

2 5

1

Fig. 3. A non synchronized Huffman codeX on the left and its decoder on the right. The automaton

on the right is not synchronized. Indeed, for any word w, the set of states reachable by w is either
{1, 3}, {2, 4}, {1, 5}, or {1, 6}.
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Notesa

The present work recently inspired follow-up results. Recently, Steinberg showed

how to recover our result and the bounds from [19], [7],[8] using probability ar-

guments. He also obtained the Černý bound for one-cluster automata with prime

length cycle in [23].
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LNCS, Berlin, 1978, Springer, pp. 345–352.

aNotes added for the final version after the reviewing process



June 1, 2010 19:50 WSPC/INSTRUCTION FILE cernyJournalFinal

12

[18] , On two combinatorial problems arising from automata theory, Annals of Dis-
crete Mathematics, 17 (1983), pp. 535–548.

[19] I. K. Rystsov, Quasioptimal bound for the length of reset words for regular automata,
Acta Cybern., 12 (1995), pp. 145–152.
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