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civic-health organizations, care professionals 
must help build a healthier future for all by 
empowering patients to have a voice in the 
policies affecting their wellbeing. The path 
to equity and improved health can be paved 
through physicians promoting their patients’ 
right to vote. ❐
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A quality assessment tool for artificial 
intelligence-centered diagnostic test accuracy 
studies: QUADAS-AI
To the Editor — Over the next decade, 
systems that are centered on artificial 
intelligence (AI), particularly machine 
learning, are predicted to become key 
components of several workflows within 
the health sector. Medical diagnosis is 
seen as one of the first areas that may be 
revolutionized by AI innovations. Indeed, 
more than 90% of health-related AI systems 
that have reached regulatory approval by the 
US Food and Drug Administration belong 
to the field of diagnostics1.

In the current paradigm, most diagnostic 
investigations require interpretation from a 
clinician to identify the presence of a target 
condition — a crucial step in determining 
subsequent treatment strategies. Despite 
being an essential step in the provision of 
patient care, many health systems find it 
increasingly difficult to meet the demand 
for the interpretation of diagnostic tests. To 
address this issue, diagnostic AI systems 
have been characterized as medical devices 
that may alleviate the burden placed on 
diagnosticians: by serving as case triage 
tools, enhancing diagnostic accuracy 
and stepping in as a second reader when 
necessary. As AI-centered diagnostic test 
accuracy (AI DTA) studies emerge, there 
has been a concurrent rise in systematic 

reviews that amalgamate the findings of 
comparable studies.

Notably, of these published AI DTA 
systematic reviews, 94% have been 
conducted in the absence of an AI-specific 
quality assessment tool2. The most 
commonly used instrument is the quality 
assessment of diagnostic accuracy studies 
(QUADAS-2) tool3. QUADAS-2 is a tool 
that assesses bias and applicability and 
its use is encouraged by current PRISMA 
2020 guidance4. However, QUADAS-2 does 
not accommodate for niche terminology 
encountered in AI DTA studies, nor does 
it signal researchers to the sources of bias 
found within this class of study. Examples 
of such biases, when framed against the 
established domains of QUADAS-2 (patient 
selection; index test; reference standard; and 
flow and timing) are listed in Table 1.

To tackle these sources of bias, as well as 
AI-specific examples such as algorithmic 
bias, we propose an AI-specific extension to 
QUADAS-2 and QUADAS-C5, a risk of bias 
tool that has been developed for comparative 
accuracy studies. This new tool, termed 
QUADAS-AI, will provide researchers and 
policy-makers with a specific framework 
to evaluate the risk of bias and applicability 
when conducting reviews that evaluate AI 

DTA and reviews of comparative accuracy 
studies that evaluate at least one AI-centered 
index test.

QUADAS-AI will be complementary to 
ongoing reporting guideline tool initiatives, 
such as STARD-AI6 and TRIPOD-AI7. 
QUADAS-AI is being coordinated by a 
global project team and steering committee 
that consists of clinician scientists, 
computer scientists, epidemiologists, 
statisticians, journal editors, representatives 
of the EQUATOR Network11, regulatory 
leaders, industry leaders, funders, health 
policy-makers and bioethicists. Given the 
reach of AI technologies, we view that 
connecting global stakeholders is of the 
utmost importance for this initiative. In 
turn, we would welcome contact from any 
new potential collaborators. ❐
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Table 1 | examples of bias within ai dta studies

domain description Biases

Patient 
selection

A description of included 
patients detailing previous 
testing, presentation, setting 
and the intended use of the 
index test.

In AI DtA studies, eligible patients are often excluded because of competing input data entry requirements 
(for example, image quality), which, themselves, are variably reported. As highlighted by the CONSOrt-AI 
guidelines8, there is a need to accurately characterize the source, size and quality of input data alongside clear 
patient eligibility criteria.
Data source issues can negatively affect the performance and overall applicability of an index test. For 
example, to minimize research costs, there has been an increasing use of datasets from open-source 
repositories. Although this is a pragmatic option, many open-source datasets contain inadvertent duplication 
of data across repositories, erroneous labeling and incomplete patient demographic data.
Manuscripts that report the development and validation of an index test rarely present the rationale and 
breakdown of its training, validation and test sets. Small datasets, particularly those that lack complexity 
and balance, can result in overfitting, in which the final index test resembles the training data too closely and 
is unable to reliably fit additional data. the clinical manifestation of this issue is the inability to accurately 
diagnose instances of a pathology if its clinical presentation does not closely resemble the training cases that 
the index test had previously encountered.
there are various points within the data curation pipeline where quality may be compromised. For example, 
image pre-processing, a practice in which image formats and resolutions are homogenized for the purpose 
of training, is an essential step in AI workflows. However, either down- or up-scaling resolution may affect 
the ability of certain index tests to identify diagnostic features effectively. Moreover, the lack of image 
metadata can also preclude the ability to explore the dependence of an index test on specific data acquisition 
parameters—such as the model of scanner used to acquire imaging data.

Index test the diagnostic test being 
evaluated and how it has been 
conducted and interpreted 
within the context of the study.

Only a limited number of published studies have undertaken adequate external evaluation when presenting 
the development and evaluation of their diagnostic tests. reliance on data from the same dataset that is used 
to train the diagnostic test (internal holdout set) can overestimate diagnostic performance.

reference 
standard

the choice of reference 
standard and how it has been 
conducted and interpreted 
within the context of the study.

there are several instances, as highlighted by Harris et al.9, in which studies have reported the development 
of index tests against inappropriate reference standards, as opposed to more appropriate tests that provide 
higher sensitivity and specificity. For example, a clinician using a chest X-ray to diagnose pulmonary 
tuberculosis rather than the more accurate use of sputum culture. Studies with inappropriate reference 
standards are poorly reflective of real-world clinical practice in which reference standards consist of the 
amalgamation of clinical, radiological and laboratory data.

Flow and 
timing

the time interval and the use of 
any interventions between the 
application of the index test and 
the reference standard.

the timing between index test and reference standard is often poorly reported. As highlighted in a recent 
systematic review10, studies that reported the performance of index tests to diagnose SArS-CoV-2 from chest 
X-rays did not routinely note the timing of the confirmatory PCr with reverse transcription test in relation to 
the imaging data. It is well understood that PCr with reverse transcription is a time-sensitive assay and failing 
to report this relationship considerably hinders the overall clinical validity of the study results.
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