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Abstract

The nearest correlation matrix problem is to find a correlation matrix which is closest
to a given symmetric matrix in the Frobenius norm. The well studied dual approach is to
reformulate this problem as an unconstrained continuously differentiable convex optimization
problem. Gradient methods and quasi-Newton methods like BFGS have been used directly
to obtain globally convergent methods. Since the objective function in the dual approach
is not twice continuously differentiable, these methods converge at best linearly. In this
paper, we investigate a Newton-type method for the nearest correlation matrix problem.
Based on recent developments on strongly semismooth matrix valued functions, we prove
the quadratic convergence of the proposed Newton method. Numerical experiments confirm
the fast convergence and the high efficiency of the method.

AMS subject classifications. 49M45, 90C25, 90C33

1 Introduction

Given a symmetric matrix G ∈ Sn, computing its nearest correlation matrix, a problem from
finance, is recently studied by Higham [25] and is given by

min
1
2
‖G − X ‖2

s.t. Xii = 1, i = 1, . . . , n
X ∈ Sn

+ ,

(1)

where Sn and Sn
+ are respectively the space of n×n symmetric matrices and the cone of positive

semidefinite matrices in Sn; and ‖ · ‖ is the Frobenius norm. It is noted that by introducing
auxiliary variables, one may reformulate problem (1) as semidefinite programs or second-order
cone programs, which may be solved by the well developed modern interior-point methods.
However, when n is reasonably large, the direct use of interior point methods seems infeasible
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[25]1. In tackling this difficulty, an alternating projection method of Dykstra [20] was proposed
by Higham [25]. The projection method converges at best linearly. The latest study on problem
(1) includes a dual approach proposed by Malick [35] and Boyd and Xiao [7]. This dual approach
falls within the framework suggested by Rockafellar in [43, p.4] for general convex optimization
problems.

Problem (1) is a special case of the following convex optimization problem

min
1
2
‖x0 − x ‖2

s.t. Ax = b
x ∈ K ,

(2)

where K ⊆ X is a closed convex subset in a Hilbert space X endowed with an inner product
〈·, ·〉 and its induced norm ‖ · ‖, A : X 7→ IRn is a bounded linear operator, b ∈ IRn and x0 ∈ X
are given data (for problem (1), X = Sn, K = Sn

+, b = e, the vector of all ones, x0 = G and
AX = diag[X], the vector formed by all diagonal elements of X ∈ Sn.) Problem (2) is also
known as the best approximation from a closed convex set in a Hilbert space. See the recent
book by Deutsch [13] and references therein for details on this topic.

It has now become well known [14] that the (unique) solution x∗ of (2) has the representation

x∗ = ΠK(x0 + A∗y∗) (3)

if and only if the set {K,A−1(b)} has the so called strong Conical Hull Intersection Property
(CHIP), where ΠK(·) denotes the metric projection operator onto K under the inner product
〈·, ·〉, y∗ is a solution of the following equation

AΠK(x0 + A∗y) = b, (4)

and A∗ denotes the adjoint of A (when A = diag, A∗y = Diag[y], the diagonal matrix whose
ith diagonal element is given by yi.) The property CHIP was initially characterized by Chui,
Deutsch, and Ward [9] and was refined by Deutsch, Li, and Ward [14] to strong CHIP, which
turns out to be a necessary and sufficient condition for the solution of (2) to have representation
(3). In practice, however, strong CHIP is often difficult to verify for many interesting cases.
Fortunately, there is an easy-to-verify sufficient condition:

b ∈ ri (A(K)) . (5)

A(K) is often called the data cone when K is a cone in X [9] and ri denotes the relative interior.
We refer to [2, 3, 5, 6, 36, 37] for related developments.

One well-studied concrete example of problem (2) is the convex best interpolation problem
studied in [22, 27, 29, 36], where K is a closed convex cone given by

K := {x ∈ L2[0, 1] |x ≥ 0 a.e. on [0, 1]}.

Newton’s method for the dual of the convex best interpolation problem has been known to be the
most efficient algorithm since [28, 1, 17]. The effectiveness of Newton’s method was successfully

1By using preconditioned conjugate gradient methods to solve the linear system resulted from the interior
point method, one may expect the interior point method to work well in practice [48]
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explained very recently by Dontchev, Qi and Qi [18, 19], where the authors established the
superlinear (quadratic) convergence of Newton’s method. The success of Newton’s method for
solving the convex best interpolation problem motivates us to study Newton’s method for matrix
nearness problem (1).

Coming to problem (1), we see b = e and A(Sn
+) = IRn

+, the nonnegative orthant of IRn.
Obviously, e ∈ intIRn

+ = ri IRn
+. Hence, (3) and (4) imply that there exists y∗ ∈ IRn such that

the unique solution X∗ of (1) has the representation

X∗ = (G + A∗y∗)+ (6)

and y∗ is a solution of the equation

A (G + A∗y)+ = b, y ∈ IRn , (7)

where X+ denotes the metric projection of X onto Sn
+, i.e., X+ := ΠSn

+
(X). In fact, equation

(7) is just the optimality condition of the following unconstrained and differentiable convex
optimization problem [43]

min
y∈IRn

θ(y) :=
1
2
‖ (G + A∗y)+ ‖2 − bT y. (8)

This is the dual problem of (1) studied in [35, 7]. The function θ(·) is continuously differentiable
and its gradient mapping ∇θ(·) is globally Lipschitz continuous with the Lipschitz constant 1.
Moreover, since Slater’s condition is satisfied, θ(·) is coercive, i.e., θ(y) → +∞ as ‖y‖ → +∞
[43]. These nice properties allow one to apply either gradient-type methods or quasi-Newton
methods to problem (8) directly [25, 35, 7]. However, since θ(·) is not twice continuously
differentiable, the convergence rate of these methods are at best linear. In this paper, we will
show that Newton’s method for solving problem (8) can achieve quadratic convergence by using
the fact that the metric projection operator ΠSn

+
(·) is strongly semismooth [46, 8]. We refer

the interested reader to [47] for the strong semismoothness of the metric projection operator
over the symmetric cones which include the nonnegative orthant, the second order cone, and
the positive semidefinite cone Sn

+.
The paper is organized as follows. In Section 2, we review some basic concepts and results

concerning semismooth functions, especially in association with the projection X+. In Section
3, we develop Newton’s method and show that it is quadratically convergent. As by-products of
our analysis, we prove that the solution y∗ is unique for any G ∈ Sn and b > 0, and is strongly
semismooth as a function of G and b. This further implies that the solution X∗ is also strongly
semismooth as a function of G and b. Section 4 discusses some extensions which cover the W -
weighted version of (1), a case with lower bounds and a nonsymmetric case. We demonstrate that
the developed Newton method applies to all those extensions under mild conditions. In Section
5, we discuss the implementation issues and report our preliminary numerical results, which
show that the Newton method is very efficient compared to existing methods. The conjugate
gradient (CG) method is employed to solve the linear system obtained by Newton’s method.
We conclude our paper in Section 6.

We use ◦ to denote the Hardmard product of matrices, i.e, for any B,C ∈ Sn

B ◦ C = [BijCij ]ni,j=1.
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We let E denote the matrix of all ones in Sn. For subsets α, β of {1, 2, . . . , n}, we denote Bαβ

as the submatrix of B indexed by α and β. Let e denote the vector of all ones.

2 Preliminaries

In this section, we review some basic concepts such as semismooth functions and generalized
Jacobian of Lipschitz functions. These concepts will be used to define Newton’s method for
solving equation (7) and play an important role in our convergence analysis. We also review a
perturbation result on eigenvalues of symmetric matrices.

Let Φ : IRm 7→ IR` be a (locally) Lipschitz function. According to Redemacher’s Theorem
(see [44, Sect. 9.J] for a proof), Φ is differentiable almost everywhere. We let

DΦ := {x ∈ IRm| Φ is differentiable at x} .

Let Φ′(x) denote the Jacobian of Φ at x ∈ DΦ. The Bouligand subdifferential of Φ at x ∈ IRn

is then defined by

∂BΦ(x) :=
{

V ∈ IR`×m |V is an accumulation point of Φ′(xk), xk → x, xk ∈ DΦ

}
.

The generalized Jacobian in the sense of Clarke [11] is the convex hull of ∂BΦ(x), i.e.,

∂Φ(x) = co ∂BΦ(x).

Note that ∂Φ(x) is compact and upper-semicontinuous.
When ` = m, a direct generalization of classical Newton’s method for a system of smooth

equations to Φ(x) = 0 with a Lipschitz function Φ is given by [32, 42]

xk+1 = xk − V −1
k Φ(xk), Vk ∈ ∂Φ(xk), k = 0, 1, 2, . . . (9)

with x0 as an initial guess. In general, the above iterative method does not converge. For a
counterexample, see Kummer [32]. In extending Kojima and Shindo’s condition for superlinear
(quadratic) convergence of Newton’s method for piecewise smooth equations [30], Kummer [32]
proposed a general condition for guaranteeing the superlinear convergence of (9). However, it
was the work of Qi and Sun [42] who popularized (9) by showing that the iterate sequence
generated by (9) converges superlinearly if Φ belongs to an important subclass of Lipschitz
functions – semismooth functions.

We say that Φ is semismooth at x if (i) Φ is directionally differentiable at x and (ii) for any
V ∈ ∂Φ(x + h),

Φ(x + h) − Φ(x) − V h = o(‖h‖).

Φ is said to be strongly semismooth at x if Φ is semismooth at x and for any V ∈ ∂Φ(x + h),

Φ(x + h) − Φ(x) − V h = O(‖h‖2).

The concept of semismoothness was introduced by Mifflin [38] for functionals. In order to study
the convergence of (9), Qi and Sun [42] extended the definition of semismoothness to vector-
valued functions and established the following convergence result.
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Theorem 2.1 [42, Thm. 3.2] Let x∗ be a solution of the equation Φ(x) = 0 and let Φ be a locally
Lipschitz function which is semismooth at x∗. Assume that all V ∈ ∂Φ(x∗) are nonsingular
matrices. Then every sequence generated by (9) is superlinearly convergent to x∗ provided that
the starting point x0 is sufficiently close to x∗. Moreover, if Φ is strongly semismooth at x∗, the
convergence rate is quadratic.

A similar result to the above theorem on the superlinear convergence of (9) can be found in
[32, Prop. 3]. Theorem 2.1 gave the rates of convergence of (9) once the starting point x0 is
within the convergence region. The next theorem provides an estimate on how large the region
of convergence can be.

Theorem 2.2 [42, Thm. 3.3] Suppose that Φ is locally Lipschitz continuous and semismooth
on S := {x ∈ IRm | ||x − x0‖ ≤ r}. Also suppose that for any V ∈ ∂Φ(x), x, y ∈ S, V is
nonsingular,

‖V −1‖ ≤ β, ‖V (y − x) − Φ′(x; y − x)‖ ≤ γ‖y − x‖,

and
‖Φ(y) − Φ(x) − Φ′(x; y − x)‖ ≤ δ‖y − x‖,

where β‖Φ(x0)‖ ≤ r(1 − α) and α := β(γ + δ) < 1. Then the iterates (9) remain in S and
converges to the unique solution of Φ(x) = 0 in S. Moreover, the error estimate

‖xk − x∗‖ ≤ [α/(1 − α)]‖xk − xk−1‖

holds for k = 1, 2, . . . .

Theorem 2.2 is an extension of the classical Newton-Kantorovich convergence theorem of
Newton’s method for solving smooth equations [40, Sect. 12.6]. Now we return our attention to
problem (1). To facilitate our analysis, we define F : IRn 7→ IRn by

F (y) := A(G + A∗y)+.

Then equation (7) becomes
F (y) = b (10)

with b = e. It has been proved recently that (·)+ is strongly semismooth everywhere on Sn

[46, 8]. Since the composite of strongly semismooth functions is still strongly semismooth, F is
strongly semismooth everywhere on IRn. So, in order to apply Theorem 2.1 to get a quadratically
convergent Newton method, we only need to address the nonsingularity of ∂F (y∗). It turns out
to be the most difficult part in the analysis of Newton’s method for solving (10). We will devote
the whole next section to this issue.

We will also need the following perturbation result of Weyl for eigenvalues of symmetric
matrices, see [4, p.63] and [26, p.367].

Lemma 2.3 Let λ1 ≥ · · · ≥ λn be the eigenvalues of any X ∈ Sn and µ1 ≥ · · · ≥ µn be the
eigenvalues of any Y ∈ Sn. Then

|λi − µi| ≤ ‖X − Y ‖ ∀i = 1, . . . , n.
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3 Newton’s method

In this section, we consider the nonsmooth Newton method for equation (10):

yk+1 = yk − V −1
k (F (yk) − b), Vk ∈ ∂F (yk), k = 0, 1, 2, . . . . (11)

As we briefly discussed in Section 2, the core issue for (11) is the nonsingularity of ∂F (y) when
y is near y∗, which is a solution of (10). Our main result in this section is that every element in
∂F (y∗) is positive definite. Since F is already known strongly semismooth, Theorem 2.1 implies
that method (11) is quadratically convergent if the initial point y0 is sufficiently near y∗.

To facilitate our proofs for the positive definiteness of ∂F (y∗) we need a few more notions.
For any given X ∈ Sn, let λ(X) denote the eigenvalue vector of X arranged in the nonincreasing
order, i.e., λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X). Let O denote the set of all orthogonal matrices in
IRn×n and OX be the set of orthonormal eigenvectors of X defined by

OX :=
{
P ∈ O| X = PDiag[λ(X)]P T

}
.

Let f : IR → IR be a continuous function. Then one can define Löwner’s function f : Sn →
Sn (we adopt the convention of using f to denote both the scalar-valued and matrix-valued
functions) by

f(X) := PDiag[f(λ1(X)), f(λ2(X)), · · · , f(λn(X))]P T , P ∈ OX . (12)

The study on the matrix valued function f(X) defined in (12) was initiated by Löwner in his
landmark paper [33]. See Donoghue [16] and Bhatia [4] for detailed discussions on (12).

For any µ = (µ1, . . . , µn)T ∈ IRn such that f is differentiable at µ1, . . . , µn, we denote by
f [1](µ) the n × n symmetric matrix whose (i, j)th entry is

(
f [1](µ)

)
ij

=

{
f(µi) − f(µj)

µi − µj
if µi 6= µj

f ′(µi) if µi = µj .

The matrix f [1](µ) is called the first divided difference of f at µ. The following result of Löwner
is well known. For a proof, see Donoghue [16, Ch. VIII] or [4, Ch. V.3.3].

Lemma 3.1 Let P ∈ O be such that X = PDiag[λ1(X), · · · , λn(X)]P T . Let (a1, a2) be an open
interval in IR that contains λj(X), j = 1, . . . , n. If f is continuously differentiable on (a1, a2),
then f is differentiable at X and its derivative, for any H ∈ Sn, is given by

f ′(X)H = P
(
f [1](λ(X)) ◦ (P T HP )

)
P T . (13)

Throughout the remainder of the paper, we let f(t) = t+ := max(0, t), t ∈ IR. It is easy
to derive from Moreau’s theorem on the characterization of the metric projection operator over
closed convex cones that (see [24, 50] for a proof)

X+ = f(X) = PDiag[max{λ1(X), 0},max{λ2(X), 0}, · · · ,max{λn(X), 0}]P T .

By using Lemma 3.1 (by considering any continuously differentiable scalar-valued function with
value one on an open set containing all the nonnegative eigenvalues of X and zero on an open set
containing all negative eigenvalues of X) and the fact that (·)+ is (continuously) differentiable
at X ∈ Sn if and only if X is nonsingular, we obtain the following useful result.
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Proposition 3.2 Let P ∈ O be such that X = PDiag[λ1(X), · · · , λn(X)]P T . Then ΠSn
+
(·) is

(continuously) differentiable at an X ∈ Sn with eigenvalues λ1(X), . . . , λn(X) if and only if
λi(X) 6= 0, i = 1, . . . , n. Moreover, if λi(X) 6= 0, i = 1, . . . , n, then the derivative of ΠSn

+
(·) at

X, for any H ∈ Sn, is given by (13) with f(t) = t+, t ∈ IR.

See [8, Props. 4.3, 4.4] for a generalization on Proposition 3.2. We further let

C(y) := G + A∗y and λ(y) := λ(C(y)).

We define three index sets associated with λ(y):

α(y) := {i| λi(y) > 0}, β(y) := {i| λi(y) = 0} and γ(y) := {i| λi(y) < 0}.

We also let Λ(y) := Diag[λ(y)]. When no confusion is involved, we often omit y for brevity. Let
y∗ be a solution of (4) throughout this section. For simplicity, we let

λ∗ := λ(y∗), α∗ := α(y∗), γ∗ := γ(y∗) and Λ∗ := Λ(y∗).

Now we present our first technical result which is a direct consequence of the positiveness of b.

Lemma 3.3 Suppose that b > 0 in (10). Then α∗ 6= ∅. Moreover, for any P ∈ OC(y∗) we have
∑

`∈α∗

P 2
i` > 0, ∀i = 1, . . . , n.

Proof. Suppose that P ∈ OC(y∗) is arbitrarily given. Then

(C(y∗))+ = P




Λ∗
α

0
0


P T

and (10) implies

AP




Λ∗
α

0
0


P T = b ,

where Λ∗
α is a diagonal matrix of |α∗| × |α∗| with its diagonal elements given by λ∗

i , i ∈ α∗. The
fact that b 6= 0 implies that α∗ is not empty. Equivalently, we have

(∑

`∈α∗

λ∗
`P

2
1`,
∑

`∈α∗

λ∗
`P

2
2`, . . . ,

∑

`∈α∗

λ∗
`P

2
n`

)
= (b1, b2, . . . , bn).

Since λ∗
` > 0 for all ` ∈ α∗, the lemma is proved to be true. �

Let
δ∗ :=

1
2

min
i∈α∗∪γ∗

|λ∗
i |

and
B(y∗, δ∗) := {y ∈ IRn| ‖y − y∗‖ ≤ δ∗}.

Then the perturbation result in Lemma 2.3 implies that for all y ∈ B(y∗, δ∗),

|λi(y) − λ∗
i | ≤ ‖C(y) − C(y∗)‖ ≤ ‖y − y∗‖ ≤ δ∗ ∀ i = 1, . . . , n.
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Lemma 3.4 F is differentiable at y if and only if f is differentiable at C(y). And in this case

F ′(y)h = Af ′(C(y))H ∀h ∈ IRn ,

where H := A∗h = Diag[h] and

f ′(C(y))H = P
(
f [1](λ(y)) ◦ (P T HP )

)
P T ∀P ∈ OC(y).

Moreover, when y ∈ B(y∗, δ∗), we have
(
f [1](λ(y))

)
ij

= 1 ∀ i, j ∈ α∗

and (
f [1](λ(y))

)
ij

= 0 ∀ i, j ∈ γ∗,

i,e., (
f [1](λ(y))

)
α∗α∗

= Eα∗α∗ ,
(
f [1](λ(y))

)
γ∗γ∗

= 0γ∗γ∗ . (14)

Proof. It is obvious that if f is differentiable at C(y), then F is differentiable at y because
it is composition of f with linear transformations.

Suppose f is not differentiable at C(y). Then Proposition 3.2 implies that f is not differ-
entiable at λi(y) for some i ∈ {1, . . . , n}. The special structure of f(t) = max{0, t} yields that
λi(y) = 0. Since f(t) is directionally differentiable and nondecreasing, it holds that

f ′(x; 1) ≥ f ′(x;−1) ∀x ∈ IR.

In particular,
f ′(λi; 1) = 1 > 0 = f ′(λi;−1).

We let d, d̂ ∈ IRn be defined respectively by

d` = f ′(λ`; 1) and d̂` = f ′(λ`;−1), ` = 1, . . . , n.

Since di = 1 > d̂i = 0, we see that d 6= d̂ and d ≥ d̂. Consider two sequences respectively
specified by {y + te}t>0 and {y − te}t>0. We have

C(y + te) = PDiag[λ + te]P T and C(y − te) = PDiag[λ − te]P T , P ∈ OC(y).

Hence,

lim
t↓0

F (y + te) − F (y)
t

= APDiag[d]P T and lim
t↓0

F (y − te) − F (y)
−t

= APDiag[d̂]P T .

With a bit further calculation, we see by noticing d` ≥ d̂` for ` = 1, . . . , n and di > d̂i that

APDiag[d]P T −APDiag[d̂]P T =




∑n
`=1(d` − d̂`)P 2

1`
...∑n

`=1(d` − d̂`)P 2
n`


 6= 0.
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This means that
lim
t↓0

F (y + te) − F (y)
t

6= lim
t↓0

F (y − te) − F (y)
−t

,

implying that F is not differentiable at y. This establishes the first part of the lemma.
The formula for F ′ just follows from the chain rule and Proposition 3.2. The relation in (14)

follows from the definition of f [1] and the fact that for any y ∈ B(y∗, δ∗), λi(y) > 0 for all i ∈ α∗

and λi(y) < 0 for all i ∈ γ∗. �

We now define a collection of matrices in relation to λ∗:

M :=





M ∈ IRn×n | M =




Eα∗α∗ Eα∗β∗ (τij) i∈α∗
j∈γ∗

Eβ∗α∗ (ωij) i∈β∗
j∈β∗

0

(τji) i∈α∗
j∈γ∗

0 0


 ,

ωij = ωji ∈ [0, 1]
for i, j ∈ β∗

τij = λ∗
i /(λ

∗
i − λ∗

j)
for i ∈ α∗, j ∈ γ∗





.

We note that M is a compact set and 1 > τij > 0 for any M ∈ M.

Lemma 3.5 For any h ∈ IRn we have

∂BF (y∗)h ⊆ {AWH : W ∈ W} ,

where H := A∗h = Diag[h] and

W :=
{
W | WH = P

(
M ◦ (P T HP )

)
P T , P ∈ OC(y∗), M ∈ M and h ∈ IRn

}
.

Proof. Let V ∈ ∂BF (y∗). By the very definition of ∂BF we have a sequence {yk} converging
to y∗ such that F is differentiable at each yk and F ′(yk) → V . Equivalently, we have

lim
k→∞

F ′(yk)h = V h ∀h ∈ IRn. (15)

Then it follows from Lemma 3.4 that there exists P k ∈ OC(yk) such that

F ′(yk)h = Af ′(C(yk))H,

where H = A∗h = Diag[h] and

f ′(C(yk))H = P k
(
f [1](λ(yk)) ◦ ((P k)T HP k)

)
(P k)T .

Denoting λk := λ(yk) for simplicity. When yk ∈ B(y∗, δ∗),

λk
i > 0 for i ∈ α∗ and λk

i < 0 for i ∈ γ∗,

and λk
i for i ∈ β∗ could be positive or nonpositive, but converges to λ∗

i = 0. Hence, the definition
of f [1] yields

(
f [1](λk)

)
ij

=





1, i, j ∈ α∗

0, i, j,∈ γ∗

λk
i − (λk

j )+
λk

i − λk
j

, i ∈ α∗, j ∈ β∗

λk
i

λk
i − λk

j

, i ∈ α∗, j ∈ γ∗
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and (f [1](λk))ij = (f [1](λk))ji (i.e., it is symmetric). Because 0 ≤ (f [1](λk))ij ≤ 1 for all i, j,
there exists a sequence (still denoted by {yk} without loss of generality) such that f [1](λk)
converges to a matrix, say M∗. It is easy to see that M∗ ∈ M. The boundedness of {P k} also
implies that there exists a sequence (also denoted by {yk}) such that P k → P ∗. Then we have

C(y∗) = lim
k→∞

C(yk) = lim
k→∞

P kDiag[λk](P k)T = P ∗Diag[λ](P ∗)T .

Hence, P ∗ ∈ OC(y∗) and consequently we have by (15) that

V h = lim
k→∞

F ′(yk)h ∈ {AWH : W ∈ W} ∀h ∈ IRn.

Since V ∈ ∂BF (y∗) is arbitrary, we establish our result. �
Now we are ready to prove our main result in this section.

Proposition 3.6 Each element V ∈ ∂BF (y∗) is positive definite. Consequently, each element
V ∈ ∂F (y∗) is also positive definite.

Proof. Let V ∈ ∂BF (y∗) be arbitrarily chosen. We want to show that for any 0 6= h ∈ IRn

hT V h > 0.

We note that it follows from Lemma 3.5 that there exist M ∈ M and P ∈ OC(y∗) such that

V h = A
(
P (M ◦ (P T HP )

)
P T .

Then

〈h, V h〉 = 〈A∗h, P (M ◦ (P T HP ))P T 〉
= 〈P T HP,M ◦ (P T HP )〉.

Let H̃ := P T HP . Then we have

〈h, V h〉 = 〈H̃,M ◦ H̃〉

≥
∑

i∈α∗


 ∑

j∈α∗∪β∗

H̃2
ij +

∑

j∈γ∗

τijH̃
2
ij




≥ τ
∑

i∈α∗

n∑

j=1

H̃2
ij,

where τ = mini∈α∗,j∈γ∗ τij > 0. Because V is positive semidefinite, we see that 〈h, V h〉 = 0 only
if

H̃ij = 0 ∀i ∈ α∗ and j ∈ {1, . . . , n}.

The above condition is equivalent

(H̃i1, H̃i2, . . . , H̃in) = (0, 0, . . . , 0) ∀i ∈ α∗.
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By recalling that H̃ = P T HP and H = Diag[h], we have

(H̃i1, H̃i2, . . . , H̃in) = (h1P1i, h2P2i, . . . , hnPni)P = (0, 0, . . . , 0)

if and only if

(h1P
2
1i, h2P

2
2i, . . . , hnP 2

ni) = (0, 0, . . . , 0) (because P is nonsingular).

Summarizing over i ∈ α∗ in the above relation yields

(h1

∑

i∈α∗

P 2
1i, h2

∑

i∈α∗

P 2
2i, . . . , hn

∑

i∈α∗

P 2
ni) = (0, 0, . . . , 0).

According to Lemma 3.3, the above condition holds if and only if

(h1, h2, . . . , hn) = (0, 0, . . . , 0),

i.e., h = 0. This establishes the positive definiteness of V .
Since ∂BF (y∗) is compact and its every element is positive definite, any convex combination

of its elements is also positive definite. That is, every element of ∂F (y∗) is positive definite. �

The first of two important consequences of the above regularity result is on the convergence
of Newton’s method (11). It is just a direct application of Theorem 2.1, given that we have
already known that F is strongly semismooth and every element in ∂F (y∗) is positive definite.

Corollary 3.7 Newton’s method (11) is quadratically convergent provided that y0 is sufficiently
close to y∗.

The second corollary is on the uniqueness of the solution to (10) and its strong semismooth-
ness.

Corollary 3.8 For any given G ∈ Sn and 0 < b ∈ IRn, there is a unique solution y∗ to equation
(10). If y∗ is viewed as a function of G and b, denoted y∗(G, b), then y∗ is strongly semismooth
with respect to (G, b) ∈ Sn × IRn

++. Consequently, X∗ as a function of G and b is also strongly
semismooth with respect to (G, b) ∈ Sn × IRn

++.

Proof. The proof for Prop. 3.6 is independent of the choice of G and b as long as it belongs
to Sn × IRn

++. Hence, the Clarke inverse theorem says that there is a unique solution y∗(G, b)
for any (G, b) ∈ Sn × IRn

++. We note that the existence of a solution is guaranteed because
0 < b ∈ IRn

++ and b ∈ intA(Sn
+). The strong semismoothness of y∗ follows from a result of

Sun [45] on an implicit theorem of strongly semismooth functions. Since X∗ is a composition of
strongly semismooth functions, it is also strongly semismooth with respect to (G, b) ∈ Sn×IRn

++.
�
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4 Extensions

4.1 The W -weighted version

In practice, the W -weighted version of (1) is very useful [25]:

min
1
2
‖G − X‖2

W

s.t. Xii = 1, i = 1, . . . , n
X � 0,

(16)

where W ∈ Sn is positive definite and for any Y ∈ Sn,

‖Y ‖W = ‖W 1/2Y W 1/2‖.

Let
Ḡ = W 1/2GW 1/2 and X̄ = W 1/2XW 1/2 .

Then problem (16) becomes standard in the form of (1):

min
1
2
‖Ḡ − X̄‖2

s.t.
(
W−1/2X̄W−1/2

)
ii

= 1, i = 1, . . . , n
X̄ � 0.

In fact, the constraint X̄ � 0 should be W−1/2X̄W−1/2 � 0. It is easy to see that they are
equivalent. For simplicity, we drop the bars in the above formulation and have

min
1
2
‖G − X‖2

s.t.
(
W−1/2XW−1/2

)
ii

= 1, i = 1, . . . , n
X � 0.

(17)

Define the linear operator A : Sn 7→ IRn by

(AX)i =
(
W−1/2XW−1/2

)
ii

, i = 1, . . . , n. (18)

The adjoint operator A∗ : IRn 7→ Sn is given by

〈A∗y,X〉 = 〈y,AX〉
= 〈y,diag[W−1/2XW−1/2]〉
= 〈Diag[y],W−1/2XW−1/2〉
= 〈W−1/2Diag[y]W−1/2,X〉.

Hence
A∗y = W−1/2Diag[y]W−1/2. (19)

It is easy to see that e ∈ intASn
+. With this fact, we once again get equation (10) with A and

A∗ defined by (18) and (19) respectively. With no difficulty, we can develop parallel results as
in Lemmas 3.3–3.5 and in Proposition 3.6. For example, Lemma 3.3 now becomes

12



Lemma 4.1 Suppose that b > 0 in (10) and that A and A∗ are defined by (18) and (19)
respectively. Then α∗ 6= ∅. Moreover, for any P ∈ OC(y∗) we have

∑

`∈α∗

P̂ 2
i` > 0, ∀i = 1, . . . , n ,

where P̂ = W−1/2P .

The proof just follows that of Lemma 3.3 and makes use of (18). Lemmas 3.4 and 3.5 remain
true with H = A∗h = W−1/2Diag[h]W−1/2 for h ∈ IRn. The proof for Proposition 3.6 is also
true with now H̃ = P T HP and H is as just defined. Starting from

(H̃i1, H̃i2, . . . , H̃in) = (0, 0, . . . , 0) ∀i ∈ α∗

in the proof of Proposition 3.6, we have

(h1

∑

i∈α∗

P̂ 2
1i, h2

∑

i∈α∗

P̂ 2
2i, . . . , hn

∑

i∈α∗

P̂ 2
ni) = (0, 0, . . . , 0)

by noticing
H̃ = P T W−1/2Diag[h]W−1/2P = P̂Diag[h]P̂ .

According to Lemma 4.1, the above condition holds if and only if

(h1, h2, . . . , hn) = (0, 0, . . . , 0).

This proves Proposition 3.6 with A and A∗ defined by (18) and (19) respectively. Therefore, for
the W -weighted version, Newton’s method is quadratically convergent.

4.2 The case of lower bounds

The nearest correlation matrix is often rank-deficient [25]. To avoid the ill-conditionedness and
to increase the stability, one often requires the matrix to be not less than a positive diagonal
matrix. This gives the so-called the calibration of correlation matrices, i.e.,

min 1
2‖G − X‖2

s.t. X � αI
AX = e ,

(20)

where α ∈ (0, 1) and AX = diag[X]. We will see that it is quite straightforward to apply the
generalized Newton method to this case.

First we note that the following condition is automatically valid:
{
A∗y : (1 − α)yT e ≥ 0, y ∈ IRn

}
∩ (−Sn

+) = {0}.

This condition corresponds to the condition [37, (2.17)], so that [37, Thm. 2.2] (This theorem
only considers the case which corresponds to G = 0 in (20); however, it also holds for G 6= 0)
implies that the unique solution of (20) has the following representation:

X∗ = (G − αI + A∗y∗)+ + αI,

13



where y∗ is a solution of the following equation:

A(G − αI + A∗y)+ + αAI = e,

which is obviously equivalent to

A(G − αI + A∗y)+ = (1 − α)e. (21)

We now note that this equation actually defines a new problem similar to (1):

min 1
2‖(G − αI) − X‖2

s.t. Ae = (1 − α)e
X ∈ Sn

+.

(22)

Hence, by following the discussion in Section 1 and noting that (1 − α)e > 0, we know that the
unique solution of problem (22) has the form

X∗ = (G − αI + A∗y∗)+,

where y∗ is the unique solution of (21). We note that the uniqueness of y∗ follows from Corol-
lary 3.8 applied to (22). Therefore, Newton’s method also applies to (21) and is quadratically
convergent by Corollary 3.7, and hence solves (20).

A more complicated problem of the calibration of covariance matrix was also discussed by
Malick [35] and is defined by

min 1
2‖X − Q̃‖2

s.t. X � αI

〈I,X〉 = tr(Q̃)
〈Gi,X〉 = σ2

i , i = 1, . . . ,m

(23)

where α > 0, Q̃ is a first estimate of the true covariance matrix Q used in portfolio risk analysis,
and σ2

i represent “ex-post” volatilities of well-chosen portfolios; Gi ∈ Sn. We now demonstrate
how Newton’s method can be applied to this problem.

The feasibility of problem (23) requires

tr(Q̃) ≥ nα.

To facilitate our analysis, let

b0 := tr(Q̃), bi := σ2
i , i = 1, . . . ,m and b := (b0, b1, . . . , bm)T ∈ IRm+1,

G0 := I, A := (G0, G1, . . . , Gm)

with
AX := (〈G0,X〉, 〈G1,X〉, . . . , 〈Gm,X〉)T ∈ IRm+1.

Suppose that Gi’s are positive semidefinite nonzero matrices. Then tr(Gi) > 0 for each i. Let α
be chosen such that

0 < α < min{bi/tr(Gi) | i = 0, 1, . . . ,m}. (24)
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We also assume that if for any y ∈ IRm+1 with y` > 0 for some ` ∈ {0, 1, . . . ,m}, we have

A∗y :=
m∑

i=1

Giyi 6� 0. (25)

Conditions (24) and (25) indicate how α and Gi are chosen in problem (23). Under these two
conditions, we see that condition (2.17) in [37] is valid for problem (23), i.e.,

{A∗y : yT (b − αz0) ≥ 0} ∩ (−Sn
+) = {0},

where z0 := AI = (tr(G0), tr(G1), . . . , tr(Gm))T ∈ IRm+1. Hence, once again [37, Thm. 2.2]
implies that the unique solution of (23) has the representation:

X∗ = (Q̃ − αI + A∗y∗)+ + αI ,

where y∗ is a solution to the following equation:

A(Q̃ − αI + A∗y)+ = b − αz0. (26)

Now the generalized Newton method can be applied to this equation. If we further assume that
the matrices Gi, i = 1, . . . ,m are mutually diagonalizable, Newton’s method is also quadratically
convergent following our results in the last section. To see this, let P ∈ O be a matrix such that
Gi are simultaneously diagonalizable by P , i.e.,

Gi = PΓiP T , i = 1, . . . ,m,

where each Γi is a nonnegative diagonal matrix. Let Γ0 = I and define

L := (Γ0,Γ1, . . . ,Γm)

so that
LX = (〈Γ0,X〉, 〈Γ1,X〉, . . . , 〈Γm,X〉)T

and

L∗y =
m∑

i=0

Γiyi.

Then equation (26) becomes

L(P T (Q̃ − αI)P + L∗y)+ = b̃ , (27)

where b̃ := diag[P T (b−αz0)P ]. Since b−αz0 > 0 by the assumed conditions, we see that b̃ > 0.
Now we note that equation (27) defines a new problem given by

min 1
2‖P

T (Q̃ − αI)P − X‖2

s.t. 〈Γi,X〉 = b̃i, i = 0, . . . ,m
X ∈ Sn

+.

It is easy to repeat the arguments for problem (1) to verify that Newton’s method for the above
problem is quadratically convergent.

Finally we note that all the assumptions made so far for problem (23) are automatically
satisfied if each Gi = Ei, where Ei is the diagonal matrix whose only nonzero element is its ith
diagonal element and equals 1.
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4.3 The nonsymmetric case

In some applications [31], X may be only required to be positive semidefinite but not necessarily
symmetric. Then we have the following matrix nearness problem

min
1
2
‖X − G ‖2

s.t. AX = b
X ∈ Kn ,

(28)

where Kn is the cone of n × n positive semidefinite matrices (not necessarily symmetric)

Kn = {X ∈ IRn×n |X is positive semidefinite} .

By assuming the strong CHIP on {Kn,A−1(b)}, we know from Section 1 that the unique solution
X∗ to problem (28) has the representation

X∗ = ΠKn(G + A∗y∗) (29)

and y∗ is a solution of the equation

F (y) := AΠKn(G + A∗y) = b, y ∈ IRn . (30)

Next, we derive an explicit formula for computing ΠKn(X) for a given X ∈ IRn×n. It is easy
to see that ΠKn(X) is the unique solution to

min
1
2
‖Y − X ‖2

s.t.
1
2
(Y + Y T ) ∈ Sn

+ .
(31)

Since the Slater condition for problem (31) holds automatically, ΠKn(X), together with the
Lagrange multiplier Λ ∈ Sn

+, satisfies the KKT conditions [34, Ch.8]
{

Y − X − Λ = 0,
1
2
(Y + Y T ) ∈ Sn

+ , Λ ∈ Sn
+ ,

1
2
(Y + Y T )Λ = 0 .

These conditions can be equivalently written as
{

Y − X − Λ = 0,
Λ − ΠSn

+
[Λ − 1

2 (Y + Y T )] = 0 ,

which imply

Λ − 1
2
(Y + Y T ) = −1

2
(X + XT )

and
Λ =

1
2
ΠSn

+
[−(X + XT )] .

Hence
ΠKn(X) = X +

1
2
ΠSn

+
[−(X + XT )] =

1
2
(X − XT ) +

1
2
ΠSn

+
(X + XT ) .

Therefore, by [46, Thm 4.13], we get
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Proposition 4.2 The metric projection operator ΠKn(·) is strongly semismooth at any X ∈
IRn×n.

Proposition 4.2 implies that the function F defined in (30) is strongly semismooth everywhere
on IRn. Then, in a similar way as for the symmetric case, we may use our Newton’s method to
find a solution of F (y) = b.

To establish the quadratic convergence of Newton’s method, we restrict to the case that the
linear operator A : IRn×n 7→ IRn is defined by AX = diag[X]. In this case, the adjoint of A is
A∗y = Diag[y] (note that the inner-product in IRn×n is 〈X,Y 〉 = tr(XT Y ).) Noticing that

A(X − XT ) = 0,

we see that the nonsmooth equation (30) becomes

F (y) =
1
2
AΠSn

+
(C(y) + CT (y)) = b,

where as before we denote C(y) = G + A∗y. In a more explicit form we have

F (y) = AΠSn
+
(
1
2
(G + GT ) + A∗y) = b. (32)

This is the nonsmooth equation derived from the following standard problem in the form of (1):

min
1
2
‖(G + GT )/2 − X‖2

s.t. Xii = bi, i = 1, . . . , n
X ∈ Sn

+ .

(33)

Under the condition that b > 0, we see from our previous results for the symmetric case like
(33) that Proposition 3.6 holds for (32). Hence, Newton’s method is quadratically convergent
for the special case.

5 Numerical results

In numerical experiments, we used the following globalized version of Newton’s method for
solving the dual problem (8). Recall that for any y ∈ IRn, ∇θ(y) = F (y) − b and b = e.

Algorithm 5.1 (Newton’s Method)

Step 0. Given y0 ∈ IRn, η ∈ (0, 1), ρ, σ ∈ (0, 1/2). k := 0.

Step 1. Select an element Vk ∈ ∂F (yk) and apply the conjugate gradient (CG) method of
Hestenes and Stiefel [23] to find an approximate solution dk to

∇θ(yk) + Vkd = 0 (34)

such that
‖∇θ(yk) + Vkd

k‖ ≤ ηk‖∇θ(yk)‖ , (35)
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where ηk := min{η, ‖∇θ(yk)‖}. If (35) is not achievable or if the condition

∇θ(yk)T dk ≤ −ηk‖dk‖2 (36)

is not satisfied, let dk := −B−1
k ∇θ(yk), where Bk is any symmetric positive definite matrix

in Sn.

Step 2. Let mk be the smallest nonnegative integer m such that

θ(yk + ρmdk) − θ(yk) ≤ σρm∇θ(yk)T dk.

Set tk := ρmk and yk+1 := yk + tkd
k.

Step 3. Replace k by k + 1 and go to Step 1.

An alternative to calculating the Newton direction is to apply the CG method to the following
perturbed Newton equation:

∇θ(yk) + (Vk + εkI) d = 0 with εk > 0.

The classical choice of εk is the norm of the residue, i.e., εk = ‖F (yk) − b‖. Since Vk is always
positive semidefinite, the matrix (Vk + εkI) is always positive definite for any εk > 0.

The global convergence analysis of Algorithm 5.1 is quite standard. Since the CG method
is used to calculate the Newton direction, it is actually an inexact Newton direction that was
used in our implementation. Hence, our local convergence analysis is a bit different from the
standard ones. We provide a proof for the sake of completeness.

First, we need the following result due to Facchinei [21, Thm. 3.3 & Remark 3.4]. A similar
result was also obtained by Pang and Qi [41].

Lemma 5.2 Suppose that, for every k,

∇θ(yk)T dk ≤ −ρ̂‖dk‖2

for some ρ̂ > 0. Then, for any µ ∈ (0, 1/2), there exists a k̄ such that for all k ≥ k̄,

θ(yk + dk) ≤ θ(yk) + µ∇θ(yk)T dk .

Theorem 5.3 Suppose that in Algorithm 5.1 both {‖Bk‖} and {‖B−1
k ‖} are uniformly bounded.

Then the iteration sequence {yk} generated by Algorithm 5.1 converges to the unique solution y∗

of F (y) = b quadratically.

Proof. Since for any k ≥ 0, dk is always a descent direction of θ(·) at yk, Algorithm 5.1 is
well defined. Moreover, from the coercive property of θ we know that {yk} is bounded. Then,
by employing standard convergence analysis (cf. [12, Thm 6.3.3]), we can conclude that

lim
k→∞

∇θ(yk) = 0 ,

which, together with the convexity of θ(·) and the boundedness of {yk}, implies that yk → y∗.
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Since, by Proposition 3.6, any element V ∈ ∂F (y∗) is positive definite, it holds that for all
k sufficiently large, Vk is positive definite and {‖V −1

k ‖} is uniformly bounded. Hence, for all k
sufficiently large, the CG method can find dk such that both (35) and (36) are satisfied. This,
together with the facts that ∇θ(y∗) = 0 and ∇θ(·) is strongly semismooth at y∗, further implies
that for all k sufficiently large,

‖yk + dk − y∗‖ = ‖yk + V −1
k [(∇θ(yk) + Vkd

k) −∇θ(yk)] − y∗‖

≤ ‖yk − y∗ − V −1
k ∇θ(yk)‖ + ‖V −1

k (∇θ(yk) + Vkd
k)‖

≤ ‖V −1
k ‖‖∇θ(yk) −∇θ(y∗) − Vk(yk − y∗)‖ + ηk‖V −1

k ‖‖∇θ(yk)‖

≤ O(‖yk − y∗‖2) + ‖V −1
k ‖‖∇θ(yk)‖2

≤ O(‖yk − y∗‖2) + O(‖∇θ(yk) −∇θ(y∗)‖)2,

= O(‖yk − y∗‖2), (37)

where in the last equality we used the Lipschitz continuity of ∇θ(·). From (37) and the fact
that yk → y∗, we have for all k sufficiently large that

yk − y∗ = −dk + O(‖dk‖2) and ‖dk‖ → 0. (38)

For each k ≥ 0, let rk := ∇θ(yk) + Vkd
k. Then for all k sufficiently large,

−∇θ(yk)T dk = 〈dk, Vkd
k〉 − 〈dk, rk〉

≥ 〈dk, Vkd
k〉 − ‖dk‖‖rk‖

≥ 〈dk, Vkd
k〉 − ηk‖dk‖‖∇θ(yk)‖

= 〈dk, Vkd
k〉 − ‖dk‖‖∇θ(yk)‖2

≥ 〈dk, Vkd
k〉 − ‖dk‖‖yk − y∗‖2, (39)

which, together with (38) and the uniform positive definiteness of Vk, implies that there exists
ρ̂ > 0 such that for all k sufficiently large,

−∇θ(yk)T dk ≥ ρ̂‖dk‖2.

It then follows from Lemma 5.2 that for all k sufficiently large tk = 1 and

yk+1 = yk + dk .

The proof is completed by observing (37). �

Next, we discuss several issues regarding the implementation of Algorithm 5.1.

(a) Forming the Newton matrix. In Algorithm 5.1, we need to find a V ∈ ∂F (y) to form
equation (34). For a given y ∈ IRn, let C(y) have the following spectral decomposition

C(y) = PDiag[λ(y)]P T , P ∈ OC(y).
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Let

My :=




Eαα Eαβ (τij(y)) i∈α
j∈γ

Eβα 0 0
(τji(y)) i∈α

j∈γ
0 0


 , τij(y) :=

λi(y)
λi(y) − λj(y)

, i ∈ α, j ∈ γ.

Define the matrix Vy ∈ IRn×n by

Vyh = AP
(
My ◦ (P T HP )

)
P T , h ∈ IRn , (40)

where H := Diag[h].

Proposition 5.4 Let the matrix Vy be defined by (40). Then

Vy ∈ ∂BF (y) ⊆ ∂F (y).

Proof. Recall that the scalar-valued function f(t) = max(0, t), t ∈ IR. For each k > 0, let
tk := −1/k. We now consider the sequence {zk} with zk given by zk := y − tke = y + (1/k)e.
Then, λ(y) − tke is the spectrum of C(zk), i.e.,

C(zk) = C(y) − tkC(e) = PDiag[λ(y) − tke]P T = PDiag[λ(y) + (1/k)e]P T .

Let k̄ > 0 be sufficiently large such that 1/k̄ < min{|λi(y)| | i ∈ α ∪ γ} (recall the definitions of
α and γ). Then, for each k ≥ k̄, the matrix valued function f : Sn → Sn is differentiable at
C(zk) because C(zk) is nonsingular and in this case, by Lemma 3.1, f is differentiable at C(zk)
and for any Z ∈ Sn,

f ′(C(zk))Z = P
(
f [1](λ(y) + (1/k)e) ◦ (P T ZP )

)
P .

Therefore, from Lemma 3.4 we know that for each k ≥ k̄, F is differentiable at zk and for any
h ∈ IRn,

F ′(zk)h = Af ′(C(zk))H,

where H := Diag[h]. After direct computations we can see that

My = lim
k→∞

f [1](λ(y) + (1/k)e).

Hence, for each h ∈ IRn,

lim
k→∞

F ′(zk)h = AP
(
My ◦ (P T HP )

)
P T ,

which, together with (40), implies that

Vy = lim
k→∞

F ′(zk).
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Thus, by the definition of ∂BF (y), Vy ∈ ∂BF (y). The proof is completed by observing that
∂F (y) = co ∂BF (y). �

We see from Proposition 5.4 that we can obtain an element Vy ∈ ∂F (y) by the spectral
decomposition of C(y). Since we use the CG method to solve (34), we do not need to form Vy

explicitly.
(b) Testing examples. We tested the following four classes of problems:

Example 5.5 C is a randomly generated n×n correlation matrix by MATLAB 7.0.1’s gallery
(’randcorr’,n). R is a random n × n symmetric matrix with Rij ∈ [−1, 1], i, j = 1, 2, . . . , n.
Then we set

G = C + αR ,

where α = 0.01, 0.1, 1.0, 10.0. We fix n = 1000 in our numerical reports. This problem was
tested by Higham [25].

Example 5.6 G is a randomly generated symmetric matrix as in the first example of Malick
[35] with Gij ∈ [−1, 1] and Gii = 1.0, i, j = 1, 2, . . . , n and n = 500, 1000, 1500, 2000.

Example 5.7 G is a randomly generated symmetric matrix with Gij ∈ [0, 2] and Gii = 1.0,
i, j = 1, 2, . . . , n and n = 500, 1000, 1500, 2000.

Example 5.8 G is a randomly generated symmetric matrix as in the second example of Malick
[35] with

Gii ∈ [−2.0 × 104, 2.0 × 104], i = 1, 2, . . . , n.

We add to G a perturbed n × n random symmetric matrix with entries in [−α, α], where α =
0.0, 0.01, 0.1, 1.0. We report our numerical results for n = 1000.

(c) Initial parameters. In our numerical experiments, two initial points were used: (i) b −
diag(G); and (ii) b − diag(G) + e. Other initial points may be used. For example, we may
start from a positive point, i.e., y0 > 0, such that C(y0) is positive definite. The performance
of Newton’s method is similar as we reported below. We set other parameters as η = 10−5,
ρ = 0.5, and σ = 2.0 × 10−4. For simplicity, we fix Bk ≡ I for all k ≥ 0.

(d) Comparison and observations. For the purpose of comparison, we tested the performance
of the BFGS method with the Wolfe line-search used by Malick [35] and the alternating projec-
tion method employed by Higham [25]. The details of the implementation of the BFGS method
can be found in [39, Ch. 8]. As observed by Malick [35, Thm. 5.1], Higham’s method is the
following standard gradient optimization algorithm applied to (8):

yk+1 := yk −∇θ(yk) , k = 0, 1, . . . ,

and is therefore called the gradient method. We also tested a hybrid method that combines the
BFGS method and Newton’s method. The hybrid method, which is called BFGS-N here, starts
with the BFGS method and switches to Newton’s method when ‖∇θ(yk)‖ ≤ 1.0.
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All tests were carried out in MATLAB 7.0.1 running on a PC Pentium IV. In our experiments,
our stopping criterion is

‖∇θ(yk)‖ ≤ 10−5 .

The reason that we chose 10−5 instead of 10−6 or higher accuracy is because the the BFGS
method and the gradient method ran into difficulty for a higher accuracy in a few cases. Our
numerical results are reported in Tables 1-4, where Init., Iter., Func., and Res. stand for, respec-
tively, the initial point used, the number of iterations and the number of function evaluations
of θ, and the residual ‖∇θ(yk)‖ at the final iterate of an algorithm (we set a maximum of 500
iterations). LS failed means that the line search failed (the steplength is too small to proceed)
during the computation.

An outstanding observation is that Newton’s method took less than 10 iterations for all
the problems to reach the reported accuracy and the quadratic convergence was observed. The
BFGS method performed quite well for Examples 5.5, 5.6, and 5.8 while there are four line
search failures in Example 5.7. Sometimes it took much longer time to reach the required
accuracy. Numerical results for BFGS-N clearly showed that Newton’s method can be used to
save a lot of computing time required by the BFGS method. The gradient method is generally
outperformed by the BFGS method. Compared with the numerical results reported in [49]
on the inexact primal-dual path following interior point methods (IMPs) for the similar tested
examples, our proposed Newton method is much faster (4 to 5 times) in terms of the cputime.
The main reason is that the proposed Newton method needs fewer number of iterations and
at each iteration it needs only one eigenvalue decomposition instead of two as in the inexact
primal-dual path following IMPs [49].

More specific observations are included in the following remarks.

Remark 5.9 Newton’s method takes less cputime and less number of iterations. For all the
tested examples, it is observed that the Newton method always took the unit steplength and
achieved the quadratic convergence at the last several iterations. Typically, Newton’s method
was terminated in two or three steps after the residue of the gradient is below 10−1 or 10−2.

Remark 5.10 The major cost in Newton’s method includes two parts: 1) the spectral decompo-
sition; and 2) the CG method for solving the linear system. In order to form the linear system,
we need the computation of the full eigensystem. So it seems that the computing time involved
in part 1) is inevitable. The computing time in part 2) may be reduced by making use of the
special structure of ∂BF (y), y ∈ IRn. We did not explore the latter in our implementation as we
are quite satisfied with the performance of Newton’s method.

Remark 5.11 The major cost in the BFGS method and the gradient is the spectral decomposi-
tion. By doing a partial spectral decomposition as outlined in [25], we may be able to save some
cputime. We did not exploit this as we do not know the distributions of the eigenvalues of the
optimal correlation matrix.

Remark 5.12 It can be seen clearly from the numerical results for BFGS-N that Newton’s
steps reduced the cputime committed by the BFGS method substantially. If one can calculate
F (y) much less costly than via the computation of the full eigensystem, then it may be a good
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choice to start with a method like the BFGS, which costs less than Newton’s method at each step,
and then switch to Newton’s method when the iterates are close to the solution. In this case,
BFGS-N may be an ideal choice.

6 Conclusion

In this paper, a close look at the nearest correlation matrix problem as the best approximation
from a convex set in a Hilbert space lead us to consider Newton’s method. Theoretically, we
proved that Newton’s method is well defined and is quadratically convergent. Our theoretical
results were then extended to such problems as the W -weighted nearest correlation problem, the
case with lower bounds and the nonsymmetric case. Numerically, Newton’s method is shown
to be extremely efficient, taking less than 10 iterations to solve all the test problems. This
research opens the possibility of developing Newton’s method for other least-square semidefinite
problems. We shall pursue this possibility in our future research.

Acknowledgement. The authors are grateful to Professor N.J. Higham for suggesting the
present title and the referees for their helpful comments.
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Init. Algorithm α cputime Iter. Func. Res.
(i) Newton 0.01 2 m 13 s 1 2 2.6 × 10−7

0.1 2 m 58 s 3 4 2.0 × 10−8

1.0 3 m 38 s 5 6 2.7 × 10−8

10.0 4 m 13 s 7 8 9.9 × 10−8

BFGS 0.01 2 m 19 s 2 3 2.3 × 10−7

0.1 3 m 03 s 5 6 8.0 × 10−7

1.0 6 m 27 s 18 19 9.7 × 10−6

10.0 15 m 10 s 53 54 6.4 × 10−6

BFGS-N 0.01 2 m 16 s 1 2 7.2 × 10−8

0.1 3 m 10 s 4 5 4.9 × 10−11

1.0 3 m 50 s 7 8 4.0 × 10−6

10.0 6 m 00 s 15 16 2.6 × 10−10

Gradient 0.01 2 m 20s 2 3 6.0 × 10−6

0.1 4 m 56 s 13 14 6.6 × 10−6

1.0 24 m 38 s 107 108 9.3 × 10−6

10.0 1 h 57 m 54 s 500 501 8.2 × 10−3

(ii) Newton 0.01 0.22 s 2 3 1.4 × 10−6

0.1 3 m 12 s 4 5 1.1 × 10−10

1.0 3 m 41 s 5 6 4.5 × 10−7

10.0 4 m 39 s 7 8 1.2 × 10−7

BFGS 0.01 2 m 50 s 3 4 6.9 × 10−8

0.1 3 m 25 s 6 7 6.9 × 10−6

1.0 8 m 09 s 19 20 6.3 × 10−6

10.0 15 m 11 s 53 54 7.9 × 10−6

BFGS-N 0.01 2 m 39 s 2 3 4.6 × 10−6

0.1 3 m 08 s 4 5 6.3 × 10−7

1.0 4 m 16 s 7 8 4.0 × 10−6

10.0 6 m 37 s 15 16 2.3 × 10−9

Gradient 0.01 02 m 48s 3 4 5.1 × 10−6

0.1 5 m 24 s 14 15 6.0 × 10−6

1.0 24m 06 s 106 107 9.2 × 10−6

10.0 1 h 59 m 53 s 500 501 8.4 × 10−3

Table 1: Numerical results of Example 5.5
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Init. Algorithm n cputime Iter. Func. Res.
(i) Newton 500 16.6 s 5 6 1.0 × 10−9

1,000 1 m 49 s 5 6 3.3 × 10−8

1,500 5 m 44 s 5 6 2.7 × 10−7

2,000 12 m 34 s 5 6 1.5 × 10−6

BFGS 500 32.1 s 16 17 5.5 × 10−6

1,000 4 m 03 s 19 20 5.7 × 10−6

1,500 13 m 26 s 20 21 9.1 × 10−6

2,000 33 m 10 s 22 23 3.9 × 10−6

BFGS-N 500 15.1 s 6 7 4.0 × 10−6

1,000 2 m 00 s 7 8 3.6 × 10−6

1,500 7 m 44 s 7 8 7.4 × 10−6

2,000 17 m 06 s 8 9 1.9 × 10−11

Gradient 500 2 m 43 s 76 77 9.2 × 10−6

1,000 25 m 26 s 106 107 9.0 × 10−6

1,500 1 h 24 m 44 s 126 127 9.5 × 10−6

2,000 3 h 41 m 16 s 144 145 1.0 × 10−5

(ii) Newton 500 16.4 s 5 6 4.3 × 10−9

1,000 1 m 50 s 5 6 9.4 × 10−8

1,500 6 m 10 s 5 6 7.0 × 10−7

2,000 13 m 38 s 5 6 2.2 × 10−6

BFGS 500 32.2 s 17 18 8.1 × 10−6

1,000 4 m 14 s 19 20 7.0 × 10−6

1,500 15 m 23 s 21 22 4.9 × 10−6

2,000 35 m 04 s 22 23 3.9 × 10−6

BFGS-N 500 14.8 s 6 7 6.7 × 10−6

1,000 2 m 02 s 7 8 3.3 × 10−6

1,500 5 m 57 s 7 8 9.5 × 10−6

2,000 18 m 35 s 8 9 8.3 × 10−11

Gradient 500 2 m 25 s 78 79 9.4 × 10−6

1,000 21 m 31 s 105 106 9.0 × 10−6

1,500 1 h 46 m 40 s 127 128 9.7 × 10−6

2,000 3 h 34 m 59 s 144 145 9.4 × 10−6

Table 2: Numerical results of Example 5.6
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Init. Algorithm n cputime Iter. Func. Res.
(i) Newton 500 34.3 s 8 9 3.7 × 10−9

1,000 4 m 55 s 9 10 3.1 × 10−9

1,500 14 m 04 s 9 10 4.5 × 10−7

2,000 33 m 52 s 9 10 2.6 × 10−6

BFGS 500 2 m 46 s 88 89 9.4 × 10−6

1,000 LS failed 110 119 2.3 × 10−5

1,500 LS failed 111 123 4.7 × 10−5

2,000 LS failed 112 129 8.1 × 10−5

BFGS-N 500 43.1 s 12 13 1.4 × 10−7

1,000 6 m 09 s 15 17 9.8 × 10−10

1,500 19 m 03 s 15 17 3.6 × 10−10

2,000 1 h 08 m 36 s 20 28 1.1 × 10−7

Gradient 500 15 m 53 s 500 501 3.7 × 10−2

1,000 2 h 01 m 01 s 500 501 1.3 × 10−1

1,500 5 h 25 m 42 s 500 501 2.0 × 10−1

2,000 – – – –
(ii) Newton 500 35.6 s 8 9 1.7 × 10−7

1,000 4 m 34 s 9 10 6.1 × 10−8

1,500 15 m 37 s 9 10 6.2 × 10−7

2,000 40 m 06 s 9 10 3.8 × 10−6

BFGS 500 2 m 51 s 89 90 9.3 × 10−6

1,000 26 m 01 s 116 118 9.6 × 10−6

1,500 LS failed 122 126 2.6 × 10−5

2,000 3 h 43 m 33 s 139 140 1.0 × 10−5

BFGS-N 500 45.2 s 12 15 2.4 × 10−6

1,000 6 m 16 s 15 17 2.6 × 10−9

1,500 18 m 55 s 15 17 8.3 × 10−8

2,000 50 m 56 s 14 18 7.0 × 10−7

Gradient 500 15 m 13 s 500 501 3.7 × 10−2

1,000 1 h 54 m 18 s 500 501 1.2 × 10−1

1,500 5 h 22 m 08 s 500 501 1.9 × 10−1

2,000 – – – –

Table 3: Numerical results of Example 5.7
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Init. Algorithm α cputime Iter. Func. Res.
(i) Newton 0.0 9.4 s 1 2 2.3 × 10−13

0.01 1 m 52 s 5 6 1.4 × 10−6

0.1 2 m 33 s 6 7 3.9 × 10−7

1.0 4 m 19 s 8 9 1.6 × 10−8

BFGS 0.0 28.0 s 2 9 4.6 × 10−13

0.01 5 m 00 s 23 27 1.4 × 10−6

0.1 5 m 23 s 27 29 8.9 × 10−6

1.0 9 m 24 s 50 52 9.1 × 10−6

BFGS-N 0.0 8.7 s 1 2 1.6 × 10−13

0.01 2 m 03 s 5 6 1.4 × 10−6

0.1 2 m 25 s 11 12 4.1 × 10−9

1.0 6 m 11 s 20 25 2.0 × 10−9

Gradient 0.0 27 m 29 s 500 501 1.6 × 10−2

0.01 1 h 36 m 35 s 500 501 5.6 × 10−2

0.1 1 h 26 m 35 s 500 501 4.0 × 10−1

1.0 1 h 51 m 23 s 500 501 4.0 × 100

(ii) Newton 0.0 14.3 s 2 3 1.4 × 10−13

0.01 2 m 19 s 6 7 1.3 × 10−6

0.1 3 m 08 s 7 8 2.1 × 10−7

1.0 4 m 11 s 8 9 1.7 × 10−7

BFGS 0.0 32.6 s 3 10 7.2 × 10−11

0.01 3 m 47 s 17 20 4.6 × 10−6

0.1 5 m 50 s 25 28 6.9 × 10−7

1.0 LS failed 60 74 1.1 × 10−5

BFGS-N 0.0 12.7 s 2 3 2.7 × 10−13

0.01 2 m 06 s 6 7 1.3 × 10−6

0.1 2 m 33 s 9 10 2.5 × 10−9

1.0 6 m 36 s 21 25 3.4 × 10−7

Gradient 0.0 27 m 35 s 500 501 1.6 × 10−2

0.01 1 h 25 m 10 s 500 501 5.6 × 10−2

0.1 1 h 28 m 51 s 500 501 4.0 × 10−1

1.0 1 h 23 m 17 s 500 501 4.0 × 100

Table 4: Numerical results of Example 5.8

30


