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Dynamic attributes are attributes that change continuously over time making it impractical to issue

explicit updates for every change. In this paper, we adapt a variant of the quadtree structure to

solve the problem of indexing dynamic attributes. The approach is based on the key idea of using

a linear function of time for each dynamic attribute that allows us to predict its value in the future.

We contribute an algorithm for regenerating the quadtree-based index periodically that minimizes

CPU and disk access cost. We also provide an experimental study of performance focusing on query
processing and index update overheads.
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1. INTRODUCTION example above, the driver’s position is the archetype of a
dynamic attribute.
The so-called dynamic attributes [1] arise primarily in In this paper, we propose an indexing technique for
mobile data management [2]. This field was sparked by the dynamic attributes based on a variant of the quadtree data
recent technological progress in portable laptop computersstructure in which the indexing directory is in primary
and the smaller palmtop computers (also calRedtsonal memory and the indexed data resides in secondary storage.
Digital Assistantsor PDAs). Moreover, their ability to  The method is useful in any application which involves
communicate with fixed hosts via the wireless medium data items whose value varies continuously according to a
leads to the new paradigm of nomadic computing and its given function of time (temperature is another example).
associated implications on data management issues [3]. ItThe general approach proposed in [1] is to have every
is speculated that in the near future such devices will be moving object supply its position and motion equation
ubiquitous thus challenging the database community to dealupon registering to the system. Thereafter, the object
effectively with two of their most intrinsic characteristics, may occasionally send a request to update its position or
namely, scale and mobility. its motion equation or both. It can do that relatively
Given that mobility is the most distinguishing feature infrequently and is constrained only by the amount of error
of the mobile computing paradigm, it is only natural that introduced as a result of using an approximate motion
location becomes a central piece of information. It gives function over a long period of time [5]. We then plot
rise for example to a new kind of queries called location- the value of every dynamic attribute as a function of time
dependent queries [4] for which the computed answer in the two-dimensional time-attribute space. In this way,
depends on the location of the user or object which issuedwe have reduced or transformed the problem of indexing
them. Consider a person driving a car who occasionally dynamic attributes into a spatial indexing problem albeit
wants to be informed about motels that are within five miles with a different flavor.
of his location in order to select a reasonably priced hotel. Our focus is on supporting range queries where the
It is clear that the set of motels computed as an answer torange can be an attribute or time range. Furthermore, we
his query would be different each time his car moves by a support queries on the moving objects themselves rather than
reasonable distance. It is also clear that we cannot affordqueries issued by the moving objects. A typical example
the cost of updating the driver's location ‘continuously’ is: Give me all the objects whose attribute value falls in
to be able to answer his queries. In a typical mobile the range §ipegin. .. 8end. Such a query would be useful
architecture, mobile users will be registered into a special setin vehicle monitoring systems and possibly in intelligent
of servers called mobile support stations which manage theirvehicle navigation systems [6].
connection session and interface them to the fixed network Starting from the equations of motion and their corre-
that contains useful data. Each user or object will have sponding attribute trajectories plotted in the time—attribute
a (temporary) record in a support station and the location space, we generate periodically our quadtree-based index
attribute will be one field of that record. In the driver to support queries about the future. The idea is to destroy
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and reconstruct the index at the end of every period. In the supplied function to predict its value at any point in the
more abstract terms, given the infinite time dimension, we future.
partition it into equal-sized time slices and create an index The slopea in the approximate linear equatioi(t) =
for each time slice. Theoretically, the union of these indices at + b corresponds to the rate of change of the dynamic
is the master index of the whole time—attribute space beingattribute. When this attribute is the position of a moving
indexed. Practically, when the period of an index is over it object with respect to a predefined coordinate system, this
is disposed of and the next one is generated since storagelope is simply the speed of the object along one of the
space is finite. We will denote this period yT. Since axes. We remark that for objects moving in two-dimensional
our index is reconstructed everyT time units, we will space, we will have to index two distinct dynamic attributes;
also callAT the index reconstruction period. The time span the abscissa and the ordinate attributes. This is necessary
covered by any single index reconstruction period is called to be able to support two-dimensional range queries and
a session. Conceptually, a session is just a projection of theleads to two different indices. Answers to two-dimensional
system state over a finite time interval due to the limitations queries are then taken as the intersection of the two answer
of disk space. We note that our index is a dynamic one sets corresponding to the two unidimensional range queries
allowing for insertions, deletions and updates inside periods. issued separately over the abscissa and the ordinate spaces.
Updating the position or the equation of motion of an object In the rest of the paper, we shall use the word speed to mean
requires deleting the records relating to its previous state andthe slopea of the motion equation. We define the average
inserting new index elements according to its new record. speedv to be the average of a large set of speed values
Furthermore, inside a session, an object’s equation of motionas computed over a reasonably reliable number of sessions.
is assumed to remain valid until an explicit update request is The quantityv turns out to have an impact on the nature of
issued by the corresponding user. our indexing problem. LeA A denote the total length of

For the proposed method, we contribute an index our indexed attribute space. We assume thatis finitel
reconstruction algorithm that is optimal in CPU and disk The relative value off compared toA A is more important
access overheads. We have also conducted a simulatiorthan its absolute value. We capture this observation in a new
study which shows good query processing performance.parameter which we call speed ratio defined as follows.
The outline of the paper is as follows. In Section 2,
we introduce the background mformaﬂon necessary for the attributes being indexed is the attribute distance an object
rest of the paper. We then describe the indexing method . : . . .

moves on the average in a single time unit relative to the

in Section 3. Section 4 presents the experimental setup . .
of the conducted performance study. Section 5 presentstOtaI length AA of the attribute space. Itis given by the

DEFINITION 1. The speed ratia of the set oN dynamic

. . ormula
the storage requirements of our quadtree-based index an
Section 6 provides a mathematical analysis of storage v
utilization. We describe an optimal index reconstruction Y=AA

algorithm in Section 7 after presenting the naive algorithm o o
which motivated its conception. In Section 8, we present 1Nn€ speed ratio is an intrinsic property of the system of

query processing performance for two types of supported objects. Conceptgallw i§ an indication of the dynami§m of
queries. Section 9 includes a brief digression on related OUr System; the higher it is the more agitated the objects are

work. Finally, we outline possible areas of future work and While the lower it is the more sluggish the overall system
conclude the paper in Section 10. becomes. We then introduce in more detail the types of

gueries supported.

In [1], three types of queries are discerned for the MOST
2. BACKGROUND data model. These are the instantaneous, the continuous, and
Our work is largely based on the ideas introduced by Sistla the persistent queries. An instantaneous query submitted at
etal.in [1]. The authors present a new data model suitable time i is processed against the database state. afhe
for representing moving objects in database systems. Thefollowing exampleis givenin [1]: ‘Display the motels within
model is called the moving objects spatio-temporal (MOST) © Miles of my position’. A continuous query submitted
data model and relies on the key idea of representing the@t fime i is processed against all database states starting
position as a function of time. We thus start withlinear fromt (i.e. [ti ... 00)). Itis described as “an instantaneous
equations or functions of timd(t) = a x t + b (0 < query being continuously re-issued at each clock tick’.
i < N) whereN is the total number of objects in the system N the motels example, the user will just require to be
hereafter denoted by system size. For the two dimensions of continuously” informed about which motels are coming
motion, 2N equations will be needed, two for each object. Within 5 miles of his position. If we le§; denote the state of

Sistlaet al. propose to represent a dynamic attribwtoy ~ the database at ting, then at each; > t;, the continuous
three subattribute#\.valug A.updatetimeand Afunction ~ Query is reevaluated againS{. The persistent query is a
The dynamic attribute would then take the valigalueat bit more demanding. Like the continuous query, it has to be
time A.updatetimeand the value.value+ A.functiont) at evaluated at each clock tick after its time of submisgjon
time A.updatetimet- t. The value of a dynamic attribute at lEven if AA was not finite, in practice, a finite representation or

any point in the past is thus being used in conjunction with approximation of the attribute space being indexed imposes itself.
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However, unlike the continuous query, itit has to be
evaluated against the set of stat8sS1,..., 51, §
rather than agains$; alone. The example query provided
in [1] is the following: ‘Let me know when the speed Northwen North et ™ e
of objecto in the direction of thex-axis doubles within space
10 minutes’. Persistent queries arise in the expression of
temporal triggers in active database applications [7]. In
our research, the focus is on supporting instantaneous and South-West South-East
continuous queries. Adapting the indexing method proposed
here to handle persistent queries is left for future research. Amin ===
As mentioned above, our focus in this paper is on range
gueries which ask about the moving objects themselves. The
generic and generalized form of our queries is the following:

atribute

|
t; t; + AT time

FIGURE 1. Partitioning of the indexed space in the region
Give me all the objects whose value for attribéte quadtree.

falls in the attribute ranged[ . . . aj] at some time

between time instancdyg andte.

dynamic attribute indexing is transformed into a spatial
indexing problem. For this, we could draw upon the
literature for spatial access methods [8] and adapt one access
method to our specific problem. We have selected the
guadtree indexing structure.

The quadtree is treated thoroughly in [9] with several of
1. ifty = te = thow, We have an instantaneous range query its variants. The idea common to all quadtree variations is

Since we have both an attribute and a time range, we obtain
two-dimensional range queries. Ligsy denote the time at
which the query was submitted. Depending upon the values
for ty andte, we may have any of the following four types of
gueries:

asking about the present; the recursive decomposition of indexed space. However, we
2. ifty =te =t andt; > thow, We have an instantaneous are interested in the so-called region quadtree which is based

range query asking about the future; on the successive subdivision of space into four equal-sized
3. if tp = thow andte = oo, we have a continuous range quadrants. This is shown in Figure 1. Among the region

query; guadtree variants, we are particularly interested in the PMR

4. ifty = t andte = tj (thow < t < tj), we have a guadtree which is the quadtree-based indexing structure for
general two-dimensional range query over the attribute line segments [8]. The idea of the PMR quadtree is to store
and time dimensions. information about a line segment in every quadrant of the

underlying space that it crosses (fully or partially). The
In practice, we map the first three types of queries to the gata space is partitioned until no more thBriines cross
fourth one which is more general. In instantaneous range 4 single quadrantB is called the bucket size. Typically,
queries (cases 1 and 2), we approximate the time pobyt B will be equal to the number of data records that fit in
the time ranget[ — 8t ...t 4+ 8t] wheredt is a small time a single disk page. In our work, we will be using an
lapse. In continuous queries, the theoretically infinite range adaptation of the PMR quadtree in which vertex information

[to .. . 00) is usually decomposed into the set of contiguous s embodied in the object’s equations of motion. On the other

intervals hand, this makes it similar to the bucket PR quadtree for

indexing points [8]. The bucket PR quadtree indexes points
(...t +ATL ..., [ +nAT...t + (N+ DAT], ... by recursively partitioning the underlying space until no
(1) more thanB points fall in a single quadrant. The difference

This again reduces it to the fourth case. If a continuous query?n our case IS in th_e semantics of a data poinF (it codes the
arrives in the middle of a session, its answer is computed'”format'on that a line crosses a quadrant) which makes the

over the remaining time until the end of the current session. SPlit involve more than a simple distribution of points over
At the beginning of each session, the answers to continuousin€ four subguadrants. _ _
At the level of indexed data, index records consist of the

gueries are computed in batch mode and sent to their * : -
corresponding recipients either incrementally (according to ©PJect ID, the intercepb and slopea of the corresponding
when objects enter the queried range) or in one packet (in€duation of motionf(t) = at + b. The slopea can be
which case it is the responsibility of the mobile computer to POSitive or negative. Its sign corresponds to the direction
present it properly to the human user). We now describe the ®f motion when its magnitude corresponds to the speed of
indexing method. a moving object. Intercefit may or may not take negative
values depending on the application.

3. THE INDEX When a data page overflows (at tt# + 1)th insertion),

' a page or bucket split takes place. Bucket splits involve the
As we mentioned above, since we can plot the objects’ following operations. We take th@, b) pair of each object
trajectories in two-dimensional space, the problem of in the bucket and use it in conjunction with the quadrant
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boundariesXmin, Ymin, Xmax and Ymax to find out which La

of the four subquadrants the trajectory crosses. We then
insert the correspondin@D, a, b) record in every crossed L,
subquadrant (there can be at most three out of four). A
bucket split requires that we allocate four new disk pages,
one for each subquadrant. Upon completion of bucket split
computations, the parent data page is disposed of. The leaf L
guadtree node that was pointing to it must itself allocate 2
memory for four leaf nodes which will point to the newly
allocated disk pages. It then becomes an internal node.
Furthermore, the boundaries of the four subquadrants have
to be computed from the boundaries of the parent quadrant.
The example at the end of this section will further illuminate
the operation of the quadtree index in our application.

Given a constructed index, an object ID and the associated
function, we would execute a search for all index elements Ly
belonging to the object’s trajectory in the following manner.
The linear equation of motiori (t) = at + b is our search |
key and the object ID is used once we reach the relevant data ﬁL
pages. Starting at the root of the quadtree, we use the pair

Ls

FIGURE 2. Four object trajectories crossing the indexed space.

(a, b) and the boundary fieldXmin, Ymin, Xmax and Ymax !
found in the root to decide which subquadrants are crossed 2 L2
by the object sought. We then descend the next level and L, -
repeat the same thing until we reach the leaves. The disk P

page pointer field is then used to bring the relevant data
pages into the buffer (if they are not there). The search
procedure is the basis of insertion, deletion and update
operations. Traversal of the quadtree to answer range queries
is done in an analogous manner except that the search key|GURE 3. The indexed space and the index tree after insertion of
consists of the boundaries of the queried range. Moreover,object trajectories 1 andL>.
when this range overlaps more than one subquadrant, the
recursive step of the search must decompose it by computing
the boundaries of its associated subranges. We are nowslope whileL3 has a negative slope. To be able to illustrate
ready to describe the performance of the index. We start by splits and space partitioning, we chose a small bucket size
describing the experimental setup of the study we conducted.B = 2; the actual bucket size is much bigger than this (a few
It is possible in theory to have an infinite sequence of hundred).
bucket splits. This happens when all tBe+ 1 trajectories We begin by inserting.1 and Lo. The situation after
intersect at a grid point. Itis very unlikely that they intersect the insertion is shown in Figure 3. A leaf node is depicted
at any point (in our applicatioB = 340) and even lesslikely by a square shape with a rectangular slot at the bottom
that this point happens to be a grid point. Nevertheless, containing a pointer to the data page on the disk. The
when it happens we propose to make use of overflow bucketsquadtree index is then simply a single leaf node pointing to
and thereby split the overflowing bucket only once. This the full data page containing index records for and L.
is done as follows. Because the grid point at which the Data pages are pictorially depicted by a vertical rectangle
B + 1 trajectories meet belongs to exactly one of the four with smooth corners. The number two inside the quadrant
subqguadrants, the other three will not have this problem. Forin Figure 3 indicates the number of trajectories crossing
the fourth quadrant, allocating an overflow page is enoughit or alternatively the number of index points stored in its

to solve the problerd. corresponding data page on the disk.
Next, we insert trajectory3 into the quadtree. Since
3.1. Anexample page Pp was full before insertion, a bucket split takes

) , ) place accompanied by partitioning of the underlying indexed
We illustrate the operation of the quadtree index by means of 506 The situation after this insertion is shown in Figures 4

an_exam_ple_depicting_ t_he successive insertion _of fou_r objectand 5. The root now becomes an internal node pointing
trajectories into an initially empty tree... The trajeptor|e§ are i four leaf nodes corresponding to the south-west, north-
denoted byL1, L2, Ls andL4. The position and orientation  eqt north-east and south-east respectively. The north-east
pf th'ese trajectories rellatlve to the indexed space ar,e,Showrlsubquadrant remains empty as it is not crossed by any of
in Figure 2. Trajectoried.1, Lo and L4 have a positive 6 three trajectories. The other three are full and the index

2The use of overflow pages also proves useful in index reconstruction as NTOW CONSUMes three data pad®s P, and P; as shown in
we shall see later. Figure 5.
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L

L2
2 / o
: ;
[}
Ls PR R R R % R
FIGURE 4. The indexed space partitioned into four quadrants FIGURE 7. Quadtree index after insertion bf;.
upon insertion of the third trajectoiys.
sw | NwW | NE | SE Figure 7. Itis now of height two and contains three internal
nodes and 10 leaf nodes one of which is not pointing to any
data page (corresponding to an empty quadrant).
An important observation is that a bucket split leads to
duplication of index elements. The same trajectory which
was represented by a single point before the split becomes

represented by one, two or three points after the split. In the
— example abovd, 3 was represented by a single point in the

lw)
: tl ti 2 south-west quadrant before insertionlof. After insertion
N b and split, itis represented by three points and is presentin the
_J ) —_J three data page’;, P, and P; corresponding to the crossed
R 1 % subquadrants (see Figure 7). A bucket split is also the

mechanism by which the indexed space becomes partitioned.
FIGURE 5. The quadtree grows by one level after bucket split. Partitioning of indexed space is in turn reflected in the height
The root points to four leaf nodes. of the quadtree-based indexing directory. More important
however is the impact of splits on the total number of index
_ ) ) _ elements corresponding to a given system $ize These
Finally, we insert the fourth trajectory.s. Since L4 two quantities are used in the definition of a new parameter

crosses two previously full quadrants (south-west and north-iniroduced to characterize duplication in the context of our
west), two bucket splits take place and the indexed spaceyppication.

becomes partitioned as shown in Figure 6. Numbers inside
each quadrant indicate the number of trajectory segments DEFINITION 2. The duplication ratioD of a quadtree
crossing it.L1 now crosses two quadrants; crosses three, ~ index is the average number of copies that a single object
L3 crosses five antls which caused the splits crosses four hasin the index:

quadrants. This results in 14 inde>.< points distriputed over Number of index points

nine data pages. The corresponding quadtree is shown in =

Number of objects

Note that duplication of object information is an

L
. intrinsic characteristic of our application. In theory, index
1 0 1 information about an object’'s dynamic attribute consists of
L4 an infinite number of points in its plotted graph. Here we
2 1 are basically approximating it by a finite number of points.
Hoping for a single index element per object is akin to using
a single point to approximate the whole graph describing the
)2< 2 / L, way the attribute changes over time.
1 2
/)2< 4. EXPERIMENTAL SETUP
Ls To study the performance of our indexing technique, we

have implemented the bucket PR quadtree as described
FIGURE 6. Partitioning of the indexed space and number of index above together with its associated insertion, deletion and
points per quadrant after insertion loj. query processing operations. The programs were written
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1100

in C and executed on SunSparc workstations running the | ___t ]
Solaris operating system. 000 |- b
The main parameters in our simulation model are the _ =c° 1
system sizeN, the index reconstruction periodT and §’
the speed ratioo. Given N, we generate randomly 2
the correspondindN linear equations describing the way £
attributes change over time. This is done by generating the™  =co | .
interceptsh randomly according to the uniform distribution = ]
over the attribute spacéhin... Amax. We then generate
the values of the slopesin a range determined by the speed ° T Number of et reeee
ratio « we want to test. Note that this is different from the
way line segments were generated in the study of the PMR
quadtree. In [8], itis stated that line segments were obtained
by first generating points that are uniformly distributed
over a square region and then connecting them. This is  sccco
not applicable here since we are dealing with trajectories.
Deletion requests are regenerated randomly from the spaces
of active object IDs. Another important component of §
our experiments is the buffer manager. We manage the% s0000
buffer using the least recently used (LRU) page replacements
policy. Buffer size BF is also another model parameter. We

FIGURE 8. Storage requirements for small system sizes.

50000

aoo000

20000

experiment with BF values of 8, 16, 32, 64, 128 and 256. 2000 ]
In query processing, the relative size of query ranges is s - S S .
important. LetR denote the absolute range length of a Number of Objects
range query. The rati®/A A gives the relative span of the
given query which is traditionally used in percentage form FIGURE 9. Storage requirements for large system sizes.

((R/AA) x 100). We will simply call this quantity range
size. In our study, we experiment with range sizes which
span 10%, 1%, 0.1% and 0.01% of the total attribute spacewhich it remains fixed for an even longer interval Nf

AA. The centers of the ranges are generated randomly andThe plateau pattern prevails in other experiments as well;
uniformly over the attribute spacé\fin ... Amax and the we provide a precise definition below.

ranges’ lower and upper boundaries are then determined by
the desired range size. The results of some of the conductec{h
experiments are presented in their appropriate sections.

DEFINITION 3. A plateau is an intervalN; ... Ni1L) in

e number of objects over which the resulting quadtree
requires exactly the same number of disk pages. Wi say
the plateau length.

) ) Plateaus occur at values of 16, 64, 256, 1024, 4096 and
The storage requirements of the quadtree index depend; g 3g4 gisk pages. The number of disk pages in a plateau is
mainly on system sizél and duplication ratid. Note that , ;s four times that of the previous plateau so that in general
their product N x D) is the total number of resulting index we have plateaus af 4lisk pages. The numbef éomes
points. LetR denote the index record size (in bytes) add o the fact that the quadtree starts with on®) @lisk page
the storage consumption of the index. At a perfect bucket 5q eyery split wave multiplies the number of disk pages by
utilization of 100%, we havM = N x D x R. Letting four.
denote average bucket_utilization ©u < 1), we obtain The question is then why do we have plateaus or why
the more general equation does the number of disk pages stabilize for a while at values
R of 4'? The reason is that all subquadrants tend to fill up
M= (—) N x D.

5. STORAGE REQUIREMENTS

(2) at the same rate and reach capaddyat the same time.
This leads to a wave of splits across all quadrants of the

Equation (2) also hints at the importance of keeping the quadtree that is triggered by a relatively small number of
number of duplicates low and utilization high to the greatest newly inserted objects. Furthermore, insertion of a single
extent possible. object typically triggers splits in a big number of quadrants

Figures 8 and 9 show disk consumption as a function of that correspond to a single attribute interval. After these
system sizeN. We use disk page sizes of 4 kbytes and our splits are over, it will take many insertions before the new
records are 12 bytes long so that the bucket 8zi& our disk pages are filled again. During these insertions, disk
application is about 340. Note that both graphs have the pages are becoming nearer to full capacity but no new disk
same pattern in which the number of disk pages remainspages are being required by the quadtree. For this reason,
fixed for a while then increases rapidly over a small interval we have a plateau shape followed by a sharp rise that only
of objects countN until it reaches some new plateau at ends at the next plateau.

n
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5) where the border quadrants responsible for the
imbalance constitute a diminishing fraction of the total
number of leaf quadrants in the quadtree. As such,
most quadrants ‘see’ the trajectories crossing them as
uniformly distributed in orientation thereby averaging

] near to two copies during splits.

2. One page is replaced by four leading to a quadrupling
1 of local spacé.

3. Local utilization drops from 100% to 50% (this follows
Pocas 26655 36655 FTCES s6000 from observations 1 and 2).

Number of Objects

Duplicaton Ratio

It will then be beneficial if we could delay splits to the
FIGURE 10. Duplication ratio. extent possible. We do this using the following technique.
When a bucket of capacity records overflows, we allocate

The value & corresponds also to the way the underlying a second twin bucket that will store the n&bbjects whose
indexed space is partitioned at plateaus. It is equal to theT@jectory crosses the corresponding region of space. When

product 2 x 2 and comes from the fact that at plateaus the the two twin bucl_<ets overflow, they are replaced by the usual
initial indexed space becomes partitioned intd & 2 grid. four buckets which correspond to the four subquadrants of
We embody this observation into the following definition.  the indexed region. This is similar in spirit to Lomet's
partial expansion technique [10]. We delay quadrupling of

DEFINITION 4. An ith-regular quadtree is one which |ocal space by increasing the number of buckets per node.
partitions the underlying indexed space int@ax 2' grid Partial expansion delays doubling of local space by using
of quadrants. We also say that it is at the ith plateau. the so-called elastic buckets; the number of buckets per node

A split wave then takes us from ath-regular quadtree remains fixed but the bucket size increases by a _factor less
to an(i + 1)th-regular one. In the process, the number of than two (e.g. 1.25 or 1.5) before eventually doubling.

points per trajectory (or copies per object) increases, thus USing this simple amendment, we achieve a significant

increasing the amount of duplication. reduction of storage requirements which reaches 50% in
The duplication ratio is given in Figure 10 as a function of theory. In practice, we expect that the average gain will

N. Again the plateau pattern prevails but this time plateaus N0t be much lower than that since 50% corresponds to

occur at powers of two {2 i > 0) rather than four so that the_ gain achleved Ioc_ally (e_lt the level of a single buc_ket

we also have plateaus Bt = 8 andD = 32 (not included spllt/expar_13|on)._ ThIS gain comes from the r(_asultlng

in the figure). The figure shows a plateauldt = 64, decre.ase |n.dupI|cat|on ratio achieved by the techmque. By

then atD = 128 (not a power of 4), then & = 256 delaying splits we could “enjoy’ lower values BX at higher

for N ~ 50,000. We observe thaD corresponds to the  SYystem sizes. Next, we look into bucket utilization.

number of quadrants on each side of the indexed space. At

plateaus,D is a perfect power of two and is exactly equal 6. STORAGE UTILIZATION

to the number of quadrants on every side of the original

quadrant. In summary the duplication ratio increases with In this section, we are interested in computing the space

N. This might limit the scalability of the method to large efficiency of our quadtree in the context of our particular

system sizes. However, since duplication is caused by bucket@pplication. In the analysis of the utilization provided here,

splits, we could slow its increase by rethinking the bucket we do not provide the details of all the derivations or proofs;

splitting event. the complete exposition may be found in [11]. We start
In the context of our specific application, a bucket splitis by defining more precisely the quantity for which we are
associated with the following three events: seeking a formula.

on a relevant theoretical result [8]. The result  relative to the total memory capacity of the disk pages
is applicable for trajectories uniformly distributed in consumed by that quadtree.

space and orientation. In our application, intercepts are  por the purposes of our analysis, we need a more specific
restricted to belong to a finite intervahin . . . Amax] definition. LetP(N) be equal to the number of index records
so that, for low values of, the number of trajectories i the quadtree which indexdé objects, and(N) be the
generating one copy is less than those generatingnymper of disk pages required to store a quadtree which
three. However, the effect of this imbalance is jhgexesN objects. LetU (N) denote the utilization ratio in
diluted for higher values of quadiree orde(above 5 quadtree index corresponding to a system sizg.dfhen

3¢...on the average, if lines are drawn from a sample distributed
uniformly in space and orientation, the average number of quadrants  “This is hard wired into the quadtree structure and thus independent of
intersected by a line passing through a quartered block is two’ [8, p. 268]. the context.
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we have In passing from arth full plateau to the(i + 1)th one,
P(N) we go through two distinct phases. First, we have a split
U(N) = DINE (3) wave during which all of the 2 buckets split; call this the
SPLIT phase. We call the FILL phase the second phase in
We are interested in the mean utilization ratio which which insertions increase bucket utilization without adding
would theoretically be given by the formula new buckets to the index. We then need to compute some
intermediate values before solving 1dy.
_ ] ZB‘:l U((p Let B denote the number of index elements atittefull
U= N'f‘oo - N 4) plateau; therP, = 22 B whereB is as usual the bucket size.

_ Let P denote the number of index elements immediately
However, to keep analysis tractable, we need to computegfier theith split wave ends. The value & is directly
the mean over a finite range of values Nf We choose  given in the following lemma.

the range of values between two consecutive plateaus as our

finite range. LetN; denote the number of objects at ih LEMMA 1.The number of index elements immediately
full plateau of a quadtree. We define itie mean utilizaton ~ after theith splitwave ends is given by the formula
ratioU; as follows: pSw — 22+1(g 4 1), ©)
PN () ot sof -
Ui = p=Ni+1 . (5) Proqf. A new object splits a row of length Znto_two
Nit1— N making it of length % 2' = 2'*1, Then each of the' Dbjects

which are responsible for the shortest split wave scenario
will end up with 2+1 copies for a total of 2x 21 = 22+1,
Furthermore, at the end of the split wave each of theRyld
index elements will have generated two copies for a total of
2x P =2 x 24B = 22+1B. The sum of the old and new

Let us express formula (5) in words. Starting from the point
when thei th plateau breaks, we insert objects consecutively
until we reach the fuli + 1)th plateau and compute the
utilization after every insertion (this is the terbh(p) in

the summation). We then calculatg as the arithmetic

. ; i1
mean of those intermediate values. Next, we introduce someIndex elements is thus'2(B + 1), O
terminology. _ . _ We then also need to find a closed form for the difference
We say that amth plateau is full if all the 2 x 2! = 22 Ni+1—N;i which we denote bA N;. This is the denominator

disk pages are full (contaiB index elements). Furthermore, for the expression fad; (Equation (5)) and stands for object

when the first quadrant in a fulth plateau splits we say the insertions needed to pass from titd full plateau to the

ith plateau breaks and that thil split wave begins. The (i 4+ 1)th full plateau. The expression farN; is also given

i th split wave ends when the last quadrant ofittieregular directly in the next lemma.

guadtree that has not yet split undergoes a split yielding the

(i +Dth-regular quadtree and initiating tkie+ 1)th plateau.
Our analysis is based on the following assumptions

inspired by the real behavior of splits and trajectories in our

application.

LEMMA 2. The number of insertion& N; that take a
guadtree index from a fulith plateau to a full(i 4+ 1)th
plateau is given by the expression

Sw
PV i ks (7)
1. Upon bucket split, we have an average of two copies 2+t
per object. Proof. In a shortest split wave scenarid, 2ew insertions
2. A trajectory falls in a single attribute interval are needed to split al2quadrants in a fuilth plateau. This
[aj...aj+1). Asfar as utilization is concermned, this  prings usinto a2 x2'+1 grid containingP®” index points.
assumption does not change the analysis. A trajectory o compute the remaining number of insertions necessary,
typically spans the whole session inside the attribute \ye yse the fact that each new object will haV&'Xince we
space but crosses more than one attribute interval gre in g 2+1 x 2i+1 grid. When we reach a fulli + 1)th
during the session. Here we are basically collecting plateau, we hav@ 1 index elements (by definition o,
its fragments from the different intervals crossed and above). The remaining number of insertions can thus be
‘gluing’ them on the original interval from which it expressed as the difference in number of index elements at
started at the beginning of the session. the end of the split wave and the end of the FILL phase

3. We assume a scenario of a shortest split wave, thatgjyided by the number of copies which is2. This is given
is one which ends with the minimum number of py the expression

insertions. This wave is as follows. We start with a
full i th plateau containing® quadrants and attribute Py1— P
intervals. Based on Assumption 2, we need exactly 2i+1

2 insertions to begin and end then split wave (each

insertion falls in a distinct attribute interval). Each such Adding the 2 objects which induced the split wave gives the

. . i . ) . . result. O
insertion causes'2splits along the time axis which

transforms a 1x 2' row into a 2x 21 grid. This Substituting Equation (6) into the above expression and
scenario is also independent of utilization. simplifying yields AN; = 2'B. Before giving the result
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for the mean utilizatiorlJ;, ‘we need to define two more the split waves for a total of thB index points. Since upon
intermediate variables. Létg, (M) denote the utilization  splitting each point generates two copies, the old elements
ratio whenm objects have been inserted in the SPLIT phase; account for 2-mB index points in the split segment. The

m satisfies the constraint & m < 2. By analogy, we new objects causing tha splits generate'2® copies each
defineUg, | (m) as the utilization ratio whem objects have  since they split a row that is' Zjuadrants long. Then they
been inserted during the FILL phase; thatnissatisfies account for 2-'m index points. Therefore? (i, m) is given

the constraint 2 < 2 + m < AN; (which simplifies to by the expression

0 < m < 2(B —1)). These are exactly the component o . .

utilizations we talked about earlier that we want to sum and 2@ —mB+2*mB +2m

divide by N1 — N to obtainU; (see Equation (5)). A more

precise expression faJ; is then as follows: which when simplified yields the following result
i :

; 2i i
U = 2_0<m=2 Yspur(M + X om<2i(8-1) YriLL (M) Pa,m =276 +2meB+2). (12)
AN ' Substituting Equations (11) and (12) into the expression
(8) for Ugp (M) in Equation (10) and simplifying yields the
result. O

It now suffices to find formulas fadl,, (m) andUl, | (m)
and compute the corresponding summations. The result for
both quantities is given below.

It can be observed from Equation (9) that utilization is 1 at
m = 0 before splitting starts. Ah = 2' when the split wave
ends, utilization is just above 50% and equdst 1)/B; in

LEMMmA 3. The utilization ratio Ulpyr(m) after m our application it yields a utilization value of 50.147%. This
objects are inserted in the SPLIT phase at tite plateau is the lower bound on utilization irrespective of quadtree
is given by the formula orderi. We next present the formula fok, | (m).

Ul (M) = 1 — 2((B—1)/B)m ©) LEMMA 4. The utilization ratioU\, , (m) afterm objects
SPUTE © 3m+2 are inserted in the FILL phase at the ith plateau is given by

S ] ) the formula
Proof. Utilization is defined as space used by the index

points divided by the space capacity of the data pages
consumed. We defin@(i, m) to be the number of index
points induced aftem splits (m > 1) starting from a full

ith plateau. We also defing(i, m) to be the number of
buckets induced aften splits starting from a fulith plateau.
Ugp ir(m) would then be given by the following formula

B+1 m

—_ = 13
2B +2'+1B (13)

Upi (M) =
Proof. We start at the end of the minimal split wave with
a 2+1 x 2*1 grid containingPs* = 22+1(B + 1) index
elements. Every new element generates Zopies when
mapped over this grid, hence utilization is given by the

. P(i, m) following expression
Ulpp(M) = —————. (10)
Si,m) x B . psw 4 2i+lm
i i
It then suffices to find expressions fBxi, m) and S(i, m). UriLL(m) = 220+ B
We start withS(i, m). Simplifying this expression gives the result. O

Each of them objects splits one row of lengtH to a
2 x 211 subgrid. There are' Zuch rows to be split. Hence, We can then present the formula for mean utilizatign
the non-split part of the grid is composed &f-2m rows of at thei th plateau.
2 quadrants each giving a total df(2 — m) = 24 — 2m.
The split part of the grid contains x 2 x 211 = 21+2m
guadrants. The total number of pages is then given by the

THEOREM 1. Theith mean utilization ratioU; is given
by the following formula in whictB denotes bucket size and
€ =log,(2' +3) —i:

expression
. . . — B-1\[3B+1 1
2 2 -
2 °m4 22 —2'm U|—< BZ)I: 2 +2i+2
which when simplified yields the following result: 2 IN2(2—¢) 1 1
— [l —= |+ = (14)
. . 3 3 2 B
S(i,m) =3x2m+ 2%, (11)

We then compute the formula foP(i,m). After m The details of the proof of Theorem 1 are omitted here and

insertions, there are' 2- m rows which have not split yet. ~ may be found in [12]. A few remarks are appropriate about
These contain a total of'2< (2 — m) quadrants all of  Equation (14). First, the effect df is almost negligible.
which are full since they belong to theh full plateau. We can see this by looking at Equation (14) and observing
Consequently they contaif 2 (2 —m)B index points. The  thati appears in the fractiong/2', 1/2'+2 and ine;, all of
otherm rows contained 2n full quadrants at the onset of  which yield negligible values for > 5 (e.g.es = 0.066).
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Calculations of actual; confirm this. We havel,
0.750472,Us = 0.750428 andU;p = 0.750417. This
agrees with our intuition; namely, that the particular choice
of plateau will not affect the computation of mean utilization
since we are averaging over a large enough number of
utilization values (this isAN; = 2'B). We then remove
from U; and simply us&J. Second, we also remark that the
value ofU; is dominated by the first multiplication factor;
namely the product ofB — 1)/B2 and(3B + 1)/4. In fact,

we may safely use the following approximation.

_(B-D@EB+ 1
- 4B2

U (15)

B
Our value of B = 340 yields a utilization of 0.751468,
which is only slightly higher than the; values given above.
Third, we note that utilization is fairly independent of the
bucket sizeB. For a value oB = 100, we have a utilization
of 0.754975 using the approximation in Equation (15). At
B = 50,U = 0.7599 and aB = 10, we getJ = 0.7975.
Note that we are trying these values to gain better insight
into the effect ofB. In practice, we do not expect page
sizes below 1 kbyte which yields a value Bf = 85 in
our particular application. It then seems tiatincreases
with decreasingB. In the asymptotic case @ = 1 (a
data page holds only a single index record) we Have 1
which again agrees with our intuition (since all buckets will
always be fully utilized). Since most valuesldfare around
0.75, we may look into Equation (15) to see if this is a
general tendency. In fact, writindd — 1)(3B + 1)/4B2 as
B-1\/3B+1

the product
(57) (%)

and using the approximation® — 1)/B ~ 1, (3B + 1)/
4B =~ % and /B = 0, we obtain the elegant general value

for U that approximates it neatly over various values afd
B:

U~ 3 (16)

The sample values we calculated above for differBnt
andi cases increase our confidence in the validity of this
approximation. It also agrees with our expectation since
% is the middle value between the theoretical maximum
utilization of 1 and the minimum utilization which is slightly
above%. The experimental evaluation of the percentage
utilization as a function of the number of objects is given
in Figure 11. It confirms the fact that minimum utilization
does not drop below 50%. Maximum utilization however
is always bounded by the 90% barrier. This is because,
in practice, the(i + 1)th split wave begins before thigh
plateau becomes full. In other terms, when the first quadrant
splitin a 2 x 2' partitioned space takes place, there are
still quadrants which are not yet full (i.e. contain less than
B index elements).

7. INDEX RECONSTRUCTION

Among the distinctive features of our approach to dynamic
attribute indexing is the fact that we reconstruct the index

70
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30
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FIGURE 11. Percentage utilization.

periodically. This periodic reconstruction of the index is
associated with non-negligible cost which would naturally
increase with system size. In this section, we present the
details of an index reconstruction algorithm that minimizes
CPU time; each object is processed and inserted exactly
once and in constant time. Furthermore, each leaf data page
involved in the result incurs only one disk page transfer; 1/0
overhead is then also kept minimal.

The key idea of the algorithmis to find a way to predict the
final plateau of the quadtree index to be constructed given
the system size\. In other words, knowing that we will
end up with a partitioning of indexed space into'ax22'
grid, we want to find beforehand. We then precompute the
contents of the2x 2' buckets in memory and transfer them
to the disk. Let us call in anith-regular quadtree the order
of that quadtree. In Section 7.1 we explain the derivation
of quadtree order. Section 7.2 presents the reconstruction
algorithm and Section 7.3 suggests ways to cope with non-
uniform data distributions.

7.1. Finding quadtree order

Suppose we start with a single empty data bucket and
we have theN insertion operations to execute. Then the
conditionN > B tells us that we will have to split the bucket
anyway. We then obtaini index points and four buckets of
capacity 8. Notice thatif 2N < 4B then the 2« 2 quadtree

is enough to store thBl objects. The conditionld > 4B
similarly tells us that we will have to go through the second
split wave anyway, after which we haveNdindex points
(two copies per object as assumed before) and 16 buckets
of capacity 1B. The next condition to evaluate is then
AN > 16B. Generalizing this we find that the top-down
insertion of N objects will reach theth split wave if the
condition 2N > 22 B is satisfied. By the same token, the
(i +1)th split wave will not be reached if 21N < 22(+1 B,
Combining these two constraints, we obtain the following
characterization of whemN objects produce amth-order
quadtree:

2B <N <2+!B.
The following formula fori is then readily computed:

[ou 3]

(17)
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FIGURE 12. Definition of Qm,n.

Remember that we assumed that itte split wave breaks
theith plateau only when it is full. This is not the case in
practice where one or more of thex22' buckets of théth-
regular quadtree might become full and split before &l 2
buckets become full. To remedy this we could simply add

for p<«< 1toNdo
m«1
ObjectFinished— FALSE
while m < s and ObjectFinishedio
(Np,low, Np,high) <—
BoundarylInterval@n, ap, bp)
if Nplow < Np,high then
for n < np jow t0 Np high do
QIm, n] < Q[m, n] U {op}
else
ObjectFinished«— TRUE
endif
endwhile
endfor

FIGURE 13. Path computation algorithm.

1toi hence constructing a larger grid than the theoretical Q[m, n] of our array is thus a set defined as follows:

prediction to cater for premature splitting (which is always

the case in real applications). This would be a waste of

memory capacity ifN were only slightly greater than B
where we expect it is too early for splits of the next wave to
begin. On the other hand it is reasonable to do 3¢ ¥fere
too near to the value'21B. In the former case we propose
to use a 2 x 2' grid and add overflow buckets for the few
guadrants which are found to have overflowed.

7.2. The algorithm

Before presenting the algorithm we introduce some
necessary notation. In what follows we talk abouti #n
regular quadtree. We have earlier defintd to be the
length of the attribute dimension. L&t = AT/2 denote
the length of each quadrant along the time axis é&md=

Q[m, n] = {op, : trajectory ofop crossemn}.

We call the latter operation object path computation. Let
us then provide a short description of the object path
computation algorithm (hereafter denoted by PCA) and see
its complexity.

The algorithm is given in Figure 13. The objects to be
inserted are considered one by one in the outer loop (ranging
over variablep). Given an objecbp, we examine the time
slices fo+mét; ... to+(M+1)st) (0 < m < s)one by onein
increasing order ah. Using the equation of motiofy (t) =
apt + bp, the while loop computes at each time interval
the attribute slices in which objediy’s trajectory falls.
This is accomplished in the algorithm using the function
Boundarylntervalg) which takes as arguments the current

AA/2' denote the length of each quadrant along the attribute time slice and the trajectory parameters. It returns the first

axis. Let our indexed space & = [tp...to + AT],
[a0...a0 + AA]and let
Qm,n = [to + mdtj ...to + (M+ 1)dty),

[ag+Nnda...a0+ (N+1)sa) O<mn<2)

attribute intervahp jow and the last attribute interval high
crossed by the trajectory. In case tmg [ow . .. Np high] is
empty, the while loop is exited and we move to the next
object otherwise index points are inserted in their relevant
buckets (i.eQ[m, n]).

The PCA algorithm is analogous to Bresenham’s

designate the subquadrant of our space which lies at thealgorithm as used in computer graphics and computational

intersection of thenth time interval anahth attribute interval
as shown in Figure 12. Finally Ist= 2' be the side length

of theith-regular quadtree measured in number of intervals.

Since there will be 2 buckets in the final quadtree,
we will need to fill and write ¥ disk pages during

geometry although the context here is quite different. Since
it constructs the whole index in main memory, the PCA
algorithm typically requires a large table in main memory
to store theQ array. This translates into a prohibitive cost

for deeper indices. To circumvent this problem, we could

reconstruction and this is then the minimum disk access modify the algorithm to construct the index incrementally in

cost which we can hope for. It would then be better if we
could shift all other auxiliary overheads into the CPU which

is what we propose to do. The idea is to construct an in-

memorys x s array (call it Q) which corresponds to the
guadrantsQmn of our indexed space defined above. We
then compute for each of the trajectories the coordinates
(mandn: 0 < m,n < 2') of quadrants it crosses and add

two or more phases thus consuming less of the main memory
at any given phase. In general, we could desidgf+phase
algorithm that consumes only P of the total space needed
by the grid. In theith phase, we compute index data for
theith segment of the grid according to some suitable grid
partitioning policy. An interesting question would then be
whether we could devise the algorithm so that each oRthe

the object information to every such quadrant. The entry phases requires sublinear time (i.e. less taN)).
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The insertion of an objedp in Q[m, n] expressed inthe  space thatis indexed at that depth and summing across all the
above algorithm as a set union could be implemented to bedepths. Assume (without loss of generality) that our indexed
O(2) if we use an array of sizB for Q[m, n]. The CPU cost space is the unit square (i.e. a1l quadrant). Leb; denote
of regenerating our quadtree is optimal in the sense that nothe number of leaf quadrants that are at déptfiThen D
multiple insertions or recomputations are done for a single would be given by the following formula:
object. In summary, no extra overhead is incurred to create 4
and place index points in their correct quadrants other than = , i i
the strict minimum. Once the quadrants ar@yis filled, D= ; Mi X270 X 270 . (18)
we just transfer its contents from memory to the disk by

allocating one disk page for eve@{m, n] (0 < m,n < 2') We run the PCA algorithm over al2 x 2LPJ6 array.

and copying the index points iQ[m, n] to it. Since there  Where the areas are dense, we will have more than
are 2 x 2' = 22 entries in arrayQ, this amounts to 2 B unique objects in a single array entry. Quadrants

disk accesses in the worst case. In practice however wecorresponding to such array entries are thus overloaded
may have the opportunity to produce a packed ifdehich and need further splitting. We then need a second phase

ideally requires a single disk seek while the rest of I/O for splitting overloaded quadrants beside the phase for
time is spent transferring the buckets to contiguous pages onmerging mergeable quadrants. In practice, we will have to
the disk. Index packing also improves query performance temporarily allocate one or more extra pages for overloaded

dramatically. subquadrants until the splitting phase begins so that no
loss of information occurs by usingD] as a temporary
7.3. Handling skewed data approximation of grid shape. Thé® x 2LPJ partitioning

of the indexed space may be seen as the nearest regular
approximation of the irregular partition resulting from
skewed data. Alternatively, the average depthmay be
viewed as answering the following question: at which depth

The above algorithm assumes uniform distribution of
trajectories’ intercept values over the attribute dimension.
As such it generates a regular quadtree in which all leaf

; - —i
quadrants are of the same dlmen3|or1_ (%. 2 .)' In the d does a partitioning of the indexed space intd'a29 grid
case of skewed data (i.e. intercepi)sdistributions, there ield buck hat i B0t

i ; . . yield an average bucket occupancy that is neareBfAAAs
will be big quadrants in sparse areas of the attribute space T
. such, we expect thdDd will minimize the overhead of the
and smaller quadrants in the densely populated areas. The . . .
. . X . Splitting and merging phases.
above algorithm is then not applicable (as is) to skewed data As an example, suppose our approximation using average
since quadtree order is not defined in this case. We propose, . 1 ieIdedLﬁJ, — 2 5o that we start with a 4 4 arid
two solutions to handle skewed data both of which make use aspsho)\//vn in Figure_l4a Note that this is the situatigon after
of the PCA algorithm. Implementation details are omitted. running the PCA algoritﬁm The figure shows that the north-
In the first solution, we start by running the PCA :

algorithm using the maximum depthof the quadtree of the east_ _subqu_adrant of the parent quadrant is unn(_acess_,quly
. ) . . partitioned into four sparse quadrants. These are identified
previous session as a value for quadtree ordélotice that

. as mergeable quadrants. Figure 14b shows the situation after
for sparsely populated segments of the attribute space we . :
i - . merging them. Moreover an overloaded quadrant is detected
will have many quadruples of sibling quadrants occupied by > . . .
’ ) . : and split in the split phase into four subquadrants. The final
less thanB unique trajectories (the rest are duplicates). We o . . L
) orrect partition of the indexed space is shown in Figure 14c.
call those quadruples mergeable quadrants since they oug L O .
. he merge phase thus coarsens the space partitioning while
to be merged and replaced by their parent quadrant. The ; ' .
) . d the split phase refines it.
idea is then to make a few passes over tAex22¢ array . . . .
X . The second solution relies on the idea of using the shape
constructed by the PCA algorithm and in each pass merge or : . . .
: of the quadtree generated in the previous session to predict
consolidate any mergeable quadrants. We nked. passes or aporoximate its shape in the new session. By shape we
in the worst case. The disadvantage of this method is that if bp b - By P

X . L ._mean the particular way the indexed space ended up being
the difference between the maximum and minimum depthsis ., . : . L .
big, the 2 x 29 sized array construction will be an overkil partitioned in the previous session. We take this information

. ) ) from the leaf nodes of the quadtree directory. Itis reasonable
and a big waste of main memory and CPU requirements. . .
. ; . . "to expect that if a segment of the attribute space was sparsely
The other extreme is to start with a single page (which . o .
0 ~0 o . populated at the end of the last session, then it will continue
correspondstoad 1 = 2° x 2" sized array) and insert the

. . . . : . to be so for some (or all of the) time in the next session.
Ob]eCt.S one by'o.n.e Incurring al! ensuing splits which would In fact, we may even have segments that are consistently
resultin a proh|b|t|ye cost. The ideais then tq cpmpute SOME Jense ’across the lifetime of the applicatiowle then simply
m’:ggiiii%h dv;/hltcﬁh Vé?\/gﬁr;migﬁ?rgi uz(:tiltticl)r;iﬂacoef tohfe run the PCA algorithm above over the specific partition

. pta. qua P 9 induced by the previous session which results in big savings
attribute space, the average def@thmay be computed by
weighting each possible depth with the fraction of indexed  Swe could also take the nearest integeDto
7In the context of vehicle navigation systems, dense segments may
5¢..we define an index to be packed if each of its buckets uses a correspond to the center of a city where motion is slower and the number

minimal amount of space to store entries (without room for growth), and of vehicles is higher while long highways between cities correspond to the
all its buckets are allocated contiguously on disk’ [13]. sparse segments of the indexed space.
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FIGURE 14. (a) Initial approximation of the space partitioning using average depth of2 2 < 3). (b) Mergeable quadrants identified
in the north-east and consolidated. (c) Overloaded quadrant identified and split yielding the correct configuration.

in memory cost compared to the first solution. Note that, continuous query comes in a periogT ... (p + 1)AT),

during the span of a session, we expect the space partitioningt is first evaluated over the time interval{w. .. (p+1)AT)

inducing the quadtree to change through splits and mergeshen over all subsequent periods of the application until it is

governed by insertions and deletions. For this reason, we doexplicitly deleted from the queries list.

not get into a dead cycle in which we repeat always the same The number of data pages required to answer a range

guadtree. query is (intuitively) equal to the number of quadrants
The idea of this second solution is similar in spirit to the covered by the range. Let us characterize this more

seeded trees of Lo and Ravishankar [14] in which they copy accurately. LetAq = Rnigh — Row denote the length of

the firstk levels of an existing (seedingd-tree and use them  the attribute range of a que andTg = Thigh — Tiow the

as a seed for a nefR-tree to be constructed from a different  length of the time range of que@. Excluding the effect of

data set than that which induced the seeding tree. Their workbuffering, the disk access cc@g'Sk of such a query is

addresses the problem of designing efficient algorithms for

processing the spatial join query [15] in the special case cdisk _ <1+ [@—D (1+ [T_Q—D (19)

where a spatial index is not available for at least one of the Q 3a St; '

participating relations. The difference is that they take their

‘seeds’ from the top of the tree while (in a sense) we take

them from the bottom.

We have simply multiplied the number of intervals covered
by each of the two ranges. For the special case when one
range starts exactly at the beginning of an interval, the 1 in
the multiplicand in Equation (19) is omitted. As ranges are
8. QUERY PROCESSING supplied independently of the current status of the quadtree
Our quadtree based index exhibits good performance for theand its partition, we expect the general case embodied in
two popular types of queries described earlier: instantaneousEquation (19) to hold most of the time. We can then
and continuous queries. In-memory overhead consists ofdetermine the cost of instantaneous and continuous queries
recursively descending the quadtree directory to reach theusing this formula. _
leaves pointing to data pages relevant to the queried range. Letting CISK and Cdisk denote the disk cost of
For a quadtree of ordeér there will be 4 leaf nodes and the  instantaneous and continuous queries (respectively) over an
above operation will thus b&(i). The rest of this section ith-regular quadtree we obtain the following formulas:
discusses the more dominant I/O cost for both query types.
We assume we are at &ifi-regular quadtree. Cidnigtk =14 [ﬂ—‘ (20)

An instantaneous query submitted at titpggy with an 3,
attribute rangeRow . . . Rnigh] targets the time rangénpw —

8t .. . thow + 8t] (Or [thow- - - thow + &t]) whereét is a small disk i AQ

time lapse to be chosen according to the application domain. Ceont= 2 <1 + [E—D : (21)
Then we may constraist to be small compared to a single

time interval of the quadtree (i.6t <« AT/2'"). In fact, The cost of an instantaneous query is just the number

we want it to be small enough to fit in a single time slice of attribute intervals its attribute range spans while for
st. Alternatively we may adopt the policy of evaluating an continuous queries it is that number multiplied by the
instantaneous query submittedaty using the time interval ~ number of time intervals iAT .

in which thow falls since our purpose in using parameter  Figures 15 and 16 show the average cost of instantaneous
8t was to have a finite approximation to the infinitesimal queries as a function & across a few typical attribute range
thow. FOr continuous queries, the theoretical time range over percentages (10%, 1%, 0.1% and 0.01%). On the average we
which they are evaluated i$nfw...o0). In practice, if a need less than three disk accesses per instantaneous query
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FIGURE 15. Instantaneous query cost at a high range size of 10%. FIGURE 17. Continuous query cost at a high range size of 10%.
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FIGURE 16. Instantaneous query cost at low range sizes. FIGURE 18. Continuous query cost at low range sizes.

for system sizes up to 30,000. Given that a typical I/O 128 for 6000 < N < 9000). In general, the average
operation costs 10 ms [16, 17], this allows us to process cost per continuous query ranges between 100 and 200
a reasonably large number of instantaneous queries pedisk accesses. For large range sizes, Figure 17 shows
second. The reason why range sizes of 0.1% and 0.01%that the cost may quickly become prohibitive. However,
have identical costs (up td = 20,000) is that such ranges we expect that in practice it is not sensible to request
are thin enough to fit in a single attribute interval lenggh continuous information about large segments of the attribute
so that in both cases one or two data pages will need to bespace. For system sizes below 10,000 (which we consider
retrieved. This averages to less than two disk accesses agnough for many application domains), we have an 1/O cost
shown in Figure 16. For the larger range sizes such as 10%in the order of a few tens for small range sizes, that is
of the attribute space, access cost rises to five disk accessestill subject to improvement using the technique of delayed
for values of N below 20,000 and to ten disk accesses bucket splits described above. Furthermore, if the index
on the next plateau. This still translates into a reasonableis packed then we would incur a single seek time per
I/0 cost. Note that we do not consider the improvement query. If we cannot achieve total packing of the index,
technique mentioned earlier where we delay a bucket splitwe may still achieve a lower level of packing in which
by allocating a twin bucket. As this technique delays the rise all quadrants of a single attribute interval @r uniform
to the next plateau, we expect to enjoy a small number of data) are allocated to contiguous pages on the disk. This
disk accesses per instantaneous query especially for small taagain reduces the cost of a single continuous query to a
average range sizes (below 5%). few disk seeks. Although continuous queries remain more
The average I/O cost of continuous queries is given costly compared to instantaneous queries, they still lend
in Figure 17 for a query range size that is 10% of the themselves to optimizations in a way which instantaneous
attribute space and in Figure 18 for the smaller range queries do not.
sizes. Remember that for continuous queries, for each Since in any arbitrary session we (typically) have a fixed
attribute interval (of lengtidg; at theith plateau) covered  minimum number of continuous queries to answer, after
by the range, we have to examine all the corresponding 2 a few sessions we can identify hot spots of the attribute
guadrants which span the length of a single session)( space which not only continue to be referenced from one
Figure 18 confirms this by the fact that for the low range session to the next but are also referenced by many queries
sizes of 0.1% and 0.01% (which span no more than a singleinside a single session. We then could achieve enormous
attribute interval), the plateaus occur at exact values' of 2 gains in I/0 overhead by storing in memory ready answers
(e.g. 32 forN < 5000, 64 for 6000< N < 9000 and for the most heavily referenced intervals. ldentification of
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the hottest attribute intervals could be done using a simple The question addressed is how to efficiently add data of the
statistical analysis of past query ranges. We would then new day and remove data of the oldest day(s) from the wave
process those intervals at the beginning of each session byndex. It is an interesting question whether or not we could
filtering duplicates (from the'yuadrants corresponding to  adapt their algorithms for our context to replace the periodic
a single interval), packing the unigue objects that cross everyindex reconstruction approach.
hot interval in the coming session and storing them into  Another work worth mentioning here is that of Shekhar
a table in memory. For every continuous query, we first and Yang [22] in which they address the issue of mobility
compare its range with the packaged intervals to see if therein a geographic system. Their index is called MoBiLe file
are intersections. Only the fragments of its range which are and maps the two-dimensional space of motion to the disk
not ‘hot’ will then require to be brought into memory and tracks and sectors while attempting to preserve proximity
incur I/O cost. Given the relatively high cost of continuous relationships. This map requires a mapping function and
queries, we expect tangible improvements even for a modestknowledge about the population distribution. An object’s
number of hot intervals. geographical location is then used as the primary key to
locate the disk block where it resides. However, since they
do not make use of an equation of motion, the nature of their
9. RELATED WORK work is different from ours.

To the best of our knowledge, no prior work has
addressed the specific problem of dynamic attribute
indexing. Dynamic attributes themselves were defined in 10. CONCLUSION
[1]. This is not surprising given that the database community
has only recently begun to explore the impact of mobility on
data management issues (see for example [3], [18] and [2])

However, our problem is closest to the problem of
indexing collections of line segments since we start with
lines in two-dimensional space. The way the line indexing
problem is approached in the literature is influenced by the
types of queries expected. Hoel and Samet [19] identify
three classes of queries: (a) those which deal only with the
line segments, (b) those which involve the line segments
and the space from which they are drawn and (c) those
which involve attributes of the line segments. Jagadish [20]
proposes a solution for a family of queries belonging to the
first class above. His solution relies on transforming lines
into points in a transform space in which slope is plotted in
one axis and the intercept is plotted on the other (the so-
called Hough Transform). In [19], the PMR quadtree is
used as an access method for line segment databases a
an algorithm for finding the nearest line segment to a given
point is presented (a query belonging to the second class
above). In [21], the use of thR*-tree and theR*-tree for
indexing line segments is also studied in conjunction with
the PMR quadtree.

In our particular line indexing problem we did not need

In this paper we have proposed a solution to the problem
" of indexing dynamic attributes that is based on the quadtree
structure. A key idea used in our index is the prediction
of the future values of a dynamic attribute from an
approximative linear function which describes the way it
changes over time. Starting from the plotted graphs of these
functions in the two-dimensional time attribute space, we
transform the problem into the spatial indexing domain and
adapt the bucket PR quadtree to solve it. The aim was to
support two types of range queries called instantaneous and
continuous queries.

We provide detailed experimental and analytic studies of
the main performance parameters of the indexing method.
Since the approach requires periodic reconstruction of
the index, we contribute an efficient algorithm for index
r{gconstruction that is optimal in CPU and I/O costs. The
Index is also shown to exhibit very good performance for
instantaneous queries that averages two disk accesses per
query. It also exhibits good performance for continuous
gueries where we suggested a minor optimization technique
that yields tangible improvement of average cost per query.

We are currently working on another solution still based
on the same general approach. Our focus and interest will be

to care about verticEsand line information is summed up ducing th ber of ) biect in th
in the (slope, intercept) pair associated with every object. O" reaucing the average number of copies per object in the
index (i.e. duplication ratio). We will also study the effect of

Furthermore, more care is given to index reconstruction in . ina the fime di ion in the indexing direct
our work since it is a periodic overhead. ignoring the time dimension in the indexing directory.

The problem of dynamic attribute indexing is that of Another trail of future work would be the design of an
handling data that is (rapidly) evolving over time. As indexing method that does not require periodic destruction

such the work of Shivakumar and Garcia-Molina [13] on and reconstruction of the index. In other words, we would
indexing evolving databases is of particular importance. Want an index that adapts in a more graceful way to the
The authors present a set of interesting techniques forPa@ssage of time. One way to do this would be to adapt
maintaining indexing information about a (moving) window "€ techniques presented in [13] for wave indices to our
of days. The resulting indices are called wave indices and @Pplication. - Since we need an efficient way to generate

the techniques apply to almost all classes of index structuresINdexing data corresponding to a given time interval, the

task is not trivial. We will also look into the possibility of
8In fact, most of the line segments start and end at the same abscissairansforming the problem of dynamic attribute indexing into
namelytj andt; + AT, the beginning and end of each session. the temporal indexing domain.
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