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Abstract 

Recently, Ye et al. [16] demonstrated that Mizuno-Todd-Ye's predictor-corrector 

interior-point algorithm for linear programming maintains the 0( ynL )-iteration com­

plexity while exhibiting superlinear convergence of the duality gap to zero under the 

assumption that the iteration sequence converges, and quadratic convergence of the 

duality gap to zero under the assumption of nondegeneracy. In this paper we establish 

the quadratic convergence result without any assumption concerning the convergence 

of the iteration sequence or nondegeneracy. This surprising result, to our knowledge, 

is the first instance of a demonstration of polynomiality and superlinear ( or quadratic) 

convergence for an interior-point algorithm which does not assume the convergence 

of the iteration sequence or nondegeneracy. 

Key words: Linear programming, primal and dual, superlinear and quadratic con­

vergence, polynomiality 
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1. Introduction 

Consider the primal linear program (LP): 

s.t. Ax = b, x 2 0, 

and its dual (LD): 

max bT y 

s.t. AT y + s = c, s 2 0, 

where A E Rmxn, c E Rn, and b E Rm. We say thats is feasible for (LD) if there 

exists y such that ( y, s) is feasible for (LD). A feasible point is said to be strictly 

feasible if it is feasible and positive. We say that ( x, s) is a (strictly) feasible pair for 

(LP) and (LD) if x is (strictly) feasible for (LP) ands is (strictly) feasible for (LD). 

It is well-known that for a feasible pair ( x, s) the duality gap is given by x Ts. Hence 

a feasible pair (x*, s*) is optimal if and only if 

x;s; = 0 for j = 1, 2, ... , n. 

Moreover, consider a sequence of strictly feasible pairs {(xk, sk)} such that the 

duality gap sequence (xk)T sk -+ 0. Then we say that this duality gap sequence 

converges Q-superlinearly to zero if 

. (xk+If 8 k+1 
hm -----=0, 

k-+oo (xk)T sk 

and Q-quadratically to zero if 

In the context of the present work it is important to emphasize that the notions of 

convergence, superlinear convergence, or quadratic convergence of the duality gap 

sequence in no way require the convergence of the iteration sequence {(xk,sk)}. Of 

course, from Hoffman's lemma [4] it follows that in a particular sense the iteration 

sequence converges to the optimal solution set with the corresponding R-rate. 
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Recently, there has been an exciting outbreak of activity in the area of construct­

ing primal-dual interior-point algorithms for either the linear programming problem 

(LP), or the (monotone) linear complementarity problem (LCP) with a strict comple­

mentarity solution, that are demonstrably superlinearly or quadratically convergent. 

For LP, these works include Zhang et al. [17], [18], Ye et al. [16] and McShane [9]. 

For LCP, these works include Kojima et al. [6][7], Zhang et al. [19], and Ji et al. [5]. 

For the moment assume that the iteration sequence {(xk, sk)} has been generated 

by an interior-point algorithm. Consider the following assumptions: 

AO a strictly feasible pair ( x 0
, s0

) exists; 

Al the iteration sequence {(xk, sk)} converges; 

A2 the linear program is nondegenerate. 

We intend AO and Al to apply to both LP and LCP. It is known that A2 implies Al 

when the duality gap converges to zero. Note that AO is assumed by all of the existing 

primal-dual interior-point algorithms. Concerning the results mentioned above, all of 

the superlinear convergence results assumed Al; while all of the quadratic convergence 

results assumed A2. Perhaps the most striking theoretical results obtained so far can 

be cataloged as follows: 

- Quadratic convergence for the LCP that possesses a unique and strict comple­

mentarity solution (Kojima et al. [7]). 

- 0( nL) iteration complexity and superlinear convergence assuming Al (Zhang and 

Tapia [17] for LP and Ji et al. [5] for LCP) or quadratic convergence assuming 

A2 (Zhang and Tapia [17] for LP). 

- 0( yri,L) iteration complexity and superlinear convergence assuming Al (Ye et 

al. [16] and McShane [9] for LP) or quadratic convergence assuming A2 (Ye et 

al. [16] for LP). 

In these bounds L represents the data length of the problem being solved. 

Certainly, the global property of polynomiality and the local property of super­

linearity are desirable. However, the degree to which Al is restrictive is an open 
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question at this time. Moreover, A2 is not at all realistic, since most real-world LP 

problems are degenerate. 

In what follows we consider the Mizuno-Todd-Ye predictor-corrector algorithm 

analyzed by Ye et al. (16]. We show that this 0( fo,L) iteration complexity algorithm 

actually gives quadratic convergence of the duality gap to zero without assuming 

either Al or A2. (Of course we must assume AO as usual.) 

In Section 2 we review the algorithm and collect several previously established 

estimates. Section 3 contains several technical results. Our main convergence result 

is given in Section 4, and a summary and concluding remarks are contained in Section 

5. 

2. The Predictor-Corrector Algorithm 

In this section, we briefly describe the predictor-corrector LP algorithm of Mizuno et 

al. [11]. We employ the notation X = diag(x), S = diag(s), etc. and let n denote 

the collection of all feasible pairs ( x, s). Consider the set 

N(a) = {(x, s) En: IIXs - µell ::; aµ and µ = xT s/n}, 

where 11-11 represents the 12 norm, e is the vector of all ones, and a is a constant 

between 0 and 1. 

To begin with choose a constant 0 < /3 :S 1 / 4 ( a typical choice would be 1 / 4). 

All search directions dx, ds, and dy will be defined as solutions of the following system 

of linear equations (Kojima et al. [8]) 

X ds + S dx = 1 µe - XS 

Adx = 0 

AT dy + ds = 0 

(1) 

for some (x, s) E n, whereµ = xT s/n. A typical iteration of the algorithm proceeds 

as follows. Given (xk,sk) E N(/3), we solve the system (1) with (x,s) = (xk,sk) and 

1 = 0. Denote the resulting directions by d~ and d!. For some step length 0 > 0 let 
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and µ(0) = x(0)T s(0)/n. This is the predictor step. The specific choice for 0 will be 

stated after we consider the following lemma that is essentially due to Mizuno et al. 

[11). 

Lemma 2.1. Let a be a constant between O and 1. If there exists a positive Ok :S 1 

such that 

IIX(0)s(0) - µ(0)ell :S aµ(0) for all O :S 0 '.S Ok, 

then (x(0k),s(0k)) E N(a). 

(2) 

The proof of Lemma 2.1 follows directly from a continuity argument. Lemma 

2.1 basically says that the feasibility of (x(0k), s(0k)) is guaranteed as long as (2) is 

satisfied. Thus, we can choose the largest step length 0k '.S 1 such that (2) is satisfied 

for a= 2/3, and let 

(Note that if 0k = l, then we obtain an optimal pair in a finite number of iterations.) 

Now we solve the system (1) with (x,s) = (xk,sk) E N(2/3), µ = (xk)Tsk/n, 

and , = 1. Let xk+i = xk + dx and sk+i = sk + d8 • It has been proved that 

(xk+I, sk+I) E N(/3) (Lemma 3 [11)). This is the corrector step. 

We are now in a position to state the algorithm. 

Large Step Predictor-Corrector Algorithm (Mizuno-Todd-Ye) 

By the large step predictor-corrector algorithm we mean the algorithm defined 

above with the step length given by the largest 0k satisfying the conditions of Lemma 

2.1 with O < /3 :S 1/4 and a = 2/3. 

The choice of 0k in the algorithm requires one to find the roots of a quartic 

polynomial. From the proof of our main result we will see that the choice for 0k need 

not be this involved and it suffices to choose 0k as the lower bound given in Lemma 

2.2 below, as was the case in Ye et al. [16]. These comments will be stated formally 

as a corollary to our main theorem. 

Observe that the algorithm generates a sequence of feasible pairs satisfying 

(3.1) 
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and 

(3.2) 

For convenience, in what follows let 

.i,From Mizuno et al. [11] (Lemmas 1, 2, and 4) we have that 

( 4.1) 

and for O < /3 ::::; 1 / 4 

0k > · { 1 ( /3 )1/2} 
- mm 2' 2Jj8kjj . 

(4.2) 

Thus, these inequalities together with (3.2) imply that the iteration complexity of the 

large step predictor-corrector algorithm is 0( Jri,L ). Note that the algorithm requires 

that the linear system ( 1) be solved twice at each iteration . 

.i,From relation (3.2), we see that if (1 - 0k) -t 0 then the duality gap (xk)T sk 

converges to zero Q-superlinearly. Moreover, if (1-0k) = O((xk)T sk) then the duality 

gap converges to zero Q-quadratically. In our convergence-rate analysis, as opposed 

to our complexity analysis, the big O notation represents a quantity that may or 

may not depend on n or L, the problem data, however this dependence will not be 

explicitly stated. The above lower bound in ( 4.2) for 0k, due to Mizuno et al., is not 

sufficient to demonstrate superlinear convergence since it is at most 1/2. Thus, Ye et 

al. [16] derived the following lower bound for 0k. 

Lemma 2.2. If 0k is the largest 0k satisfying the conditions of Lemma 2.1 with 

a= 2/3, then 

Using the bound given in Lemma 2.2, Ye et al. [16] have proved that the large step 

predictor-corrector algorithm maintains the 0( Jri,L) iteration complexity, and also 

gives superlinear convergence under assumption Al or quadratic convergence under 

assumption A2. In the next section we will show how to remove these assumptions 

and actually obtain quadratic convergence for general LP problems. 
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3. Technical Results 

At the kth predictor step if 0k is the largest 0k satisfying the conditions of Lemma 

2.1 with o: = 2/3, then 

k 2 
1 - 0 < l - ----;:=====---

y'l + 4ll8kll//3 + 1 

y'1 + 4ll8kll/ /3 - l 

y'1 + 4ll8kll/ /3 + l 
4ll8kll//3 

( y'1 + 4ll8kll//3 + 1)2 

~ ll8kll/ /3. (5) 

Our goal is to prove that ll8kll = O((xk)T sk) without using assumption Al or A2. 

We first introduce several technical lemmas. For simplicity, we drop the index k 

and recall the linear system during the predictor step 

Xds + Sdx = -Xs 

Adx = 0 (6) 

Let µ = xT s/n and z = X s. Then from (3.1) we must have 

(1 - /3)µ ~ Zj ~ (1 + /3)µ for j = 1, 2, ... , n. (7) 

Define D = X 112 s-1
/

2 and denote by Ih the orthogonal projection onto the linear 

subspace L of Rn. Denote by N(AD) and R(DAT) the null space of AD and the 

range of DAT, respectively. We shall estimate lldxll and lldsll- Our objective in this 

section is to demonstrate that lldxll = O(µ) and lldsll = O(µ). 

We start by characterizing the solution to (6). 

Lemma 3.1. If dx and ds are obtained from the linear system (6), then 

dx = -DIIN(AD)r, 

ds = -D-
1 
IIR(DAT)r, 
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where r = z 1!2 e. 

Proof. The proof is straightforward, e.g., see Adler and Monteiro [1]. I 

It is well known that for every linear program, a unique partition A = ( B, N) 

exists such that the primal optimal face is given by 

and the dual optimal face is given by 

nd = {(y,s) = (y,(sB,sN)): SB= CB -BTy = 0, SN= CN - NTy ~ O}. 

Strictly feasible solutions x B > 0 and s N > 0 exist on these optimal faces, respectively, 

and both faces are bounded under assumption AO. Here, we also use B and N to 

denote the partitioned column index sets. For all k, relation (3.1) implies that 

e::;xj::;1/e for jEB (8.1) 

and 

e ::; s j ::; 1 / e for j E N, (8.2) 

where e < 1 is a fixed positive number that is independent of k (Giiler and Ye [3]). 

Lemma 3.2. If dx and ds are obtained from the linear system (6) andµ= xT s/n, 

then 

ll(dx)NII = O(µ) and ll(ds)BII = 0(µ). 

Proof. From Lemma 3.1, we obtain 

11n-1 
dx II ::; IIIIN(AD) II llrll 

::; llrll = 0( vii)-

We have from relations (7) and (8) 

ll(dx)NII = IIDNDA/(dx)NII 

::; IIDNIJIIDN1(dx)Njj 

::; IIDNII0(vii) 

= 11z,V2 s·;/ II0( vii) 

= 0( vii)0( vii) = 0(µ ). 

8 



This proves that ll(dx)NII = O(µ). The proof that ll(ds)B11 = O(µ) is similar. I 

The proofs of ll(dx)BII = O(µ) and ll(ds)NII = O(µ) are more involved. Towards 

this end, we first note 

x + dx = DITR(DAT)r, 

S + ds = D-
1
ITN(AD)r. 

This is because from the first equation of (6) we have 

Thus, 

S(x + dx) = -Xds 

X(s + ds) = -Sdx. 

X + dx = -(X 5-l )ds = -D2d8 

s + ds = -(sx- 1 )dx = -D-2 dx, 

which gives relation (9). 

(9) 

The following lemma is essentially due to Adler and Monteiro [1] ( also see Son­

nevend et al. [12] and Witzgall et al. [14]). 

Lemma 3.3. If dx and ds are obtained from the linear system (6), then (dx)B is 

the solution to the (weighted) least-squares problem 

mm (1/2)IIDi/ull
2 

u 

s.t. Bu = -N(dx)N, 
(10.1) 

and (ds)N = -NT dy where dy is a solution to the (weighted) least-squares problem 

mm (1/2)IIDNNT vll 2 

V (10.2) 

Proof. From (9), we see that 

(11) 

Since s 11 = 0 for all optimal s*, we must have CB E R(BT). Thus, 
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which implies that 

(12) 

lFrom (11) and (12) we have 

Moreover, ( dx) B satisfies the equation 

Thus, ( dx )B satisfies the Karush-Kuhn-Tucker conditions for the least squares problem 

(10.1). 

Since AD2 
( s + d8 ) = -Adx = 0 and AD2 s = Ax = b, it follows that 

(13) 

Also, since xiv = 0 for all optimal x*, we have Bx3 = b implying b E R(B). Therefore, 

relation (13) implies 

Moreover, dy satisfies the equation 

Thus, dy satisfies the Karush-Kuhn-Tucker conditions for the least squares problem 

(10.2). I 

Theorem 3.1. If dx and d8 are obtained from the linear system (6) andµ= xT s/n, 

then 

ll(dx)BII = O(µ) and ll(ds)NII = O(µ). 

Proof. Since the least-squares problem (10.1) is always feasible, there must be a 

feasible u such that 

!lull= O(ll(dx)NII), 
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which together with Lemma 3.2 implies 

llull = 0(µ). 

Furthermore, from Lemma 3.3 and relations (7) and (8) 

ll(dx)BII = IIDBDB
1
(dx)BII 

:S IIDBIJJJDB1 (dx)BIJ 

:S IIDBIIIIDB1ull 

:S IIDB II IIDB1 II llull 

= 11z;112 xB II IIZ:/
2 
XB1 II llull 

:S 11z;112 II IIXBIIIIZ:/
2
IIIIXB1 llllull 

= O(lluJJ) = 0(µ). 

Similarly, we can prove the second statement of the theorem. I 

4. Quadratic Convergence without Assumption Al or A2 

Lemma 3.2 and Theorem 3.1 indicate that at the kth predictor step, d~ and d! satisfy 

(14) 

where µk = (xkf sk /n, for all k ~ 0. We are now in a position to state our main 

result. 

Theorem 4.1. Let {(xk, sk)} be the sequence generated by the large step predictor­

corrector algorithm. Then, with constants O < /3 '.S 1/4 and a= 2/3, 

(i) the algorithm has iteration complexity 0( vnL ); 
(ii) 1 - ()k = O((xkf sk); and 

(iii) (xk)T sk ----t O Q-quadratically. 

Proof. The proof of (i), i.e., the 0( vnL )-iteration complexity of the algorithm follows 

from inequalities (3.2), (4.1) and Lemma 2.2, which give 

(xk+I f sk+I '.S (1 - 2 )(xkf sk. 

J 1 + ../2n I /3 + 1 
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This also establishes 

lim (xkf sk = 0. 
k--oo 

lFrom relation (14) we have 

which together with (5) establishes (ii). lFrom (3.2) we see that (ii) implies (iii). This 

proves the theorem. I 

The asymptotic behavior of (Xk)- 1 d! and (Sk)- 1 d! at the predictor step seems 

interesting. Using relations (8) and (14), we have 

(15.1) 

and 

(15.2) 

Moreover, at the predictor step (i.e., 1 = 0), it follows from system (1) that 

(d!)j + (d!)j = -1 
x~ s~ 

J J 

(16) 

for every j = 1, 2, ... , n. Thus, relations (15) and (16) imply that 

( dk). (dk), 
lim ~ = 0 and lim _s_J = -1 for j EB 

k--oo x~ k--oo s~ 
J J 

and 
(dk), 

lim (d!)j = 0 lim ----=-1.. = -1 and for j EN. 
k_.oo x~ k--oo s~ 

J J 

Interestingly, the behavior of (Xk)- 1 d~ and (Sk)- 1 d! was discussed by Tapia [13] 

in (1980) for complementarity problems where the strict complementarity solution is 

unique. He used these two vectors as the basis of an indicator theory for identifying 

variables which are zero at the solution. See also El-Bakry et al. [2]. These two vectors 

were also used by Mehrotra and Ye [10] as a criterion for identifying the partition B 

and N. 
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The following corollary formally states that we do not need to choose the largest 

step in the predictor step, but only a sufficiently large step. Thus, we are no longer 

required to find the zeros of a quartic polynomial. 

Corollary 4.1. If the predictor-corrector algorithm is adapted with 0k given by the 

lower bound in Lemma 2.2, then Theorem 4.1 also holds for the modified algorithm. 

5. Summary and Concluding Remarks 

Recently, Mizuno et al. [11] proposed a large step predictor-corrector interior-point 

algorithm for linear programming. They demonstrated that the algorithm possessed 

0( ,Jri,L) iteration complexity. More recently, Ye et al. [16] proved that the algorithm, 

while maintaining 0( ,Jri,L) iteration complexity, exhibited super linear convergence of 

the duality gap sequence to zero under the assumption that the iteration sequence 

converged, and exhibited quadratic convergence of the duality gap sequence to zero 

under the assumption of nondegeneracy. In this paper we have established the surpris­

ing result that the large-step predictor-corrector algorithm actually exhibits quadratic 

convergence of the duality gap to zero without the assumption of nondegeneracy or 

even the assumption that the iteration sequence converges. This result is the first in­

stance of a demonstration of polynomiality and super linear ( or quadratic) convergence 

for an interior-point method which does not assume the convergence of the iteration 

sequence or nondegeneracy. We note that each iteration in the predictor-corrector 

algorithm requires the solutions of two linear systems-one in the predictor step and 

one in the corrector step. 

Although the iteration sequence {(xk, sk)} may not be convergent, it is a conse­

quence of Hoffman's lemma [4] that the sequence { xk} converges R-quadratically to 

the primal optimal set nP. The same is true for the sequence { sk} if we write the 

dual linear program and its optimal solution set in terms of s alone. 

While seemingly quadratic convergence has often been observed in practice for 

primal-dual interior-point methods applied to degenerate problems, its effectiveness 

is compromised by the use of finite-precision arithmetic to solve the necessarily ill­

conditioned linear systems. Hence our current result may have only theoretical value. 
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In this context the finite termination procedures of Ye [15] and Mehrotra and Ye [10] 

are of value in obtaining an optimal solution. 

It has been observed in practice that the 0( fo,L) algorithms that have been 

tested so far are generally less effective than are some of the 0( nL) algorithms ( or 

other non-polynomial algorithms). Zhang, Tapia and Dennis [18) argued that sev­

eral of these 0( y'ri,L) algorithms possess particularly poor Q-convergence properties, 

i.e., they exhibit Q-linear convergence with convergence constants near 1 for large 

n. Therefore, some researchers may have embraced the belief that the 0( fo,L) algo­

rithms were less effective because none of them could achieve superlinear convergence. 

Now, we have demonstrated that a particular 0( y'ri,L) algorithm actually has what 

we consider to be the optimal convergence rate for degenerate or nondegenerate prob­

lems. If, perchance, numerical experimentation still favors the 0( nL) algorithms, 

then we must conclude that their advantage is not due to their asymptotic behavior, 

but to some other, as yet unexplained, phenomenon. 
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