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Dynamic attributes are attributes that change continuously over time making it impractical to issue
explicit updates for every change. In this paper, we adapt a variant of the quadtree structure to
solve the problem of indexing dynamic attributes. The approach is based on the key idea of using
a linear function of time for each dynamic attribute that allows us to predict its value in the future.
We contribute an algorithm for regenerating the quadtree-based index periodically that minimizes
CPU and disk access cost. We also provide an experimental study of performance focusing on query

processing and index update overheads.
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1. INTRODUCTION

The so-called dynamic attributes [1] arise primarily in
mobile data management [2]. This field was sparked by the
recent technological progress in portable laptop computers
and the smaller palmtop computers (also calledPersonal
Digital Assistantsor PDAs). Moreover, their ability to
communicate with fixed hosts via the wireless medium
leads to the new paradigm of nomadic computing and its
associated implications on data management issues [3]. It
is speculated that in the near future such devices will be
ubiquitous thus challenging the database community to deal
effectively with two of their most intrinsic characteristics,
namely, scale and mobility.

Given that mobility is the most distinguishing feature
of the mobile computing paradigm, it is only natural that
location becomes a central piece of information. It gives
rise for example to a new kind of queries called location-
dependent queries [4] for which the computed answer
depends on the location of the user or object which issued
them. Consider a person driving a car who occasionally
wants to be informed about motels that are within five miles
of his location in order to select a reasonably priced hotel.
It is clear that the set of motels computed as an answer to
his query would be different each time his car moves by a
reasonable distance. It is also clear that we cannot afford
the cost of updating the driver’s location ‘continuously’
to be able to answer his queries. In a typical mobile
architecture, mobile users will be registered into a special set
of servers called mobile support stations which manage their
connection session and interface them to the fixed network
that contains useful data. Each user or object will have
a (temporary) record in a support station and the location
attribute will be one field of that record. In the driver

example above, the driver’s position is the archetype of a
dynamic attribute.

In this paper, we propose an indexing technique for
dynamic attributes based on a variant of the quadtree data
structure in which the indexing directory is in primary
memory and the indexed data resides in secondary storage.
The method is useful in any application which involves
data items whose value varies continuously according to a
given function of time (temperature is another example).
The general approach proposed in [1] is to have every
moving object supply its position and motion equation
upon registering to the system. Thereafter, the object
may occasionally send a request to update its position or
its motion equation or both. It can do that relatively
infrequently and is constrained only by the amount of error
introduced as a result of using an approximate motion
function over a long period of time [5]. We then plot
the value of every dynamic attribute as a function of time
in the two-dimensional time-attribute space. In this way,
we have reduced or transformed the problem of indexing
dynamic attributes into a spatial indexing problem albeit
with a different flavor.

Our focus is on supporting range queries where the
range can be an attribute or time range. Furthermore, we
support queries on the moving objects themselves rather than
queries issued by the moving objects. A typical example
is: Give me all the objects whose attribute value falls in
the range [abegin. . . aend]. Such a query would be useful
in vehicle monitoring systems and possibly in intelligent
vehicle navigation systems [6].

Starting from the equations of motion and their corre-
sponding attribute trajectories plotted in the time–attribute
space, we generate periodically our quadtree-based index
to support queries about the future. The idea is to destroy

THE COMPUTER JOURNAL, Vol. 41, No. 3, 1998
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and reconstruct the index at the end of every period. In
more abstract terms, given the infinite time dimension, we
partition it into equal-sized time slices and create an index
for each time slice. Theoretically, the union of these indices
is the master index of the whole time–attribute space being
indexed. Practically, when the period of an index is over it
is disposed of and the next one is generated since storage
space is finite. We will denote this period by1T . Since
our index is reconstructed every1T time units, we will
also call1T the index reconstruction period. The time span
covered by any single index reconstruction period is called
a session. Conceptually, a session is just a projection of the
system state over a finite time interval due to the limitations
of disk space. We note that our index is a dynamic one
allowing for insertions, deletions and updates inside periods.
Updating the position or the equation of motion of an object
requires deleting the records relating to its previous state and
inserting new index elements according to its new record.
Furthermore, inside a session, an object’s equation of motion
is assumed to remain valid until an explicit update request is
issued by the corresponding user.

For the proposed method, we contribute an index
reconstruction algorithm that is optimal in CPU and disk
access overheads. We have also conducted a simulation
study which shows good query processing performance.
The outline of the paper is as follows. In Section 2,
we introduce the background information necessary for the
rest of the paper. We then describe the indexing method
in Section 3. Section 4 presents the experimental setup
of the conducted performance study. Section 5 presents
the storage requirements of our quadtree-based index and
Section 6 provides a mathematical analysis of storage
utilization. We describe an optimal index reconstruction
algorithm in Section 7 after presenting the naive algorithm
which motivated its conception. In Section 8, we present
query processing performance for two types of supported
queries. Section 9 includes a brief digression on related
work. Finally, we outline possible areas of future work and
conclude the paper in Section 10.

2. BACKGROUND

Our work is largely based on the ideas introduced by Sistla
et al. in [1]. The authors present a new data model suitable
for representing moving objects in database systems. The
model is called the moving objects spatio-temporal (MOST)
data model and relies on the key idea of representing the
position as a function of time. We thus start withN linear
equations or functions of timefi (t) = ai × t + bi (0 ≤
i < N) whereN is the total number of objects in the system
hereafter denoted by system size. For the two dimensions of
motion, 2N equations will be needed, two for each object.
Sistla et al. propose to represent a dynamic attributeA by
three subattributesA.value, A.updatetimeand A.function.
The dynamic attribute would then take the valueA.valueat
time A.updatetimeand the valueA.value+ A.function(t) at
time A.updatetime+ t . The value of a dynamic attribute at
any point in the past is thus being used in conjunction with

the supplied function to predict its value at any point in the
future.

The slopea in the approximate linear equationf (t) =
at + b corresponds to the rate of change of the dynamic
attribute. When this attribute is the position of a moving
object with respect to a predefined coordinate system, this
slope is simply the speed of the object along one of the
axes. We remark that for objects moving in two-dimensional
space, we will have to index two distinct dynamic attributes;
the abscissa and the ordinate attributes. This is necessary
to be able to support two-dimensional range queries and
leads to two different indices. Answers to two-dimensional
queries are then taken as the intersection of the two answer
sets corresponding to the two unidimensional range queries
issued separately over the abscissa and the ordinate spaces.
In the rest of the paper, we shall use the word speed to mean
the slopea of the motion equation. We define the average
speedv to be the average of a large set of speed values
as computed over a reasonably reliable number of sessions.
The quantityv turns out to have an impact on the nature of
our indexing problem. Let1A denote the total length of
our indexed attribute space. We assume that1A is finite.1

The relative value ofv compared to1A is more important
than its absolute value. We capture this observation in a new
parameter which we call speed ratio defined as follows.

DEFINITION 1. The speed ratioα of the set ofN dynamic
attributes being indexed is the attribute distance an object
moves on the average in a single time unit relative to the
total length1A of the attribute space. It is given by the
formula

α = v

1A
.

The speed ratio is an intrinsic property of the system of
objects. Conceptually,α is an indication of the dynamism of
our system; the higher it is the more agitated the objects are
while the lower it is the more sluggish the overall system
becomes. We then introduce in more detail the types of
queries supported.

In [1], three types of queries are discerned for the MOST
data model. These are the instantaneous, the continuous, and
the persistent queries. An instantaneous query submitted at
time ti is processed against the database state atti . The
following example is given in [1]: ‘Display the motels within
5 miles of my position’. A continuous query submitted
at time ti is processed against all database states starting
from ti (i.e. [ti . . .∞)). It is described as ‘an instantaneous
query being continuously re-issued at each clock tick’.
In the motels example, the user will just require to be
‘continuously’ informed about which motels are coming
within 5 miles of his position. If we letSj denote the state of
the database at timet j , then at eacht j > ti , the continuous
query is reevaluated againstSj . The persistent query is a
bit more demanding. Like the continuous query, it has to be
evaluated at each clock tick after its time of submissionti .

1Even if 1A was not finite, in practice, a finite representation or
approximation of the attribute space being indexed imposes itself.
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However, unlike the continuous query, att j it has to be
evaluated against the set of statesSi , Si+1, . . . , Sj−1, Sj

rather than againstSj alone. The example query provided
in [1] is the following: ‘Let me know when the speed
of object o in the direction of thex-axis doubles within
10 minutes’. Persistent queries arise in the expression of
temporal triggers in active database applications [7]. In
our research, the focus is on supporting instantaneous and
continuous queries. Adapting the indexing method proposed
here to handle persistent queries is left for future research.
As mentioned above, our focus in this paper is on range
queries which ask about the moving objects themselves. The
generic and generalized form of our queries is the following:

Give me all the objects whose value for attributeA
falls in the attribute range [ai . . . a j ] at some time
between time instancestb andte.

Since we have both an attribute and a time range, we obtain
two-dimensional range queries. Lettnow denote the time at
which the query was submitted. Depending upon the values
for tb andte, we may have any of the following four types of
queries:

1. if tb = te = tnow, we have an instantaneous range query
asking about the present;

2. if tb = te = ti andti > tnow, we have an instantaneous
range query asking about the future;

3. if tb = tnow andte = ∞, we have a continuous range
query;

4. if tb = ti and te = t j (tnow ≤ ti < t j ), we have a
general two-dimensional range query over the attribute
and time dimensions.

In practice, we map the first three types of queries to the
fourth one which is more general. In instantaneous range
queries (cases 1 and 2), we approximate the time pointti by
the time range [ti − δt . . . ti + δt ] whereδt is a small time
lapse. In continuous queries, the theoretically infinite range
[tb . . .∞) is usually decomposed into the set of contiguous
intervals

[ti . . . ti +1T ], . . . , [ti + n1T . . . ti + (n + 1)1T ], . . . .
(1)

This again reduces it to the fourth case. If a continuous query
arrives in the middle of a session, its answer is computed
over the remaining time until the end of the current session.
At the beginning of each session, the answers to continuous
queries are computed in batch mode and sent to their
corresponding recipients either incrementally (according to
when objects enter the queried range) or in one packet (in
which case it is the responsibility of the mobile computer to
present it properly to the human user). We now describe the
indexing method.

3. THE INDEX

As we mentioned above, since we can plot the objects’
trajectories in two-dimensional space, the problem of
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time
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tri

bu
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t i ti + T
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FIGURE 1. Partitioning of the indexed space in the region
quadtree.

dynamic attribute indexing is transformed into a spatial
indexing problem. For this, we could draw upon the
literature for spatial access methods [8] and adapt one access
method to our specific problem. We have selected the
quadtree indexing structure.

The quadtree is treated thoroughly in [9] with several of
its variants. The idea common to all quadtree variations is
the recursive decomposition of indexed space. However, we
are interested in the so-called region quadtree which is based
on the successive subdivision of space into four equal-sized
quadrants. This is shown in Figure 1. Among the region
quadtree variants, we are particularly interested in the PMR
quadtree which is the quadtree-based indexing structure for
line segments [8]. The idea of the PMR quadtree is to store
information about a line segment in every quadrant of the
underlying space that it crosses (fully or partially). The
data space is partitioned until no more thanB lines cross
a single quadrant;B is called the bucket size. Typically,
B will be equal to the number of data records that fit in
a single disk page. In our work, we will be using an
adaptation of the PMR quadtree in which vertex information
is embodied in the object’s equations of motion. On the other
hand, this makes it similar to the bucket PR quadtree for
indexing points [8]. The bucket PR quadtree indexes points
by recursively partitioning the underlying space until no
more thanB points fall in a single quadrant. The difference
in our case is in the semantics of a data point (it codes the
information that a line crosses a quadrant) which makes the
split involve more than a simple distribution of points over
the four subquadrants.

At the level of indexed data, index records consist of the
object ID, the interceptb and slopea of the corresponding
equation of motionf (t) = at + b. The slopea can be
positive or negative. Its sign corresponds to the direction
of motion when its magnitude corresponds to the speed of
a moving object. Interceptb may or may not take negative
values depending on the application.

When a data page overflows (at the(B + 1)th insertion),
a page or bucket split takes place. Bucket splits involve the
following operations. We take the(a, b) pair of each object
in the bucket and use it in conjunction with the quadrant
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boundariesXmin, Ymin, Xmax and Ymax to find out which
of the four subquadrants the trajectory crosses. We then
insert the corresponding〈ID, a, b〉 record in every crossed
subquadrant (there can be at most three out of four). A
bucket split requires that we allocate four new disk pages,
one for each subquadrant. Upon completion of bucket split
computations, the parent data page is disposed of. The leaf
quadtree node that was pointing to it must itself allocate
memory for four leaf nodes which will point to the newly
allocated disk pages. It then becomes an internal node.
Furthermore, the boundaries of the four subquadrants have
to be computed from the boundaries of the parent quadrant.
The example at the end of this section will further illuminate
the operation of the quadtree index in our application.

Given a constructed index, an object ID and the associated
function, we would execute a search for all index elements
belonging to the object’s trajectory in the following manner.
The linear equation of motionf (t) = at + b is our search
key and the object ID is used once we reach the relevant data
pages. Starting at the root of the quadtree, we use the pair
(a, b) and the boundary fieldsXmin, Ymin, Xmax andYmax
found in the root to decide which subquadrants are crossed
by the object sought. We then descend the next level and
repeat the same thing until we reach the leaves. The disk
page pointer field is then used to bring the relevant data
pages into the buffer (if they are not there). The search
procedure is the basis of insertion, deletion and update
operations. Traversal of the quadtree to answer range queries
is done in an analogous manner except that the search key
consists of the boundaries of the queried range. Moreover,
when this range overlaps more than one subquadrant, the
recursive step of the search must decompose it by computing
the boundaries of its associated subranges. We are now
ready to describe the performance of the index. We start by
describing the experimental setup of the study we conducted.

It is possible in theory to have an infinite sequence of
bucket splits. This happens when all theB + 1 trajectories
intersect at a grid point. It is very unlikely that they intersect
at any point (in our applicationB = 340) and even less likely
that this point happens to be a grid point. Nevertheless,
when it happens we propose to make use of overflow buckets
and thereby split the overflowing bucket only once. This
is done as follows. Because the grid point at which the
B + 1 trajectories meet belongs to exactly one of the four
subquadrants, the other three will not have this problem. For
the fourth quadrant, allocating an overflow page is enough
to solve the problem.2

3.1. An example

We illustrate the operation of the quadtree index by means of
an example depicting the successive insertion of four object
trajectories into an initially empty tree. The trajectories are
denoted byL1, L2, L3 andL4. The position and orientation
of these trajectories relative to the indexed space are shown
in Figure 2. TrajectoriesL1, L2 and L4 have a positive

2The use of overflow pages also proves useful in index reconstruction as
we shall see later.
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FIGURE 2. Four object trajectories crossing the indexed space.
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FIGURE 3. The indexed space and the index tree after insertion of
object trajectoriesL1 andL2.

slope whileL3 has a negative slope. To be able to illustrate
splits and space partitioning, we chose a small bucket size
B = 2; the actual bucket size is much bigger than this (a few
hundred).

We begin by insertingL1 and L2. The situation after
the insertion is shown in Figure 3. A leaf node is depicted
by a square shape with a rectangular slot at the bottom
containing a pointer to the data page on the disk. The
quadtree index is then simply a single leaf node pointing to
the full data page containing index records forL1 and L2.
Data pages are pictorially depicted by a vertical rectangle
with smooth corners. The number two inside the quadrant
in Figure 3 indicates the number of trajectories crossing
it or alternatively the number of index points stored in its
corresponding data page on the disk.

Next, we insert trajectoryL3 into the quadtree. Since
page P0 was full before insertion, a bucket split takes
place accompanied by partitioning of the underlying indexed
space. The situation after this insertion is shown in Figures 4
and 5. The root now becomes an internal node pointing
to four leaf nodes corresponding to the south-west, north-
west, north-east and south-east respectively. The north-east
subquadrant remains empty as it is not crossed by any of
the three trajectories. The other three are full and the index
now consumes three data pagesP0, P1 and P3 as shown in
Figure 5.
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FIGURE 4. The indexed space partitioned into four quadrants
upon insertion of the third trajectoryL3.
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FIGURE 5. The quadtree grows by one level after bucket split.
The root points to four leaf nodes.

Finally, we insert the fourth trajectoryL4. Since L4
crosses two previously full quadrants (south-west and north-
west), two bucket splits take place and the indexed space
becomes partitioned as shown in Figure 6. Numbers inside
each quadrant indicate the number of trajectory segments
crossing it.L1 now crosses two quadrants,L2 crosses three,
L3 crosses five andL4 which caused the splits crosses four
quadrants. This results in 14 index points distributed over
nine data pages. The corresponding quadtree is shown in
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FIGURE 6. Partitioning of the indexed space and number of index
points per quadrant after insertion ofL4.
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FIGURE 7. Quadtree index after insertion ofL4.

Figure 7. It is now of height two and contains three internal
nodes and 10 leaf nodes one of which is not pointing to any
data page (corresponding to an empty quadrant).

An important observation is that a bucket split leads to
duplication of index elements. The same trajectory which
was represented by a single point before the split becomes
represented by one, two or three points after the split. In the
example above,L3 was represented by a single point in the
south-west quadrant before insertion ofL4. After insertion
and split, it is represented by three points and is present in the
three data pagesP1, P2 andP3 corresponding to the crossed
subquadrants (see Figure 7). A bucket split is also the
mechanism by which the indexed space becomes partitioned.
Partitioning of indexed space is in turn reflected in the height
of the quadtree-based indexing directory. More important
however is the impact of splits on the total number of index
elements corresponding to a given system sizeN . These
two quantities are used in the definition of a new parameter
introduced to characterize duplication in the context of our
application.

DEFINITION 2. The duplication ratioD of a quadtree
index is the average number of copies that a single object
has in the index:

D = Number of index points

Number of objects
.

Note that duplication of object information is an
intrinsic characteristic of our application. In theory, index
information about an object’s dynamic attribute consists of
an infinite number of points in its plotted graph. Here we
are basically approximating it by a finite number of points.
Hoping for a single index element per object is akin to using
a single point to approximate the whole graph describing the
way the attribute changes over time.

4. EXPERIMENTAL SETUP

To study the performance of our indexing technique, we
have implemented the bucket PR quadtree as described
above together with its associated insertion, deletion and
query processing operations. The programs were written
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in C and executed on SunSparc workstations running the
Solaris operating system.

The main parameters in our simulation model are the
system sizeN , the index reconstruction period1T and
the speed ratioα. Given N , we generate randomly
the correspondingN linear equations describing the way
attributes change over time. This is done by generating the
interceptsb randomly according to the uniform distribution
over the attribute space [Amin . . . Amax]. We then generate
the values of the slopesa in a range determined by the speed
ratio α we want to test. Note that this is different from the
way line segments were generated in the study of the PMR
quadtree. In [8], it is stated that line segments were obtained
by first generating points that are uniformly distributed
over a square region and then connecting them. This is
not applicable here since we are dealing with trajectories.
Deletion requests are regenerated randomly from the space
of active object IDs. Another important component of
our experiments is the buffer manager. We manage the
buffer using the least recently used (LRU) page replacement
policy. Buffer size BF is also another model parameter. We
experiment with BF values of 8, 16, 32, 64, 128 and 256.

In query processing, the relative size of query ranges is
important. Let R denote the absolute range length of a
range query. The ratioR/1A gives the relative span of the
given query which is traditionally used in percentage form
((R/1A) × 100). We will simply call this quantity range
size. In our study, we experiment with range sizes which
span 10%, 1%, 0.1% and 0.01% of the total attribute space
1A. The centers of the ranges are generated randomly and
uniformly over the attribute space [Amin . . . Amax] and the
ranges’ lower and upper boundaries are then determined by
the desired range size. The results of some of the conducted
experiments are presented in their appropriate sections.

5. STORAGE REQUIREMENTS

The storage requirements of the quadtree index depend
mainly on system sizeN and duplication ratioD. Note that
their product (N × D) is the total number of resulting index
points. LetR denote the index record size (in bytes) andM
the storage consumption of the index. At a perfect bucket
utilization of 100%, we haveM = N × D × R. Lettingµ

denote average bucket utilization (0≤ µ ≤ 1), we obtain
the more general equation

M =
(

R

µ

)
N × D. (2)

Equation (2) also hints at the importance of keeping the
number of duplicates low and utilization high to the greatest
extent possible.

Figures 8 and 9 show disk consumption as a function of
system sizeN . We use disk page sizes of 4 kbytes and our
records are 12 bytes long so that the bucket sizeB in our
application is about 340. Note that both graphs have the
same pattern in which the number of disk pages remains
fixed for a while then increases rapidly over a small interval
of objects countN until it reaches some new plateau at
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FIGURE 8. Storage requirements for small system sizes.
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FIGURE 9. Storage requirements for large system sizes.

which it remains fixed for an even longer interval ofN .
The plateau pattern prevails in other experiments as well;
we provide a precise definition below.

DEFINITION 3. A plateau is an interval[Ni . . . Ni+L ) in
the number of objects over which the resulting quadtree
requires exactly the same number of disk pages. We sayL is
the plateau length.

Plateaus occur at values of 16, 64, 256, 1024, 4096 and
16,384 disk pages. The number of disk pages in a plateau is
thus four times that of the previous plateau so that in general
we have plateaus at 4i disk pages. The number 4i comes
from the fact that the quadtree starts with one (40) disk page
and every split wave multiplies the number of disk pages by
four.

The question is then why do we have plateaus or why
does the number of disk pages stabilize for a while at values
of 4i? The reason is that all subquadrants tend to fill up
at the same rate and reach capacityB at the same time.
This leads to a wave of splits across all quadrants of the
quadtree that is triggered by a relatively small number of
newly inserted objects. Furthermore, insertion of a single
object typically triggers splits in a big number of quadrants
that correspond to a single attribute interval. After these
splits are over, it will take many insertions before the new
disk pages are filled again. During these insertions, disk
pages are becoming nearer to full capacity but no new disk
pages are being required by the quadtree. For this reason,
we have a plateau shape followed by a sharp rise that only
ends at the next plateau.
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FIGURE 10. Duplication ratio.

The value 4i corresponds also to the way the underlying
indexed space is partitioned at plateaus. It is equal to the
product 2i × 2i and comes from the fact that at plateaus the
initial indexed space becomes partitioned into a 2i ×2i grid.
We embody this observation into the following definition.

DEFINITION 4. An ith-regular quadtree is one which
partitions the underlying indexed space into a2i × 2i grid
of quadrants. We also say that it is at the ith plateau.

A split wave then takes us from ani th-regular quadtree
to an(i + 1)th-regular one. In the process, the number of
points per trajectory (or copies per object) increases, thus
increasing the amount of duplication.

The duplication ratio is given in Figure 10 as a function of
N . Again the plateau pattern prevails but this time plateaus
occur at powers of two (2i : i > 0) rather than four so that
we also have plateaus atD = 8 andD = 32 (not included
in the figure). The figure shows a plateau atD = 64,
then at D = 128 (not a power of 4), then atD = 256
for N ≈ 50,000. We observe thatD corresponds to the
number of quadrants on each side of the indexed space. At
plateaus,D is a perfect power of two and is exactly equal
to the number of quadrants on every side of the original
quadrant. In summary the duplication ratio increases with
N . This might limit the scalability of the method to large
system sizes. However, since duplication is caused by bucket
splits, we could slow its increase by rethinking the bucket
splitting event.

In the context of our specific application, a bucket split is
associated with the following three events:

1. Each object in the original bucket generates two
copies on the average. This assumption is based
on a relevant theoretical result [8].3 The result
is applicable for trajectories uniformly distributed in
space and orientation. In our application, intercepts are
restricted to belong to a finite interval [Amin . . . Amax]
so that, for low values ofi , the number of trajectories
generating one copy is less than those generating
three. However, the effect of this imbalance is
diluted for higher values of quadtree orderi (above

3‘ . . . on the average, if lines are drawn from a sample distributed
uniformly in space and orientation, the average number of quadrants
intersected by a line passing through a quartered block is two’ [8, p. 268].

5) where the border quadrants responsible for the
imbalance constitute a diminishing fraction of the total
number of leaf quadrants in the quadtree. As such,
most quadrants ‘see’ the trajectories crossing them as
uniformly distributed in orientation thereby averaging
near to two copies during splits.

2. One page is replaced by four leading to a quadrupling
of local space.4

3. Local utilization drops from 100% to 50% (this follows
from observations 1 and 2).

It will then be beneficial if we could delay splits to the
extent possible. We do this using the following technique.
When a bucket of capacityB records overflows, we allocate
a second twin bucket that will store the nextB objects whose
trajectory crosses the corresponding region of space. When
the two twin buckets overflow, they are replaced by the usual
four buckets which correspond to the four subquadrants of
the indexed region. This is similar in spirit to Lomet’s
partial expansion technique [10]. We delay quadrupling of
local space by increasing the number of buckets per node.
Partial expansion delays doubling of local space by using
the so-called elastic buckets; the number of buckets per node
remains fixed but the bucket size increases by a factor less
than two (e.g. 1.25 or 1.5) before eventually doubling.

Using this simple amendment, we achieve a significant
reduction of storage requirements which reaches 50% in
theory. In practice, we expect that the average gain will
not be much lower than that since 50% corresponds to
the gain achieved locally (at the level of a single bucket
split/expansion). This gain comes from the resulting
decrease in duplication ratio achieved by the technique. By
delaying splits we could ‘enjoy’ lower values ofD at higher
system sizes. Next, we look into bucket utilization.

6. STORAGE UTILIZATION

In this section, we are interested in computing the space
efficiency of our quadtree in the context of our particular
application. In the analysis of the utilization provided here,
we do not provide the details of all the derivations or proofs;
the complete exposition may be found in [11]. We start
by defining more precisely the quantity for which we are
seeking a formula.

DEFINITION 5. The utilization ratioU is the fraction of
memory used by the index elements in a given quadtree
relative to the total memory capacity of the disk pages
consumed by that quadtree.

For the purposes of our analysis, we need a more specific
definition. LetP(N) be equal to the number of index records
in the quadtree which indexesN objects, andD(N) be the
number of disk pages required to store a quadtree which
indexesN objects. LetU(N) denote the utilization ratio in
a quadtree index corresponding to a system size ofN . Then

4This is hard wired into the quadtree structure and thus independent of
the context.
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we have

U(N) = P(N)

D(N)B
. (3)

We are interested in the mean utilization ratioU which
would theoretically be given by the formula

U = lim
N→∞

∑N
p=1 U(p)

N
. (4)

However, to keep analysis tractable, we need to compute
the mean over a finite range of values ofN . We choose
the range of values between two consecutive plateaus as our
finite range. LetNi denote the number of objects at ani th
full plateau of a quadtree. We define thei th mean utilization
ratioUi as follows:

Ui =
∑Ni+1

p=Ni+1 U(p)

Ni+1 − Ni
. (5)

Let us express formula (5) in words. Starting from the point
when thei th plateau breaks, we insert objects consecutively
until we reach the full(i + 1)th plateau and compute the
utilization after every insertion (this is the termU(p) in
the summation). We then calculateUi as the arithmetic
mean of those intermediate values. Next, we introduce some
terminology.

We say that ani th plateau is full if all the 2i × 2i = 22i

disk pages are full (containB index elements). Furthermore,
when the first quadrant in a fulli th plateau splits we say the
i th plateau breaks and that thei th split wave begins. The
i th split wave ends when the last quadrant of thei th-regular
quadtree that has not yet split undergoes a split yielding the
(i+1)th-regular quadtree and initiating the(i+1)th plateau.

Our analysis is based on the following assumptions
inspired by the real behavior of splits and trajectories in our
application.

1. Upon bucket split, we have an average of two copies
per object.

2. A trajectory falls in a single attribute interval
[a j . . . a j+1). As far as utilization is concerned, this
assumption does not change the analysis. A trajectory
typically spans the whole session inside the attribute
space but crosses more than one attribute interval
during the session. Here we are basically collecting
its fragments from the different intervals crossed and
‘gluing’ them on the original interval from which it
started at the beginning of the session.

3. We assume a scenario of a shortest split wave, that
is one which ends with the minimum number of
insertions. This wave is as follows. We start with a
full i th plateau containing 22i quadrants and 2i attribute
intervals. Based on Assumption 2, we need exactly
2i insertions to begin and end thei th split wave (each
insertion falls in a distinct attribute interval). Each such
insertion causes 2i splits along the time axis which
transforms a 1× 2i row into a 2× 2i+1 grid. This
scenario is also independent of utilization.

In passing from ani th full plateau to the(i + 1)th one,
we go through two distinct phases. First, we have a split
wave during which all of the 22i buckets split; call this the
SPLIT phase. We call the FILL phase the second phase in
which insertions increase bucket utilization without adding
new buckets to the index. We then need to compute some
intermediate values before solving forUi .

Let Pi denote the number of index elements at thei th full
plateau; thenPi = 22i B whereB is as usual the bucket size.
Let Psw

i denote the number of index elements immediately
after thei th split wave ends. The value ofPsw

i is directly
given in the following lemma.

LEMMA 1. The number of index elements immediately
after thei th split wave ends is given by the formula

Psw
i = 22i+1(B + 1). (6)

Proof. A new object splits a row of length 2i into two
making it of length 2×2i = 2i+1. Then each of the 2i objects
which are responsible for the shortest split wave scenario
will end up with 2i+1 copies for a total of 2i×2i+1 = 22i+1.
Furthermore, at the end of the split wave each of the oldPi

index elements will have generated two copies for a total of
2× Pi = 2× 22i B = 22i+1B. The sum of the old and new
index elements is thus 22i+1(B + 1).

We then also need to find a closed form for the difference
Ni+1−Ni which we denote by1Ni . This is the denominator
for the expression forUi (Equation (5)) and stands for object
insertions needed to pass from thei th full plateau to the
(i + 1)th full plateau. The expression for1Ni is also given
directly in the next lemma.

LEMMA 2. The number of insertions1Ni that take a
quadtree index from a fulli th plateau to a full(i + 1)th
plateau is given by the expression

1Ni = 2i + Pi+1 − Psw
i

2i+1
. (7)

Proof. In a shortest split wave scenario, 2i new insertions
are needed to split all 22i quadrants in a fulli th plateau. This
brings us into a 2i+1×2i+1 grid containingPsw

i index points.
To compute the remaining number of insertions necessary,
we use the fact that each new object will have 2i+1 since we
are in a 2i+1 × 2i+1 grid. When we reach a full(i + 1)th
plateau, we havePi+1 index elements (by definition ofPi

above). The remaining number of insertions can thus be
expressed as the difference in number of index elements at
the end of the split wave and the end of the FILL phase
divided by the number of copies which is 2i+1. This is given
by the expression

Pi+1 − Psw
i

2i+1
.

Adding the 2i objects which induced the split wave gives the
result.

Substituting Equation (6) into the above expression and
simplifying yields 1Ni = 2i B. Before giving the result
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for the mean utilizationUi , we need to define two more
intermediate variables. LetUi

SPLIT(m) denote the utilization
ratio whenm objects have been inserted in the SPLIT phase;
m satisfies the constraint 0< m ≤ 2i . By analogy, we
defineUi

FILL (m) as the utilization ratio whenm objects have
been inserted during the FILL phase; that ism satisfies
the constraint 2i < 2i + m ≤ 1Ni (which simplifies to
0 < m ≤ 2i (B − 1)). These are exactly the component
utilizations we talked about earlier that we want to sum and
divide byNi+1−Ni to obtainUi (see Equation (5)). A more
precise expression forUi is then as follows:

Ui =
∑

0<m≤2i U i
SPLIT(m)+∑

0<m≤2i (B−1) Ui
FILL (m)

1Ni
.

(8)

It now suffices to find formulas forUi
SPLIT(m) andUi

FILL (m)

and compute the corresponding summations. The result for
both quantities is given below.

LEMMA 3. The utilization ratio Ui
SPLIT(m) after m

objects are inserted in the SPLIT phase at thei th plateau
is given by the formula

Ui
SPLIT(m) = 1− 2((B − 1)/B)m

3m + 2i
. (9)

Proof. Utilization is defined as space used by the index
points divided by the space capacity of the data pages
consumed. We defineP(i, m) to be the number of index
points induced afterm splits (m ≥ 1) starting from a full
i th plateau. We also defineS(i, m) to be the number of
buckets induced afterm splits starting from a fulli th plateau.
Ui

SPLIT(m) would then be given by the following formula

Ui
SPLIT(m) = P(i, m)

S(i, m)× B
. (10)

It then suffices to find expressions forP(i, m) andS(i, m).
We start withS(i, m).

Each of them objects splits one row of length 2i into a
2× 2i+1 subgrid. There are 2i such rows to be split. Hence,
the non-split part of the grid is composed of 2i − m rows of
2i quadrants each giving a total of 2i (2i − m) = 22i − 2i m.
The split part of the grid containsm × 2× 2i+1 = 2i+2m
quadrants. The total number of pages is then given by the
expression

2i+2m + 22i − 2i m

which when simplified yields the following result:

S(i, m) = 3× 2i m + 22i . (11)

We then compute the formula forP(i, m). After m
insertions, there are 2i − m rows which have not split yet.
These contain a total of 2i × (2i − m) quadrants all of
which are full since they belong to thei th full plateau.
Consequently they contain 2i× (2i −m)B index points. The
otherm rows contained 2i m full quadrants at the onset of

the split waves for a total of 2i m B index points. Since upon
splitting each point generates two copies, the old elements
account for 2i+1m B index points in the split segment. The
new objects causing them splits generate 2i+1 copies each
since they split a row that is 2i quadrants long. Then they
account for 2i+1m index points. Therefore,P(i, m) is given
by the expression

2i (2i − m)B + 2i+1m B + 2i+1m

which when simplified yields the following result

P(i, m) = 22i B + 2i m(B + 2). (12)

Substituting Equations (11) and (12) into the expression
for Ui

SPLIT(m) in Equation (10) and simplifying yields the
result.

It can be observed from Equation (9) that utilization is 1 at
m = 0 before splitting starts. Atm = 2i when the split wave
ends, utilization is just above 50% and equals(B + 1)/B; in
our application it yields a utilization value of 50.147%. This
is the lower bound on utilization irrespective of quadtree
orderi . We next present the formula forUi

FILL (m).

LEMMA 4. The utilization ratioUi
FILL (m) afterm objects

are inserted in the FILL phase at the ith plateau is given by
the formula

Ui
FILL (m) = B + 1

2B
+ m

2i+1B
. (13)

Proof. We start at the end of the minimal split wave with
a 2i+1 × 2i+1 grid containingPsw

i = 22i+1(B + 1) index
elements. Every new element generates 2i+1 copies when
mapped over this grid, hence utilization is given by the
following expression

Ui
FILL (m) = Psw

i + 2i+1m

22(i+1) B
.

Simplifying this expression gives the result.

We can then present the formula for mean utilizationUi

at thei th plateau.

THEOREM 1. The i th mean utilization ratioUi is given
by the following formula in whichB denotes bucket size and
εi = log2(2

i + 3)− i :

Ui =
(

B − 1

B2

) [
3B + 1

4
+ 1

2i+2

−2

3

(
1− ln 2(2− εi )

3
− 1

2i

)]
+ 1

B
. (14)

The details of the proof of Theorem 1 are omitted here and
may be found in [12]. A few remarks are appropriate about
Equation (14). First, the effect ofi is almost negligible.
We can see this by looking at Equation (14) and observing
that i appears in the fractions 1/2i , 1/2i+2 and inεi , all of
which yield negligible values fori > 5 (e.g.ε6 = 0.066).
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Calculations of actualUi confirm this. We haveU4 =
0.750472,U6 = 0.750428 andU10 = 0.750417. This
agrees with our intuition; namely, that the particular choice
of plateau will not affect the computation of mean utilization
since we are averaging over a large enough number of
utilization values (this is1Ni = 2i B). We then removei
from Ui and simply useU . Second, we also remark that the
value ofUi is dominated by the first multiplication factor;
namely the product of(B − 1)/B2 and(3B + 1)/4. In fact,
we may safely use the following approximation.

U ≈ (B − 1)(3B + 1)

4B2
+ 1

B
. (15)

Our value of B = 340 yields a utilization of 0.751468,
which is only slightly higher than theUi values given above.
Third, we note that utilization is fairly independent of the
bucket sizeB. For a value ofB = 100, we have a utilization
of 0.754975 using the approximation in Equation (15). At
B = 50, U = 0.7599 and atB = 10, we getU = 0.7975.
Note that we are trying these values to gain better insight
into the effect ofB. In practice, we do not expect page
sizes below 1 kbyte which yields a value ofB = 85 in
our particular application. It then seems thatU increases
with decreasingB. In the asymptotic case ofB = 1 (a
data page holds only a single index record) we haveU = 1
which again agrees with our intuition (since all buckets will
always be fully utilized). Since most values ofU are around
0.75, we may look into Equation (15) to see if this is a
general tendency. In fact, writing(B − 1)(3B + 1)/4B2 as
the product (

B − 1

B

) (
3B + 1

4B

)

and using the approximations(B − 1)/B ≈ 1, (3B + 1)/

4B ≈ 3
4 and 1/B = 0, we obtain the elegant general value

for U that approximates it neatly over various values ofi and
B:

U ≈ 3
4. (16)

The sample values we calculated above for differentB
and i cases increase our confidence in the validity of this
approximation. It also agrees with our expectation since
3
4 is the middle value between the theoretical maximum
utilization of 1 and the minimum utilization which is slightly
above 1

2. The experimental evaluation of the percentage
utilization as a function of the number of objects is given
in Figure 11. It confirms the fact that minimum utilization
does not drop below 50%. Maximum utilization however
is always bounded by the 90% barrier. This is because,
in practice, the(i + 1)th split wave begins before thei th
plateau becomes full. In other terms, when the first quadrant
split in a 2i × 2i partitioned space takes place, there are
still quadrants which are not yet full (i.e. contain less than
B index elements).

7. INDEX RECONSTRUCTION

Among the distinctive features of our approach to dynamic
attribute indexing is the fact that we reconstruct the index
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FIGURE 11. Percentage utilization.

periodically. This periodic reconstruction of the index is
associated with non-negligible cost which would naturally
increase with system size. In this section, we present the
details of an index reconstruction algorithm that minimizes
CPU time; each object is processed and inserted exactly
once and in constant time. Furthermore, each leaf data page
involved in the result incurs only one disk page transfer; I/O
overhead is then also kept minimal.

The key idea of the algorithm is to find a way to predict the
final plateau of the quadtree index to be constructed given
the system sizeN . In other words, knowing that we will
end up with a partitioning of indexed space into a 2i × 2i

grid, we want to findi beforehand. We then precompute the
contents of the 2i × 2i buckets in memory and transfer them
to the disk. Let us calli in an i th-regular quadtree the order
of that quadtree. In Section 7.1 we explain the derivation
of quadtree order. Section 7.2 presents the reconstruction
algorithm and Section 7.3 suggests ways to cope with non-
uniform data distributions.

7.1. Finding quadtree order

Suppose we start with a single empty data bucket and
we have theN insertion operations to execute. Then the
conditionN > B tells us that we will have to split the bucket
anyway. We then obtain 2N index points and four buckets of
capacity 4B. Notice that if 2N ≤ 4B then the 2×2 quadtree
is enough to store theN objects. The condition 2N > 4B
similarly tells us that we will have to go through the second
split wave anyway, after which we have 4N index points
(two copies per object as assumed before) and 16 buckets
of capacity 16B. The next condition to evaluate is then
4N > 16B. Generalizing this we find that the top-down
insertion of N objects will reach thei th split wave if the
condition 2i N > 22i B is satisfied. By the same token, the
(i+1)th split wave will not be reached if 2i+1N ≤ 22(i+1)B.
Combining these two constraints, we obtain the following
characterization of whenN objects produce ani th-order
quadtree:

2i B < N ≤ 2i+1B.

The following formula fori is then readily computed:

i =
⌈

log2

(
N

B

)⌉
− 1. (17)
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Remember that we assumed that thei th split wave breaks
the i th plateau only when it is full. This is not the case in
practice where one or more of the 2i × 2i buckets of thei th-
regular quadtree might become full and split before all 22i

buckets become full. To remedy this we could simply add
1 to i hence constructing a larger grid than the theoretical
prediction to cater for premature splitting (which is always
the case in real applications). This would be a waste of
memory capacity ifN were only slightly greater than 2i B
where we expect it is too early for splits of the next wave to
begin. On the other hand it is reasonable to do so ifN were
too near to the value 2i+1B. In the former case we propose
to use a 2i × 2i grid and add overflow buckets for the few
quadrants which are found to have overflowed.

7.2. The algorithm

Before presenting the algorithm we introduce some
necessary notation. In what follows we talk about ani th-
regular quadtree. We have earlier defined1A to be the
length of the attribute dimension. Letδti = 1T/2i denote
the length of each quadrant along the time axis andδai =
1A/2i denote the length of each quadrant along the attribute
axis. Let our indexed space beS = [t0 . . . t0 + 1T ],
[a0 . . . a0+1A] and let

Qm,n = [t0+ mδti . . . t0 + (m + 1)δti ),

[a0+ nδai . . . a0+ (n + 1)δai) (0 ≤ m, n < 2i )

designate the subquadrant of our space which lies at the
intersection of themth time interval andnth attribute interval
as shown in Figure 12. Finally lets = 2i be the side length
of thei th-regular quadtree measured in number of intervals.

Since there will be 22i buckets in the final quadtree,
we will need to fill and write 22i disk pages during
reconstruction and this is then the minimum disk access
cost which we can hope for. It would then be better if we
could shift all other auxiliary overheads into the CPU which
is what we propose to do. The idea is to construct an in-
memorys × s array (call it Q) which corresponds to the
quadrantsQm,n of our indexed space defined above. We
then compute for each of theN trajectories the coordinates
(m andn: 0 ≤ m, n < 2i ) of quadrants it crosses and add
the object information to every such quadrant. The entry

for p← 1 to N do
m ← 1
ObjectFinished← FALSE
while m ≤ s and ObjectFinisheddo

〈n p,low, n p,high〉 ←
BoundaryIntervals(m, ap, bp)

if n p,low < n p,high then
for n← n p,low to n p,high do

Q[m, n] ← Q[m, n] ∪ {op}
else

ObjectFinished← TRUE
endif

endwhile
endfor

FIGURE 13. Path computation algorithm.

Q[m, n] of our array is thus a set defined as follows:

Q[m, n] = {op : trajectory ofop crossesQm,n}.
We call the latter operation object path computation. Let
us then provide a short description of the object path
computation algorithm (hereafter denoted by PCA) and see
its complexity.

The algorithm is given in Figure 13. The objects to be
inserted are considered one by one in the outer loop (ranging
over variablep). Given an objectop, we examine thes time
slices [t0+mδti . . . t0+(m+1)δti ) (0 ≤ m < s) one by one in
increasing order ofm. Using the equation of motionf p(t) =
apt + bp, the while loop computes at each time interval
the attribute slices in which objectop’s trajectory falls.
This is accomplished in the algorithm using the function
BoundaryIntervals( ) which takes as arguments the current
time slice and the trajectory parameters. It returns the first
attribute intervaln p,low and the last attribute intervaln p,high
crossed by the trajectory. In case the [n p,low . . . n p,high] is
empty, the while loop is exited and we move to the next
object otherwise index points are inserted in their relevant
buckets (i.e.Q[m, n]).

The PCA algorithm is analogous to Bresenham’s
algorithm as used in computer graphics and computational
geometry although the context here is quite different. Since
it constructs the whole index in main memory, the PCA
algorithm typically requires a large table in main memory
to store theQ array. This translates into a prohibitive cost
for deeper indices. To circumvent this problem, we could
modify the algorithm to construct the index incrementally in
two or more phases thus consuming less of the main memory
at any given phase. In general, we could design aP-phase
algorithm that consumes only 1/P of the total space needed
by the grid. In thei th phase, we compute index data for
the i th segment of the grid according to some suitable grid
partitioning policy. An interesting question would then be
whether we could devise the algorithm so that each of theP
phases requires sublinear time (i.e. less thanO(N)).
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The insertion of an objectop in Q[m, n] expressed in the
above algorithm as a set union could be implemented to be
O(1) if we use an array of sizeB for Q[m, n]. The CPU cost
of regenerating our quadtree is optimal in the sense that no
multiple insertions or recomputations are done for a single
object. In summary, no extra overhead is incurred to create
and place index points in their correct quadrants other than
the strict minimum. Once the quadrants arrayQ is filled,
we just transfer its contents from memory to the disk by
allocating one disk page for everyQ[m, n] (0 < m, n ≤ 2i )
and copying the index points inQ[m, n] to it. Since there
are 2i × 2i = 22i entries in arrayQ, this amounts to 22i

disk accesses in the worst case. In practice however we
may have the opportunity to produce a packed index5 which
ideally requires a single disk seek while the rest of I/O
time is spent transferring the buckets to contiguous pages on
the disk. Index packing also improves query performance
dramatically.

7.3. Handling skewed data

The above algorithm assumes uniform distribution of
trajectories’ intercept values over the attribute dimension.
As such it generates a regular quadtree in which all leaf
quadrants are of the same dimension (2−i × 2−i ). In the
case of skewed data (i.e. interceptsb) distributions, there
will be big quadrants in sparse areas of the attribute space
and smaller quadrants in the densely populated areas. The
above algorithm is then not applicable (as is) to skewed data
since quadtree order is not defined in this case. We propose
two solutions to handle skewed data both of which make use
of the PCA algorithm. Implementation details are omitted.

In the first solution, we start by running the PCA
algorithm using the maximum depthd of the quadtree of the
previous session as a value for quadtree orderi . Notice that
for sparsely populated segments of the attribute space we
will have many quadruples of sibling quadrants occupied by
less thanB unique trajectories (the rest are duplicates). We
call those quadruples mergeable quadrants since they ought
to be merged and replaced by their parent quadrant. The
idea is then to make a few passes over the 2d × 2d array
constructed by the PCA algorithm and in each pass merge or
consolidate any mergeable quadrants. We needd − 1 passes
in the worst case. The disadvantage of this method is that if
the difference between the maximum and minimum depths is
big, the 2d × 2d sized array construction will be an overkill
and a big waste of main memory and CPU requirements.
The other extreme is to start with a single page (which
corresponds to a 1× 1= 20× 20 sized array) and insert the
objects one by one incurring all ensuing splits which would
result in a prohibitive cost. The idea is then to compute some
average depth which we denote byD and use it in place of
the maximum depthd. Given a quadtree partitioning of the
attribute space, the average depthD may be computed by
weighting each possible depth with the fraction of indexed

5‘ . . . we define an index to be packed if each of its buckets uses a
minimal amount of space to store entries (without room for growth), and
all its buckets are allocated contiguously on disk’ [13].

space that is indexed at that depth and summing across all the
depths. Assume (without loss of generality) that our indexed
space is the unit square (i.e. a 1× 1 quadrant). Letni denote
the number of leaf quadrants that are at depthi . Then D
would be given by the following formula:

D =
d∑

i=1

ni × 2−i × 2−i × i. (18)

We run the PCA algorithm over a 2bDc × 2bDc6 array.
Where the areas are dense, we will have more than
B unique objects in a single array entry. Quadrants
corresponding to such array entries are thus overloaded
and need further splitting. We then need a second phase
for splitting overloaded quadrants beside the phase for
merging mergeable quadrants. In practice, we will have to
temporarily allocate one or more extra pages for overloaded
subquadrants until the splitting phase begins so that no
loss of information occurs by usingbDc as a temporary
approximation of grid shape. The 2bDc × 2bDc partitioning
of the indexed space may be seen as the nearest regular
approximation of the irregular partition resulting from
skewed data. Alternatively, the average depthD may be
viewed as answering the following question: at which depth
d does a partitioning of the indexed space into a 2d×2d grid
yield an average bucket occupancy that is nearest toB? As
such, we expect thatD will minimize the overhead of the
splitting and merging phases.

As an example, suppose our approximation using average
depth yieldedbDc = 2 so that we start with a 4× 4 grid
as shown in Figure 14a. Note that this is the situation after
running the PCA algorithm. The figure shows that the north-
east subquadrant of the parent quadrant is unnecessarily
partitioned into four sparse quadrants. These are identified
as mergeable quadrants. Figure 14b shows the situation after
merging them. Moreover an overloaded quadrant is detected
and split in the split phase into four subquadrants. The final
correct partition of the indexed space is shown in Figure 14c.
The merge phase thus coarsens the space partitioning while
the split phase refines it.

The second solution relies on the idea of using the shape
of the quadtree generated in the previous session to predict
or approximate its shape in the new session. By shape we
mean the particular way the indexed space ended up being
partitioned in the previous session. We take this information
from the leaf nodes of the quadtree directory. It is reasonable
to expect that if a segment of the attribute space was sparsely
populated at the end of the last session, then it will continue
to be so for some (or all of the) time in the next session.
In fact, we may even have segments that are consistently
dense across the lifetime of the application.7 We then simply
run the PCA algorithm above over the specific partition
induced by the previous session which results in big savings

6We could also take the nearest integer toD.
7In the context of vehicle navigation systems, dense segments may

correspond to the center of a city where motion is slower and the number
of vehicles is higher while long highways between cities correspond to the
sparse segments of the indexed space.
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(a) (b) (c)

Mergeable

Overloaded

FIGURE 14. (a) Initial approximation of the space partitioning using average depth of 2 (2≤ D < 3). (b) Mergeable quadrants identified
in the north-east and consolidated. (c) Overloaded quadrant identified and split yielding the correct configuration.

in memory cost compared to the first solution. Note that,
during the span of a session, we expect the space partitioning
inducing the quadtree to change through splits and merges
governed by insertions and deletions. For this reason, we do
not get into a dead cycle in which we repeat always the same
quadtree.

The idea of this second solution is similar in spirit to the
seeded trees of Lo and Ravishankar [14] in which they copy
the firstk levels of an existing (seeding)R-tree and use them
as a seed for a newR-tree to be constructed from a different
data set than that which induced the seeding tree. Their work
addresses the problem of designing efficient algorithms for
processing the spatial join query [15] in the special case
where a spatial index is not available for at least one of the
participating relations. The difference is that they take their
‘seeds’ from the top of the tree while (in a sense) we take
them from the bottom.

8. QUERY PROCESSING

Our quadtree based index exhibits good performance for the
two popular types of queries described earlier: instantaneous
and continuous queries. In-memory overhead consists of
recursively descending the quadtree directory to reach the
leaves pointing to data pages relevant to the queried range.
For a quadtree of orderi , there will be 4i leaf nodes and the
above operation will thus beO(i). The rest of this section
discusses the more dominant I/O cost for both query types.
We assume we are at ani th-regular quadtree.

An instantaneous query submitted at timetnow with an
attribute range [Rlow . . . Rhigh] targets the time range [tnow−
δt . . . tnow+ δt ] (or [tnow . . . tnow+ δt ]) whereδt is a small
time lapse to be chosen according to the application domain.
Then we may constrainδt to be small compared to a single
time interval of the quadtree (i.e.δt � 1T/2i ). In fact,
we want it to be small enough to fit in a single time slice
δti . Alternatively we may adopt the policy of evaluating an
instantaneous query submitted attnow using the time interval
in which tnow falls since our purpose in using parameter
δt was to have a finite approximation to the infinitesimal
tnow. For continuous queries, the theoretical time range over
which they are evaluated is [tnow . . .∞). In practice, if a

continuous query comes in a period [p1T . . . (p + 1)1T ),
it is first evaluated over the time interval [tnow . . . (p+1)1T )

then over all subsequent periods of the application until it is
explicitly deleted from the queries list.

The number of data pages required to answer a range
query is (intuitively) equal to the number of quadrants
covered by the range. Let us characterize this more
accurately. LetAQ = Rhigh − Rlow denote the length of
the attribute range of a queryQ andTQ = Thigh− Tlow the
length of the time range of queryQ. Excluding the effect of
buffering, the disk access costCdisk

Q of such a query is

Cdisk
Q =

(
1+

⌈
AQ

δai

⌉) (
1+

⌈
TQ

δti

⌉)
. (19)

We have simply multiplied the number of intervals covered
by each of the two ranges. For the special case when one
range starts exactly at the beginning of an interval, the 1 in
the multiplicand in Equation (19) is omitted. As ranges are
supplied independently of the current status of the quadtree
and its partition, we expect the general case embodied in
Equation (19) to hold most of the time. We can then
determine the cost of instantaneous and continuous queries
using this formula.

Letting Cdisk
inst and Cdisk

cont denote the disk cost of
instantaneous and continuous queries (respectively) over an
i th-regular quadtree we obtain the following formulas:

Cdisk
inst = 1+

⌈
AQ

δai

⌉
(20)

Cdisk
cont= 2i

(
1+

⌈
AQ

δai

⌉)
. (21)

The cost of an instantaneous query is just the number
of attribute intervals its attribute range spans while for
continuous queries it is that number multiplied by 2i , the
number of time intervals in1T .

Figures 15 and 16 show the average cost of instantaneous
queries as a function ofN across a few typical attribute range
percentages (10%, 1%, 0.1% and 0.01%). On the average we
need less than three disk accesses per instantaneous query
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FIGURE 15. Instantaneous query cost at a high range size of 10%.
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FIGURE 16. Instantaneous query cost at low range sizes.

for system sizes up to 30,000. Given that a typical I/O
operation costs 10 ms [16, 17], this allows us to process
a reasonably large number of instantaneous queries per
second. The reason why range sizes of 0.1% and 0.01%
have identical costs (up toN = 20,000) is that such ranges
are thin enough to fit in a single attribute interval lengthδai

so that in both cases one or two data pages will need to be
retrieved. This averages to less than two disk accesses as
shown in Figure 16. For the larger range sizes such as 10%
of the attribute space, access cost rises to five disk accesses
for values of N below 20,000 and to ten disk accesses
on the next plateau. This still translates into a reasonable
I/O cost. Note that we do not consider the improvement
technique mentioned earlier where we delay a bucket split
by allocating a twin bucket. As this technique delays the rise
to the next plateau, we expect to enjoy a small number of
disk accesses per instantaneous query especially for small to
average range sizes (below 5%).

The average I/O cost of continuous queries is given
in Figure 17 for a query range size that is 10% of the
attribute space and in Figure 18 for the smaller range
sizes. Remember that for continuous queries, for each
attribute interval (of lengthδai at thei th plateau) covered
by the range, we have to examine all the corresponding 2i

quadrants which span the length of a single session (1T ).
Figure 18 confirms this by the fact that for the low range
sizes of 0.1% and 0.01% (which span no more than a single
attribute interval), the plateaus occur at exact values of 2i

(e.g. 32 for N < 5000, 64 for 6000≤ N ≤ 9000 and
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FIGURE 17. Continuous query cost at a high range size of 10%.
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FIGURE 18. Continuous query cost at low range sizes.

128 for 6000 ≤ N ≤ 9000). In general, the average
cost per continuous query ranges between 100 and 200
disk accesses. For large range sizes, Figure 17 shows
that the cost may quickly become prohibitive. However,
we expect that in practice it is not sensible to request
continuous information about large segments of the attribute
space. For system sizes below 10,000 (which we consider
enough for many application domains), we have an I/O cost
in the order of a few tens for small range sizes, that is
still subject to improvement using the technique of delayed
bucket splits described above. Furthermore, if the index
is packed then we would incur a single seek time per
query. If we cannot achieve total packing of the index,
we may still achieve a lower level of packing in which
all quadrants of a single attribute interval (2i for uniform
data) are allocated to contiguous pages on the disk. This
again reduces the cost of a single continuous query to a
few disk seeks. Although continuous queries remain more
costly compared to instantaneous queries, they still lend
themselves to optimizations in a way which instantaneous
queries do not.

Since in any arbitrary session we (typically) have a fixed
minimum number of continuous queries to answer, after
a few sessions we can identify hot spots of the attribute
space which not only continue to be referenced from one
session to the next but are also referenced by many queries
inside a single session. We then could achieve enormous
gains in I/O overhead by storing in memory ready answers
for the most heavily referenced intervals. Identification of
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the hottest attribute intervals could be done using a simple
statistical analysis of past query ranges. We would then
process those intervals at the beginning of each session by
filtering duplicates (from the 2i quadrants corresponding to
a single interval), packing the unique objects that cross every
hot interval in the coming session and storing them into
a table in memory. For every continuous query, we first
compare its range with the packaged intervals to see if there
are intersections. Only the fragments of its range which are
not ‘hot’ will then require to be brought into memory and
incur I/O cost. Given the relatively high cost of continuous
queries, we expect tangible improvements even for a modest
number of hot intervals.

9. RELATED WORK

To the best of our knowledge, no prior work has
addressed the specific problem of dynamic attribute
indexing. Dynamic attributes themselves were defined in
[1]. This is not surprising given that the database community
has only recently begun to explore the impact of mobility on
data management issues (see for example [3], [18] and [2]).

However, our problem is closest to the problem of
indexing collections of line segments since we start with
lines in two-dimensional space. The way the line indexing
problem is approached in the literature is influenced by the
types of queries expected. Hoel and Samet [19] identify
three classes of queries: (a) those which deal only with the
line segments, (b) those which involve the line segments
and the space from which they are drawn and (c) those
which involve attributes of the line segments. Jagadish [20]
proposes a solution for a family of queries belonging to the
first class above. His solution relies on transforming lines
into points in a transform space in which slope is plotted in
one axis and the intercept is plotted on the other (the so-
called Hough Transform). In [19], the PMR quadtree is
used as an access method for line segment databases and
an algorithm for finding the nearest line segment to a given
point is presented (a query belonging to the second class
above). In [21], the use of theR∗-tree and theR+-tree for
indexing line segments is also studied in conjunction with
the PMR quadtree.

In our particular line indexing problem we did not need
to care about vertices8 and line information is summed up
in the (slope, intercept) pair associated with every object.
Furthermore, more care is given to index reconstruction in
our work since it is a periodic overhead.

The problem of dynamic attribute indexing is that of
handling data that is (rapidly) evolving over time. As
such the work of Shivakumar and Garcia-Molina [13] on
indexing evolving databases is of particular importance.
The authors present a set of interesting techniques for
maintaining indexing information about a (moving) window
of days. The resulting indices are called wave indices and
the techniques apply to almost all classes of index structures.

8In fact, most of the line segments start and end at the same abscissa;
namelyti andti +1T , the beginning and end of each session.

The question addressed is how to efficiently add data of the
new day and remove data of the oldest day(s) from the wave
index. It is an interesting question whether or not we could
adapt their algorithms for our context to replace the periodic
index reconstruction approach.

Another work worth mentioning here is that of Shekhar
and Yang [22] in which they address the issue of mobility
in a geographic system. Their index is called MoBiLe file
and maps the two-dimensional space of motion to the disk
tracks and sectors while attempting to preserve proximity
relationships. This map requires a mapping function and
knowledge about the population distribution. An object’s
geographical location is then used as the primary key to
locate the disk block where it resides. However, since they
do not make use of an equation of motion, the nature of their
work is different from ours.

10. CONCLUSION

In this paper we have proposed a solution to the problem
of indexing dynamic attributes that is based on the quadtree
structure. A key idea used in our index is the prediction
of the future values of a dynamic attribute from an
approximative linear function which describes the way it
changes over time. Starting from the plotted graphs of these
functions in the two-dimensional time attribute space, we
transform the problem into the spatial indexing domain and
adapt the bucket PR quadtree to solve it. The aim was to
support two types of range queries called instantaneous and
continuous queries.

We provide detailed experimental and analytic studies of
the main performance parameters of the indexing method.
Since the approach requires periodic reconstruction of
the index, we contribute an efficient algorithm for index
reconstruction that is optimal in CPU and I/O costs. The
index is also shown to exhibit very good performance for
instantaneous queries that averages two disk accesses per
query. It also exhibits good performance for continuous
queries where we suggested a minor optimization technique
that yields tangible improvement of average cost per query.

We are currently working on another solution still based
on the same general approach. Our focus and interest will be
on reducing the average number of copies per object in the
index (i.e. duplication ratio). We will also study the effect of
ignoring the time dimension in the indexing directory.

Another trail of future work would be the design of an
indexing method that does not require periodic destruction
and reconstruction of the index. In other words, we would
want an index that adapts in a more graceful way to the
passage of time. One way to do this would be to adapt
the techniques presented in [13] for wave indices to our
application. Since we need an efficient way to generate
indexing data corresponding to a given time interval, the
task is not trivial. We will also look into the possibility of
transforming the problem of dynamic attribute indexing into
the temporal indexing domain.
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