
5

A Quality-Aware Optimizer for Information
Extraction

ALPA JAIN

Columbia University

and

PANAGIOTIS G. IPEIROTIS

New York University

A large amount of structured information is buried in unstructured text. Information extraction
systems can extract structured relations from the documents and enable sophisticated, SQL-like
queries over unstructured text. Information extraction systems are not perfect and their output
has imperfect precision and recall (i.e., contains spurious tuples and misses good tuples). Typi-
cally, an extraction system has a set of parameters that can be used as “knobs” to tune the system
to be either precision- or recall-oriented. Furthermore, the choice of documents processed by the
extraction system also affects the quality of the extracted relation. So far, estimating the output
quality of an information extraction task has been an ad hoc procedure, based mainly on heuristics.
In this article, we show how to use Receiver Operating Characteristic (ROC) curves to estimate
the extraction quality in a statistically robust way and show how to use ROC analysis to select
the extraction parameters in a principled manner. Furthermore, we present analytic models that
reveal how different document retrieval strategies affect the quality of the extracted relation. Fi-
nally, we present our maximum likelihood approach for estimating, on the fly, the parameters
required by our analytic models to predict the runtime and the output quality of each execution
plan. Our experimental evaluation demonstrates that our optimization approach predicts accu-
rately the output quality and selects the fastest execution plan that satisfies the output quality
restrictions.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Textual

databases; distributed databases

General Terms: Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Information Extraction, ROC curves

This work was supported by the National Science Foundation under Grant No. IIS-0643846. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of National Science Foundation.
Authors’ addresses: A. Jain, Department of Computer Science, Columbia University, New
York; email: alpa@cs.columbia.edu; P. G. Ipeirotis, New York University, New York; email:
panos@nyu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0362-5915/2009/04-ART5 $5.00
DOI 10.1145/1508857.1508862 http://doi.acm.org/10.1145/1508857.1508862

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:2 • A. Jain and P. G. Ipeirotis

ACM Reference Format:

Jain, A. and Ipeirotis, P. G. 2009. A quality-aware optimizer for information extraction. ACM
Trans. Database Syst. 34, 1, Article 5 (April 2009), 48 pages. DOI = 10.1145/1508857.1508862
http://doi.acm.org/10.1145/1508857.1508862

1. INTRODUCTION

Unstructured text in large collections of text documents such as newspaper arti-
cles, Web pages, or email often embeds structured information that can be used
for answering structured, relational queries. To extract the structured informa-
tion from text documents, we can use an information extraction system, such
as Snowball [Agichtein and Gravano 2000], Proteus [Grishman et al. 2002], Mi-
norThird [Cohen 2004], or KnowItAll [Etzioni et al. 2004], which takes as input
a text document and produces tuples of the target relation. Often, the extrac-
tion process relies on extraction patterns that can be used to extract instances
of tuples.

Example 1. An example of an information extraction task is the construc-
tion of a table of company headquarters Headquarters(Company, Location) from
a newspaper archive. An information extraction system processes documents in
the archive (such as the archive of The New York Times; see Figure 1) and may
extract the tuple 〈Army Research Laboratory, Adelphi〉 from the news articles
in the archive. The tuple 〈Army Research Laboratory, Adelphi〉 was extracted
based on the pattern “〈ORGANIZATION in LOCATION〉”, after identifying the organi-
zations and locations in the given text using a named-entity tagger.

Extracting structured information from unstructured text is inherently a
noisy process, and the returned results do not have perfect precision and re-
call (i.e., they are neither perfect nor complete). The erroneous tuples may be
extracted because of various problems, such as erroneous named-entity recogni-
tion or imprecise extraction patterns. Additionally, the extraction system may
not extract all the valid tuples from the document, for example, because the
words in the document do not match any of the extraction patterns. To examine
the quality of an extracted relation, we can measure the number of good and
bad tuples in the output to study the two types of errors committed during
the extraction: the false negatives, namely the number of tuples missing from
the extracted relation, and the false positives, namely the number of incorrect
tuples that appear in the output.

Example 1 (continued). For the HeadQuarters relation, in Figure 1, the
extraction pattern “〈ORGANIZATION in LOCATION〉” also generates the bad tuple
〈Exxon, New York〉. Figure 1 also shows a missing good tuple 〈Carnegie Group,
Inc., Pittsburgh〉 in the document, which was not identified because the extrac-
tion system does not include a suitable pattern.

To control the quality of the extracted relations, extraction systems often
expose multiple tunable “knobs” that affect the proportion of good and bad
tuples observed in the output. As an example of a simplistic knob, consider a
decision threshold τ that defines the number of rules employed by the extraction

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:3

Fig. 1. An example of an information extraction system extracting the relation HeadQuar-

ters(Company, Location) from The New York Times archive, and extracting a correct tuple, an
incorrect tuple, and missing a tuple that appears in the text.

system for the task of extracting the Headquarters relation. A small number
of (precise) rules will generate a mostly correct tuples but may also miss many
tuples that appear in the documents but do not match any of the (small number
of) active rules. By adding more rules, the system can capture more tuples (i.e.,
decrease the false negatives) but at the same time this also results in an increase
in the incorrect tuples in the output (i.e., increase in the false positives). Other
examples of knobs may be decision thresholds on the minimum confidence or
minimum pattern support required before generating a tuple from the text. In
a more extreme setting, we may even have multiple extraction systems for the
same relation, each demonstrating different precision-recall trade-offs.

A natural question that arises in a tunable extraction scenario is: How we can
choose which extraction system to use and the appropriate parameter settings
for an extraction task, in a principled manner? Unfortunately, this important
task is currently performed empirically, or by following simple heuristics. In this
article, we approach the problem by analyzing a set of information extraction
systems using Receiver Operating Characteristic (ROC) curves. As we will see,
this allows us to characterize IE systems in a statistically robust manner, and
allows the natural modeling of parameters that have a nonmonotonic impact on
the false positives and false negatives in the output. We show how ROC analysis
allows us to keep only the set of Pareto-optimal configurations that cannot be
fully dominated by other configurations. Furthermore, we demonstrate how we
take into consideration other parameters, such as execution time and monetary
cost, by generalizing the basic ROC paradigm.

Beyond the choice of the extraction system and its settings, the quality char-
acteristics of the extracted relation are also affected by the choice of documents
processed by the extraction system. Processing documents that are not relevant
to an extraction task may introduce many incorrect tuples, without adding any
correct ones in the output. For instance, processing documents from the Food
section of a newspaper for the Headquarters relation not only delays the over-
all extraction task, but also adds false tuples in the relation, such as 〈Crostini,

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:4 • A. Jain and P. G. Ipeirotis

Polenta〉, which are erroneously extracted from sentences like “. . . enjoy this

Polenta-based Crostini!”.
Until now, the choice of a document retrieval strategy was based only on

efficiency, and the impact of this choice on the quality of the output was ignored.
However, as argued before, considering the impact of the document retrieval
strategy is also of critical importance. As an important contribution of this
article, we present a rigorous statistical analysis of multiple document retrieval
strategies that shows how the output quality (and, of course, execution time) is
affected by the choice of document retrieval strategy. Our modeling approach
results in a set of quality curves that predict the quality characteristics of the
output over time, for different retrieval strategies and different settings of the
extraction system.

The analytical models that we develop in this article show predicting the
execution time and output quality of an execution strategy requires knowledge
of some database-specific parameters which are typically not known a priori.
Using these analytical models, we show how we can estimate these database-
specific parameters using a randomized maximum likelihood approach. Based
on our analytical models and the parameter estimation methods, we then
present an end-to-end quality-aware optimization approach that estimates the
parameter values during execution and selects efficient execution strategies
to meet user-specific quality constraints. Our quality-aware optimization ap-
proach quickly identifies whether the current execution plan is the best possi-
ble, or whether there are faster execution plans that can output a relation that
satisfies the given quality constraints.

In summary, the contributions of this work are organized as follows.

—In Section 2, we provide the necessary notation and background.

—In Section 3, we formally define the problem of estimating the quality of an
extraction output, we show how to use ROC analysis for modeling an extrac-
tion system, and show how to select the Pareto-optimal set of configurations.

—In Section 4, we present our statistical modeling of multiple document re-
trieval strategies and examine their effect on output quality and execution
time.

—In Section 5, we describe our maximum likelihood approach that estimates
on-the-fly the necessary parameters from the database, and in Section 6, we
described a quality-aware optimizer that picks the fastest execution plan that
satisfies given quality and time constraints.

—In Sections 7 and 8, we describe the settings and the results of our experi-
mental evaluation, that includes multiple extraction systems and multiple
real datasets.

Finally, Section 9 discusses related work and Section 10 concludes.

2. NOTATION AND BACKGROUND

We now introduce the necessary notation (Section 2.1) and briefly review vari-
ous document retrieval strategies for information extraction (Section 2.2).

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:5

Fig. 2. Partitioning database documents to analyze an extraction task.

2.1 Basic Notation

In general, an information extraction system E processes documents from a text
database D. The documents are retrieved from D using a document retrieval
strategy which is either query- or scan-based (see Section 2.2). The extraction
system E, after processing a document d from D, extracts a set of tuples that
are either good or bad.1 Hence, the database documents (with respect to a set
of information extraction systems) contain two disjoint sets of tuples: the set
Tgood of good tuples and the set Tbad of bad tuples among the collective pool of
tuples generated by the extraction systems.

The existence (or not) of good and bad tuples in a document also separates
the documents in D into three disjoint sets: the good documents Dg , the bad
documents Db , and the empty documents De . Documents in Dg contain at least
one good tuple (and potentially bad tuples); documents in Db do not contain any
good tuples but contain at least one bad tuple; documents in De do not contain
any tuples. Figure 2 illustrates this partitioning of database documents and
tuples for an extraction task. Ideally, we want to process only good documents; if
we also process empty documents, the execution time increases but the quality
remains unaffected; if we process bad documents, we not only increase the
execution time but we worsen the quality of the output as well.

Finally, since a tuple t may be extracted from more than one document, we
denote with gd(t) and bd (t) the number of distinct documents in Dg and Db ,
respectively, that contain t. We summarize our notation in Table I.

2.2 Retrieval Strategies

In the previous section, we introduced the notion of good and bad tuples and
the notion of good, bad, and empty documents. As mentioned, a good retrieval
strategy does not retrieve from the database any bad or empty documents, and
focuses on retrieving good documents that contain a large number of good tu-
ples. Multiple retrieval strategies have been used in the past [Agichtein and
Gravano 2003] for this task; in what follows, we briefly review a set of repre-
sentative strategies that we analyze further in Section 4.

1The goodness of tuples is defined exogenously; for example, 〈Microsoft,Redmond〉 is a good tuple,
while 〈Microsoft,New York〉 is a bad one.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:6 • A. Jain and P. G. Ipeirotis

Table I. Notation Used in This Article

Symbol Description

E extraction system
S retrieval strategy

D database of text documents
Dg good documents in D, i.e., documents that “contain” at least one good tuple
Db bad documents in D, i.e., documents with bad tuples and without good tuples
De empty documents in D, i.e., documents with no good or bad tuples
Dr documents retrieved from D

Tgood good tuples in the text database

Tbad bad tuples in the text database
Tretr tuples extracted from Dproc using E

gd(t) number of distinct documents in Dg that contain t

bd (t) number of distinct documents in Db that contain t

θ configuring parameter(s) of the extraction system E

tp(θ) true positive rate of E for configuring parameter θ

fp(θ) false positive rate of E for configuring parameter θ

—Scan is a scan-based strategy that retrieves and processes sequentially each
document in the database D. While this strategy is guaranteed to process
all good documents, it is inefficient, especially when the number of bad and
empty documents is large. Furthermore, by processing a large number of bad
documents, the Scan strategy may introduce many bad tuples in the output.

—Filtered Scan is a refinement of the basic Scan strategy. Instead of process-
ing naively all the retrieved documents, Filtered Scan strategy [Brin 1998;
Grishman et al. 2002] uses a document classifier to decide whether a doc-
ument is good or not. By avoiding processing bad documents, the Filtered
Scan method is generally more efficient than Scan, and tends to have fewer
bad tuples in the output. However, since the classifier may also erroneously
reject good documents, Filtered Scan also demonstrates a higher number of
false negatives.

—Automatic Query Generation is a query-based strategy that attempts to re-
trieve good documents from the database via querying. The Automatic Query

Generation strategy sends queries to the database that are expected to re-
trieve good documents. These queries are learnt automatically, during a
training stage, using a machine learning algorithm [Agichtein and Gravano
2003]. Automatic Query Generation tends to retrieve and process only a small
subset of the database documents, and hence has a relatively large number
of false negatives.

Earlier, in Ipeirotis et al. [2007, 2006], we analyzed these strategies and showed
how to compute the fraction of all tuples that each strategy retrieves over time.
The analysis in Ipeirotis et al. [2007, 2006] implicitly assumed that the output
of the extraction system is perfect, that is, that the extraction system E extracts
all the tuples from a processed document, and that all the extracted tuples are
good. Unfortunately, this is rarely the case. In the rest of the article, we show
how to extend the work in Ipeirotis et al. [2007, 2006] to incorporate quality
estimation techniques in an overall optimization framework.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:7

2.3 Query Execution Strategy and Execution Time

We define the combination of a document retrieval strategy S and an infor-
mation extraction system E, configured using a set of parameter settings θ,
as an execution strategy. To compare the cost of alternative execution strate-
gies, we define the execution time of an execution strategy, which is the total
time required to generate the desired output quality. Specifically, we define the
execution time for an execution strategy S over database D as

Time(S, D) =

⎛

⎝

∑

d∈Dr

(

tR(d) + tF (d)
)

+
∑

d∈Dproc

tE (d) +
∑

q∈Qsent

tQ (q)

⎞

⎠ , (1)

where

—Dr is the set of documents retrieved from D,

—tR(d) is the time to retrieve document d from D,

—tF (d) is the time to filter document d retrieved from D,

—Dproc is the set of documents processed using extraction system E with con-
figuration θ ,

—tE (d) is the time to process document d using extraction system E with
configuration θ ,

—Q sent is the set of queries sent to D,

—tQ (q) is the time to process query q on D.

We can simplify the preceding equation2 by assuming that the time to retrieve,
filter, or process a document is constant across documents (i.e., tR(d) = tR ,
tF (d) = tF , tE (d) = tE) and that the time to process a query is constant across
queries (i.e., tQ (q) = tQ). So,

Time(S, D) = (|Dr | · (tR + tF) + |Dproc| · tE + |Q sent| · tQ). (2)

2.4 The Need for an Optimizer

At the heart of an extraction task lie two main tasks: (a) retrieving documents
from the database, and (b) processing the retrieved documents using an appro-
priately tuned information extraction system. As discussed in the Introduction,
information extraction involves making choices for these two important com-
ponents and their parameters (e.g., the number of documents to process or
knob settings for an information extraction system). As discussed earlier, these
choices influence two main properties of an execution, namely, execution time
and output quality. Thus, selecting an execution strategy for an information ex-
traction task requires exploring the space of possible alternatives and selecting
a final execution in a principled, cost-based manner. Following the relational
query optimization, we pose this as an optimization problem and build a query
optimizer that picks a desirable execution strategy.

2Even though this simplification may seem naive, if we assume that the each of the times tR (d),
tF (d), tE (d), and tQ (q) follows a distribution with finite variance, then we can show using the
central limit theorem that our simplifying approximation is accurate if tR , tF , tE , and tQ are the
mean values of these distributions.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:8 • A. Jain and P. G. Ipeirotis

To build an effective optimization approach, we analyze both the execution
time and the quality characteristics of an extraction task when using tunable in-
formation extraction systems, coupled with various document retrieval strate-
gies. More formally, we focus on the following problem.

Problem 2.1. Consider a relation R along with a set of appropriately
trained information extraction systems, each with its own set of possible pa-
rameter configurations, and a set of document retrieval strategies. Estimate

the number |T
good
retr | of good tuples and the number |T bad

retr | of bad tuples in the
output, generated by each extraction system, under each possible configuration,
for each retrieval strategy, and the associated execution time for each execution
strategy.

This problem statement is very generic and can subsume a large number
of query processing objectives. For example, in a typical problem setting, we
try to minimize the execution time while satisfying some quality constraints of
the output (e.g., in terms of false positives and false negatives). Alternatively,
we may try to maximize the quality of the output under the some constraint
on the execution time. Yet another approach is to maximize recall, keeping the
precision above a specific level, under a constraint in execution time. Many
other problem specifications are possible. Nevertheless, given the number of
good and bad tuples in the output along with the execution time required to
generate that output, we can typically estimate everything that is required for
alternative problem specifications. With the advent of large-scale manual an-
notation services (e.g., Amazon Mechanical Turk), the objective of minimizing
execution time may become obsolete. However, our goal is to present fundamen-
tal blocks for building cost-based optimization approaches for extraction-based
scenarios while accounting for the output quality.

3. CHARACTERIZING OUTPUT QUALITY

We begin our discussion by showing how to characterize, in a statistically robust
way, the behavior of a stand-alone information extraction system. In Section 3.1,
we explain why the traditional precision-recall curves are not well suited for
this purpose and describe the alternative notion of Receiver Operating Charac-
teristics (ROC) curves. Then, in Section 3.2, we show how to construct a ROC
curve for an extraction system and how to use the ROC analysis to select only
the Pareto-optimal set of configurations across a set of extraction systems. Fi-
nally, in Section 3.3 we present our concept of quality curves that connect ROC
curves and document retrieval strategies.

3.1 ROC Curves

One of the common ways to evaluate an extraction system E is to use a test

set of documents, for which we already know the set Tgood of correct tuples that
appear in the documents. Then, by comparing the tuples Textr extracted by E

with the correct set of tuples Tgood, we can compute the precision and recall of

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:9

the output as

precision =
|Textr ∩ Tgood|

|Textr|
, recall =

|Textr ∩ Tgood|

|Tgood|
.

Typically, an extraction system E has a set of parameters θ that can be used to
make E precision- or recall-oriented, or anything in between. By varying the pa-
rameter values θ, we can generate configurations of E with different precision
and recall settings, and generate a set of precision-recall points that, in turn,
can generate the “best possible”3 precision-recall curve. The curve demonstrates
the trade-offs between precision and recall for the given extraction system. Un-
fortunately, precision-recall curves are not statistically robust measures of per-
formance, and depend heavily on the ratio of good and bad documents in the
test set, as shown by the following example.

Example 2. Consider an extraction system E that generates a table of com-
panies and their headquarters locations, Headquarters(Company, Location)
from news articles in The New York Times archive. To measure the performance
of E, we test the system by processing a set of documents from the Business

and the Sports sections. The Business documents contain many tuples for the
target relation, while Sports documents do not contain any. The information
extraction system works well, but occasionally extracts spurious tuples from
some documents, independently of their topic. If the test set contains a large
number of Sports documents then the extraction system will also generate a
large number of incorrect tuples from these bad documents, bringing down the
precision of the output. Actually, the more Sports documents in the test set, the
worse the reported precision, even though the underlying extraction system re-
mains the same. Notice, though, that the recall is not affected by the document
distribution in the test set and remains constant, independently of the number
of Sports documents in the test set.

The fact that precision depends on the distribution of good and bad doc-
uments in the test set is well known in machine learning, from the task of
classifier evaluation [Provost and Fawcett 2001]. To evaluate classifiers, it is
preferable to use ROC curves [Egan 1975], which are independent of the class
distribution in the test set. We review ROC curves next.

Receiver Operating Characteristic (ROC) curves were first introduced in the
1950’s, where they were used to study the performance of radio receivers to cap-
ture a transmitted signal in the presence of noise. In a more general setting,
ROC curves evaluate the ability of a decision-making process to discriminate
true positives (signal) in the input from true negatives (noise). A ROC model
assumes that signal and noise follow some probability distributions across a
decision variable x, which can be used to discriminate between the signal and
noise. Figure 3 demonstrates a simple decision-making process under this sce-
nario, with a simple parameter. We classify an event as noise whenever the

3Since there is no guarantee that changes in θ will have a monotonic effect in precision and recall,
some settings may be strongly dominated by others and will not appear in the “best possible”
precision-recall curve.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:10 • A. Jain and P. G. Ipeirotis

Fig. 3. Characterizing a decision-making task as a threshold picking process, for a simple scenario
where changing the value of a configuring parameter results in a smooth trade-off between true
positives and false negatives.

decision variable x < θ and as signal when x ≥ θ . By varying the value of deci-
sion threshold θ , the ability of detecting signal from noise varies. For instance,
for θ = x1, the system does not classify any event as noise, and has a high
true positive rate; at the same time, a significant fraction of the noise is classi-
fied incorrectly as signal, generating a high false positive rate. Analogously, for
θ = x3, the system has low false positive rate, but also classifies a significant
fraction of the signal as noise, resulting in a system with low true positive rate
as well.

The ROC curves summarize graphically the trade-offs between the different
types of errors. When characterizing a binary decision process with ROC curves,
we plot the true positive rate tp (the fraction of positives correctly classified as
positives, i.e., recall) as the ordinate, and the false positive rate fp (the fraction
of negatives incorrectly classified as positives) as the abscissa. An ideal binary
decision maker has tp = 1 and fp = 0; a random binary decision maker lies
anywhere on the line x = y . The ROC curves have strong statistical properties
and are widely adopted as performance evaluation metrics in a variety of areas,
including machine learning [Provost and Fawcett 2001], epidemiology [Erdreich
and Lee 1981], signal detection theory [Egan 1975], and others.

3.2 Generating ROC Curves for an Information Extraction System

Given that ROC curves are more robust than precision-recall curves, it would
be natural to use ROC curves for characterizing the performance and trade-offs
of different extraction systems. In principle, information extraction tasks can
also be viewed as a decision-making task: Each document contains a set of good
and bad tuples and some parameter variable(s) are used to decide which of

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:11

these tuples should appear in the output. However, there are some challenges
that need to be addressed before using ROC curves for information extraction.

(1) To define each ROC point, that is, tp(θ) and fp(θ), we need to know the
set of all possible good and bad tuples in each document. While we can
conceivably locate all the good tuples in the document, the universe of bad
tuples is in principle infinite.

(2) Even after computing a point in the ROC curve, this is simply an instance of
the performance in the test set, and does not reveal the confidence bounds
for each of the tp(θ) and fp(θ) values.

(3) Finally, an information extraction system offers multiple parameter knobs
and the behavior of these knobs may be nonmonotonic; thus, the simple
decision process listed in Figure 3 does not describe the process anymore.

To solve the first problem, we need to find a way to measure the fp(θ) rate.
We cannot measure the ratio of bad tuples that appear in the output if we do
not know the total number of bad tuples. To define each ROC point, that is,
tp(θ) and fp(θ), we need to know the set of all possible good and bad tuples that
serve as normalizing factors for tp(θ) and fp(θ), respectively. For our work, we
operationalize the definition of tp(θ) and fp(θ) using a pooling-based approach:
We define the set of good and bad tuples as the set of tuples extracted by an
extraction system across all possible configurations of the extraction system.
In practice, we estimate the tp(θ) and fp(θ) values using a test set of documents
and a set of ground-truth tuples.4

Using the pooling-based approach, we can proceed to generate the ROC curve
for an extraction system. We first need to generate the probability distributions
for signal and noise across a decision variable θ of choice. Figure 4 describes the
ROC construction algorithm. The first step is to use a test set of documents Dt ,
and a set of “gold standard” tuples Tgold that are correct and comprehensive (e.g.,
extracted by manually inspecting the documents in Dt). Then, to construct the
ROC curve for an extraction system E, we begin with identifying the maximum-
sensitivity setting of θ: This is the value(s) of θ at which E extracts as many
tuples (good and bad) as possible. Using the maximum-sensitivity setting of E,
we extract all possible candidate tuples T (good and bad); by examining the
intersection of T with Tgold, we identify all the good tuples Tgood (signal) and
the bad tuples Tbad (noise) that appear in Dt . The sets Tgood and Tbad can then
be used to estimate the true positive rate tp(θ) and the false positive rate fp(θ)
for each θ value: To achieve this, we simply examine how many of the Tgood and
Tbad tuples are kept in the output, for different θ values. This leads us to the
following definition.

Definition 3.1 (ROC Curve). A Receiver Operating Characteristic (ROC)

curve for an information extraction system E is a set of 〈tp(θ), fp(θ), Time(θ)〉

4An alternative solution would be to use the Free response ROC (FROC) curves, in which the
ordinate remains un-normalized and corresponds to the average number of bad tuples generated
by each document. However, we will see in Section 4 that the probabilistic interpretation of tp(θ)
and fp(θ) in normal ROC curves is handy for our analysis.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:12 • A. Jain and P. G. Ipeirotis

Fig. 4. Generating a ROC curve for an information extraction system.

values, where tp(θ) is the true positive rate, fp(θ) is the false positive rate, and
Time(θ) is the mean time required to process a document when the configuring
parameters of E are set to θ . We define as tp(θ) the probability of classifying a
tuple t ∈ Tgood as good; similarly, we define as fp(θ) the probability of classifying
a tuple t ∈ Tbad as good.

The 〈tp(θ), fp(θ)〉 points of the ROC curve derived using the aforesaid proce-
dure have one disadvantage: They do not offer any information about the ro-
bustness of the tp(θ) and fp(θ) estimates. Hence, they describe the performance
of the extraction system E on the particular test set used for the construc-
tion of the ROC curve, but do not reveal the robustness of these estimates. To
provide confidence bounds for each tp(θ) and fp(θ) point, we use a tenfold cross-
validation approach [Fawcett 2003; Macskassy et al. 2005]: When constructing
the ROC curve, we split the test set into 10 partitions, and generate 10 different
values for the tp(θ) and fp(θ) estimates for each setting θ. Using the set of these
values we then generate the confidence bounds for each 〈tp(θ), fp(θ)〉 point.

Finally, we need to accommodate for multiple parameters and for any non-
monotonic behavior of these parameters. The definition of ROC curve given
before is rather agnostic to the behavior of each parameter. As a first step, we
need to identify, for each parameter, the set of values for which we need to
compute a 〈tp(θ), fp(θ)〉 point. Typically, information extraction systems expose
knobs that allow for exploring a continuous range of possible knob settings,
so exhaustively exploring this range fully may not be feasible. In practice, we
can generally identify interesting settings to explore further using guidelines

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:13

from developers of the information extraction systems on each parameter. In
the absence of such domain knowledge, we can sample the continuum space of
possible knob settings and identify a set of settings to explore further. Using
the algorithm of Figure 4, we generate a 〈tp(θ), fp(θ)〉 point for each such set-
ting θ. The next step is to study the performance of the extraction system as
described by these 〈tp(θ), fp(θ)〉 points. Some of these points may be strongly
dominated5 by other points; since the strongly dominated points are guaranteed
to generate a suboptimal execution, we simply ignore them and keep only the
Pareto-optimal triplets 〈tp(θ), fp(θ), Time(θ)〉 for the computation of the ROC
curve. This is similar to the construction of a ROC convex hull [Provost and
Fawcett 2001] but in our case we do not generate interpolated points between
the Pareto-optimal triplets. Extending the Pareto-optimal approach to multi-
ples of extraction systems, we can easily generate a single ROC curve that
contains only the nondominated configurations across all systems.

An important characteristic of the ROC curves for our purpose is that, know-
ing the number of good and bad documents that E processes, we can compute
the number of good and bad tuples in the output. (We will show this in more
detail in Section 4.) Of course, the number of good and bad documents processed
by E depends on the document retrieval strategy. We discuss this next.

3.3 Quality Curves for an Execution Strategy

In Sections 3.1 and 3.2, we discussed how a ROC curve can describe the behavior
of an extraction system when extracting tuples from a single document. What
we are interested in, though, is to summarize the behavior of an extraction
system when coupled with a specific retrieval strategy. If the retrieval strategy
retrieves many bad documents, then the extraction system also generates a
large number of bad tuples, and similarly, the extraction system generates a
large number of good tuples if the strategy retrieves many good documents.
Thus, the output composition for an execution strategy at a given point in time
depends on the choice of retrieval strategy and of the extraction system and its
configuration θ.

To characterize the output of an execution strategy, we define the concept of a
quality curve. A quality curve of an extraction system coupled with a retrieval
strategy describes all possible compositions of the output at a given point in
time, when the extraction system, configured at setting θ, processes documents
retrieved by the associated retrieval strategy. Specifically, we define quality
curves as, follows.

Definition 3.2 (Quality Curve(E, R, P)). The quality curve of an extraction
system E, characterized by the triplets 〈tp(θ), fp(θ), Time(θ)〉, coupled with a
retrieval strategy R is a plot of the number of good tuples as a function of
number of bad tuples, at the point in time P , for all available extraction systems
E and all possible values6 of the parameter(s) θ.

5A triplet 〈tp(θ), fp(θ), Time(θ)〉 strongly dominates a triplet 〈tp(θ′), fp(θ′), Time(θ′)〉 if and only if

tp(θ) ≥ tp(θ′), fp(θ) ≤ fp(θ′), and Time(θ) ≤ Time(θ′).
6An alternative is to keep only the Pareto-optimal set, as discussed in Section 3.2.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:14 • A. Jain and P. G. Ipeirotis

Fig. 5. Quality curves for a retrieval strategy for different points in time, for two extraction
systems.

Figure 5 illustrates the concept of quality curves. The quality curves contain
all the different possible outcomes that can be achieved at a given point in
time, by picking different extraction systems Ei and different settings θ j . For
example, consider the point in time p1. If we pick system E1 and set it to its
maximum sensitivity setting, we are able to retrieve approximately 1,800 good
tuples and 2,500 bad tuples. Alternatively, under the most conservative setting
for E1, again at time p1, we extract 1,100 good and 1,100 bad tuples. Another
choice is to pick a different extraction system, E2, which is much slower, but
more accurate. In this case, at time p1 the system extracts 400 good tuples and
only 100 bad tuples. The quality curve demonstrates clearly the trade-offs under
the different settings. As time progresses and the extraction system processes
more documents, the quality curve moves up and to the right, generating more
bad and good tuples.

Our goal is to estimate the shape of the quality curves for each point in
time, describing essentially the behavior of all possible execution strategies.
Given the quality curves, we can then easily pick the appropriate strategy for a
given extraction task, Next, we present our formal analysis of these execution
strategies, and we show how to estimate the quality curves.

4. ESTIMATING OUTPUT QUALITY

We begin our analysis by sketching a general model to study the output of
an execution strategy in terms of the number of good and bad tuples gen-
erated (Section 4.1). We then examine how the choice of the parameters θ

affects the output composition (Section 4.2), and finally present our rigorous

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:15

analysis of each retrieval strategy, namely, scan (Section 4.3.1), Filtered Scan
(Section 4.3.2), and Automatic Query Expansion (Section 4.3.3).

4.1 Analyzing An Execution Strategy: General Scheme

Consider an execution strategy with extraction system E, configured with
parameters values θ, along with a document retrieval strategy S for a text

database D. Our goal is to determine the number of good tuples |T
good
retr | and bad

tuples |T bad
retr | that this execution strategy will generate at any point in time.

Based on these values, we can compute the quality curve for the combination
of E with S.

We know that the database consists of good documents Dg , bad documents
Db , and empty documents De . During the information extraction task, the strat-
egy S retrieves documents Dr from D that E subsequently processes. Specifi-
cally, E processes |Dgp| good documents, |Dbp| bad documents, and |Dep| empty
documents.

In the first step of our analysis, we disentangle the effects of retrieval strategy
from the effects of the extraction system. For the number of retrieved good

tuples |T
good
retr |, we proceed as follows: The number of good tuples in the extracted

relation depends only on the number of good documents |Dgp| that are processed
by E. The value |Dgp| depends only on the retrieval strategy S. Given the
number |Dgp|, the number of good tuples depends only on the settings of the
extraction system. Assuming that we know the value of |Dgp|, we have

E[|T
good
retr |] =

∑

t∈Tgood

Prg (t
∣

∣|Dgp|), (3)

where Prg (t
∣

∣|Dgp|) is the probability that we will see the good tuple t at least
once in the extracted relation, after processing |Dgp| good documents. The value
Prg (t

∣

∣|Dgp|) depends only on the extraction system and in Section 4.2 we will
analyze it further.

The analysis is similar for the number of retrieved bad tuples. In this case,
since both good and bad documents contain bad tuples, the number of bad tuples
in the extracted relation depends on the total number of good documents and
bad documents |Dgp| + |Dbp| processed by E. Specifically, we have

E[|T bad
retr |] =

∑

t∈Tbad

Prb(t
∣

∣|Dgp| + |Dbp|) (4)

where Prb(t
∣

∣|Dgp| + |Dbp|) is the probability that we will see the bad tuple t

at least once in the extracted relation, after processing a total of |Dgp| + |Dbp|

good and bad documents. The value Prb(t
∣

∣|Dgp| + |Dbp|) depends only on the
extraction system and in Section 4.2 we will analyze it further.

Eqs. (3) and (4) rely on knowing the exact number of the good and bad doc-
uments retrieved using S and processed by E. In practice, however, we will
only know the probability distribution of the good and bad documents in Dr ,
which is different for each retrieval strategy. Therefore, after modifying Eqs. (3)

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:16 • A. Jain and P. G. Ipeirotis

and (4) to reflect this, we have

E[|T
good
retr |] =

|Tgood|
∑

t

·

|Dr |
∑

j=0

Prg (t
∣

∣|Dgp| = j) · Pr(|Dgp| = j). (5)

E[|T bad
retr |] =

|Tbad|
∑

t

·

|Dr |
∑

j=0

Prb(t
∣

∣|Dgp| + |Dbp| = j) · Pr(|Dgp| + |Dbp| = j). (6)

The values of E[|T
good
retr |] and E[|T bad

retr |] for different extraction strategies
〈E(θ), S〉 allow us to compute the quality curves for a different number of re-
trieved documents, and hence for different points in time. Furthermore, we
have disentangled the effect of the extraction system E(θ) from the effect of the
document retrieval strategy S.

We now proceed, in Section 4.2, to analyze the factors Prg (t| j) and Prb(t| j)
that depend only on the extraction system. Then, in Sections 4.3.1, 4.3.2,
and 4.3.3 we show how to compute the factors Pr(|Dgp| = j) and Pr(|Dgp| +

|Dbp| = j) for various document retrieval strategies.

4.2 Analyzing the Effect of the Information Extraction System

In this section, we examine the effect of the information extraction system on
output quality. For our analysis, we assume that we know the values of |Dgp|

and |Dbp|. We will relax this assumption in the next sections.
The first step is to estimate the number of distinct good tuples that we ex-

tract. As we discussed in Section 2, we can extract good tuples only from good
documents (see also Figure 2). To estimate the number of good tuples that are
extracted from the retrieved documents, we model each retrieval strategy as
multiple sampling without replacement processes running over the documents
in Dg . Each process corresponds to a tuple t ∈ Tgood, which we assume to be inde-
pendently distributed across the Dg documents. If we retrieve and process |Dgp|

documents from Dg then the probability of retrieving k documents that contain
a good tuple t that appears in gd(t) good documents follows a hypergeometric
distribution. Specifically, the probability of retrieving k documents with the tu-
ple t is Hyper(|Dg |, |Dgp|, gd(t), k), where Hyper (D, S, g , k) = (g

k
) · (D−g

S−k
)/(D

S
) is

the hypergeometric distribution.
Even if we retrieve k documents with tuple t from Dg , the extraction system

E may still reject the tuple k times7 with probability (1 − tp(θ))k . In this case,
the tuple t will not appear in the output. Therefore, the probability that we
will see a good tuple t, which appears in gd(t) good documents in D at least
once in the extracted relation after processing |Dgp| good documents, is equal
to

Prg (t
∣

∣|Dgp|) = 1 −

gd(t)
∑

k=0

(Hyper(|Dg |, |Dgp|, gd(t), k) · (1 − tp(θ))k).

7We assume that the appearances of t in different documents are independent, for example, they
do not always follow the same pattern.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:17

To compute Prg , we need to know the value of gd(t) for the good tuple, which is
rarely known. However, the distribution Pr(gd(t)) tends to follow a power-law
distribution [Agichtein et al. 2003; Ipeirotis et al. 2006]. So, we can eliminate
gd(t) and have a general formula for all good tuples t.

Prg (t
∣

∣|Dgp|) = 1 −

|Dg |
∑

gd(t)=1

Pr(gd(t)) ·

gd(t)
∑

k=0

(Hyper(|Dg |, |Dgp|, gd(t), k) · (1 − tp(θ))k)

(7)

The analysis is similar for the number of bad tuples. However, now both Dg

and Db contain bad tuples. By assuming that the level of noise is the same in
Dg and Db , and analogously to the case of good tuples, the probability that we
will see at least once a bad tuple, which appears in gd(t) good documents and
in bd (t) bad documents in D, is

Prb(t
∣

∣|Dgp| + |Dbp|) = 1 −

gd(t)+bd (t)
∑

k=0

(Hb(gd(t) + bd (t), k) · (1 − fp(θ))k). (8)

where Hb(gd(t)+bd (t), k) = Hyper(|Dg |+|Db |, |Dgp|+|Dbp|, gd(t)+bd (t), k) and
(1−fp(θ))k is the probability of rejecting a bad tuple k times. Again, as in the case
of good tuples, we can eliminate the dependency of gd(t) + bd (t) by assuming
that the frequency of bad tuples also follows a probability distribution. (As
we will see in Section 7, the frequency of bad tuples also follows a power-law
distribution.)

In this section, we have described how to compute the values Prg and Prb
that are needed to estimate E[|T

good
retr |] (Eq. (5)) and E[|T bad

retr |] (Eq. (6)). Next, we
show how to compute the values for Pr(|Dgp| = j) and Pr(|Dgp| + |Dbp| = j) for
each document retrieval strategy.

4.3 Analyzing the Effect of the Document Retrieval Strategy

4.3.1 Scan. Scan sequentially retrieves documents from D, in no specific
order, and therefore, when Scan retrieves |Dr | documents |Dgp|, |Dbp|, and |Dep|

are random variables that follow the hypergeometric distribution. Specifically,
the probability of processing exactly j good documents is

Pr(|Dgp| = j) = Hyper(|D|, |Dr |, |Dg |, j). (9)

Similarly, the probability of processing j good and bad documents is.

Pr(|Dgp| + |Dbp| = j) = Hyper(|D|, |Dr |, |Dg | + |Db |, j). (10)

Using the preceding equations in (5), we compute the expected number of good
tuples in the extracted relation after Scan retrieves and processes |Dr | docu-
ments from D.

4.3.2 Filtered Scan. The Filtered Scan retrieval strategy is similar to Scan,
with the exception of a document classifier that filters out documents that are
not good candidates for containing good tuples. Instead, only documents that
survive the classification step will be processed. Document classifiers are not

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:18 • A. Jain and P. G. Ipeirotis

perfect and they are usually characterized by their own true positive rate Ctp

and false positive rate Cfp . Intuitively, given a classifier C, the true positive
rate Ctp is the fraction of documents in Dg classified as good, and the false
positive rate Cfp is the fraction of documents in Db incorrectly classified as
good. Therefore, the major difference with Scan is that now the probability of
processing j good documents after retrieving |Dr | documents from the database
is

Pr(|Dgp| = j) =

|Dr |
∑

n=0

Hyper(|D|, |Dr |, |Dg |, n) · Binom(n, j , Ctp). (11)

where Binom(n, k, p) = (n
k
) · pk · (1 − p)n−k is the binomial distribution.

In Eq. (11) n is the number of retrieved good documents. By definition,
the remaining |Dr | − n are bad or empty documents. So, by extending
Eq. (11) we can compute the probability of processing j good documents
and bad documents after retrieving |Dr | documents from the database. We
have

Pr(|Dgp| + |Dbp| = j) =

j
∑

i=0

(

|Dr |
∑

n=0

Hg (n) · Binom(n, i, Ctp) ·

|Dr |−n
∑

m=0

Hb(m) · Binom(m, j − i, Cfp)

)

, (12)

where Hg (n) = Hyper(|D|, |Dr |, |Dg |, n) and Hb(m) = Hyper(|D|, |Dr |, |Db |, m).
By replacing the value of Pr(|Dgp| = j) from Eq. (12) to Eq. (5), we can easily

compute the expected number of distinct good tuples E[|T
good
retr |] in the output.

Similarly, for the bad tuples, we use Eq. (12) to compute Pr(|Dgp| + |Dbp| = j)
and then replace this value in Eq. (6) to compute the expected number of bad
tuples in the output.

4.3.3 Automated Query Generation. The Automated Query Generation
strategy retrieves documents from D by issuing queries, constructed offline
and designed to retrieve mainly good documents [Ipeirotis et al. 2006]. The
retrieved documents are then processed by E.

To estimate the number of good and bad documents retrieved, consider the
case where Automated Query Generation has sent Q queries to the database.
If the query q retrieves g (q) documents and has precision pg (q) for good docu-
ments, that is, the expected fraction of good documents, then the probability for

a good document to be retrieved by q is
pg (q)·g (q)

|Dg |
. The query q may also retrieve

some bad documents. If the expected fraction of bad documents retrieved by q is
pb(q), then the probability of a bad document to be retrieved by q is pb(q)·g (q)

|Db |
. As-

suming that the queries sent by Automated Query Generation are only biased
towards documents in Dg , the queries are conditionally independent within Dg .
In this case, the probability that a good document d is retrieved by at least one
of the Q queries is

Prg (d) = 1 −

Q
∏

i=1

(

1 −
pg (qi) · g (qi)

|Dg |

)

.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:19

Similarly, the probability that a bad document d is retrieved by at least one of
the Q queries is

Prb(d) = 1 −

Q
∏

i=1

(

1 −
pb(qi) · g (qi)

|Db |

)

.

To avoid having any dependencies on query-specific cardinalities g (q) and preci-
sions pg (q) and pb(q), we can compute the expected value for Prg (d) and Prb(d).
We have

Prg (d) = 1 −

(

1 −
E[pg (q)] · E[g (q)]

|Dg |

)Q

,

Prb(d) = 1 −

(

1 −
E[pb(q)] · E[g (q)]

|Db |

)Q

, (13)

where E[pg (q)] and E[pb(q)] are the average precisions of a query for good and
bad documents, respectively, and E[g (q)] is the average number of documents
retrieved by a query.

Since each document is retrieved independently of the others, the number of
good documents retrieved (and processed) follows a binomial distribution, with
|Dg | trials and Prg (d) probability of success in each trial. (Similarly for the bad
documents.)

Pr(|Dgp| = j) = Binom(|Dg |, j , Prg (d)) (14)

Pr(|Dbp| = k) = Binom(|Db |, k, Prb(d)) (15)

Therefore,

Pr(|Dgp| + |Dbp| = j) =

j
∑

i=0

Pr(|Dgp| = i) · Pr(|Dbp| = j − i). (16)

Similar to Scan and Filtered Scan, we can now estimate the values of E[|T
good
retr |]

and E[|T bad
retr |].

5. ESTIMATING MODEL PARAMETERS

In Section 4, we developed analytical models to derive quality curves for an
extraction system, for different retrieval strategies. We now discuss the task of
estimating parameters used by our analysis.

To estimate the quality curves, our analysis relies on two classes
of parameters, namely the retrieval-strategy-specific parameters and the
database-specific parameters. The retrieval-strategy-specific parameters in-
clude E[pg (q)], E[pb(q)], and E[h(q)] for the Automatic Query Expansion
queries or the classifier properties Ctp and Cfp for Filtered Scan. The database-
specific parameters include |Dg |, |Db |, and |De |, |Tgood| and |Tbad|, and the fre-
quency distribution of the good and bad tuples in the database. Of these two
classes, the retrieval-strategy-specific parameters can be easily estimated in a
pre-execution, offline step: The classifier properties and the query properties are
typically estimated using a simple testing phase after their generation [Ipeirotis

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:20 • A. Jain and P. G. Ipeirotis

et al. 2007, 2006]. On the other hand, estimating the database-specific param-
eters is a more challenging task.

Our parameter estimation process relies on the general principles of
Maximum-Likelihood Estimation (MLE) [Gelman et al. 2003] along with the
statistical models that we discussed earlier: In Section 4, we showed how to
estimate the output given various database parameters, and now we will infer
the values of the database parameters by observing the output for a sample

of database documents. Specifically, we begin with retrieving and processing a
sample Dr of documents from the database D. After processing the documents
in Dr , we observe some tuples along with their frequencies in these retrieved
documents. To this end, we identify the values for the database parameters
that are most likely to generate these observations. Specifically, given a tuple t

obtained from Dr , if we observe t in s(t) documents in Dr , we are trying to find
the parameters that maximize the likelihood function.

L(parameters) =
∏

t∈observed tuples

Pr{s(t)|parameters} (17)

To effectively estimate the database-specific parameters, we need to address
one main challenge: Our understanding of an execution strategy so far has
assumed that we know exactly whether a tuple is good or not (Section 4). How-
ever, in a typical execution, we do not have such knowledge; at best, we have
a probabilistic estimate on whether a tuple is good or bad. In our parameter
estimation framework, we decouple the issue of estimating parameters from
the issue of determining whether an observed tuple is good or bad. Specifically,
we present our estimation process by first assuming that we know whether a
tuple is good or bad (Section 5.1). Then, we alleviate this (nonrealistic) assump-
tion and present two parameter estimation approaches. Our first approach,
called rejection-sampling-based MLE-partitioning, randomly splits the tuples
into good and bad following a rejection-sampling strategy, and then estimates
the database parameters (Section 5.2). Our second approach preserves this un-

certainty about the goodness or badness of a tuple and simultaneously derives
all the database parameters (Section 5.3).

5.1 Estimation Assuming Complete Knowledge

Our parameter estimation process begins with retrieving and processing docu-
ments using some execution strategy. After processing the retrieved documents
Dr , we observe some tuples along with their document frequencies. Further-
more, for now we assume that we know for each observed tuple whether it is
a good tuple or a bad tuple. Given this assumption, we show how to derive the
parameters |Dg |, |Db |, and |De |, and then we discuss how to estimate the tuples
frequencies for the good and bad tuples, and the values |Tgood|, and |Tbad|.

—Estimating |Dg |, |Db |, and |De |. We begin by first identifying the good,
the bad, and the empty documents in Dr . For this, we process each document
in Dr using the maximum-sensitivity setting of the extraction system E in

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:21

the initial execution strategy.8 Based on the type of tuples contained in each
processed document, we can trivially compute the number of good documents
|Dgp|, the number of bad documents |Dbp|, and the number of empty documents
|Dep|, in Dr . These values, together with our analysis in Section 4, can be used
to derive the values for |Dg |, |Db |, and |De | in the entire database |D|. We now
show how we derive |Dg |. (The derivation for |Db | and |De | is analogous.) Using
a maximum-likelihood approach, we find the value for |Dg | that maximizes the
probability of observing |Dgp| good documents in Dr .

Pr{|Dg |
∣

∣|Dgp|} =
Pr{|Dgp|

∣

∣|Dg |} · Pr{|Dg |}

Pr{|Dgp|}
(18)

Since the value Pr{|Dgp|} is constant across all possible values for |Dg |, we can
ignore this factor for the purpose of maximization. From Section 4, we know
how to derive the factor Pr{|Dgp|

∣

∣|Dg |} for each document retrieval strategy. (See
Eqs. (9), (11), and (14).) Specifically, for Scan, we know that Pr{|Dgp|

∣

∣|Dg |} =

Hyper(|D|, |Dr |, |Dg |, |Dgp|) (Eq. (9)). Finally, for the factor Pr{|Dg |} we assume
a uniform distribution, that is, no prior knowledge about the number of good
and bad documents in the database. We can now derive the value for |Dg | that
maximizes Eq. (18). For instance, for Scan, we derive |Dg | as

|Dg | = argmax
|Dg |

{Hyper(|D|, |Dr |, |Dg |, |Dgp|)}. (19)

Analytically,9 the maximizing value of Dg is the solution for the equation ̥(Dg+

1) + ̥(D − Dg − Dr + Dgp + 1) = ̥(Dg − Dgp + 1) + ̥(D − Dg + 1), where ̥(x)
is the digamma function. Practically, ̥(x) ≈ ln(x), and we have

|Dg | ≈

(

|D| + 2

|Dr |
· |Dgp|

)

− 1. (20)

Following a similar MLE-based approach, we can derive values for |Db | and
|De | using our analysis from Section 4 and the observed values |Dbp| and |Dep|.

—Estimating βg and βb. The next task is to estimate the tuple-related pa-
rameters. One of the fundamental parameters required by our analysis is the
frequency of each tuple in the database (e.g., gd(t) and bd (t) for a tuple t). Of
course, we cannot know the frequency of the tuples before processing all docu-
ments in the database, but we may know the general family of their frequency
distributions. Following such a parametric approach, our estimation task re-
duces to estimating a few parameters for these distributions. We rely on the
fact that the tuple frequencies for both categories of tuples (i.e., good and bad)
tend to follow a power-law distribution (see related discussion in Section 7). In-
tuitively, for both categories, a few tuples occur very frequently and most tuples
occur rarely in the database.

For a random variable X that follows a power-law distribution, the proba-
bility mass function for X is given as Pr{X = i} = iβ

ζ (β) , where β is the exponent

8For our discussion, we assume that we have available only one extraction system, but our estima-
tion process can be easily extended for a set of extraction systems.
9We set d

d Dg
Hyper(|D|, |Dr |, |Dg |, |Dgp|) = 0 and use the fact that d

dn n! = ̥(n + 1) · n!.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:22 • A. Jain and P. G. Ipeirotis

parameter of the distribution and ζ (β) =
∑∞

n=1 n−β is the Riemann zeta func-
tion [Goldstein et al. 2004]. Therefore, for the random variable gd(t), which
represents the frequency of a good tuple, and the random variable gd(t)+bd (t),
which represents the frequency of a bad tuple, we have

Pr{gd(t) = i} = iβg

ζ (βg) , (21)

Pr{gd(t) + bd (t) = i} = iβb

ζ (βb) , (22)

where βg and βb are the exponents of the power-law distributions for the fre-
quencies of good tuples and bad tuples, respectively. Now, we need to derive the
values for the distribution parameters, namely, βg and βb. Next, we discuss our
approach for estimating βg ; the estimation of βb is analogous.

Uncertainty-preserving maximum likelihood. To derive βg , we focus on the
set Tgr of good tuples observed in Dr . For a good tuple t, we denote by gs(t)
the total number of documents that contain t in Dr . Our goal is to estimate the
value of βg that maximizes the likelihood of observing gs(t) times each of the
extracted tuples t, which is given as

L(βg) =
∏

t∈observed good tuples

Pr{gs(t)|βg }. (23)

We have

Pr{gs(t)|βg } =

|Dg |
∑

k=gs(t)

Pr{gs(t)
∣

∣k} · Pr{gd(t) = k|βg }. (24)

We derive the factor Pr{gs(t)
∣

∣k} using our analysis from Section 4.2 by gener-
alizing Eq. (7). In Eq. (7), we derived the probability of observing a good tuple
at least once in the output, after processing |Dgp| good documents. Now we are
interested in deriving the probability of observing a good tuple gs(t) times in
the output after we have processed |Dgp| good documents. Therefore,

Pr{gs(t)
∣

∣k} =

k
∑

m=0

(Hyper(|Dg |, |Dgp|, k, m) · Binom(m, gs(t), tp(θ))). (25)

For the factor Pr{gd(t) = k|βg }, we use Eq. (21). We can then estimate the value
of βg using Eqs. (23), (24), and (25).

Since it is difficult to derive an analytic solution for locating the value of
βg that maximized L(βg), we proceed and compute L(βg) for a set of values
of βg and pick the value that maximizes Eq. (24). We refer to this estimation
approach that exhaustively searches through the space of parameter values as
Exh.

Iterative maximum likelihood. The exhaustive approach tends to be rather
expensive computationally, since it examines all potential gd(t) values for
each tuple and then searches for the best possible value of βg . Rather
than searching through a space of parameter values, we also explored it-

eratively refining the estimated values for βg . This alternative estimation
approach iterates over the following two steps until the value for βg has
converged.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:23

Step 1 Initialize βg . We pick an initial value for βg .

Step 2 Estimate tuple frequencies, gd(t). In this step, for every good tuple t

in Dr , we estimate its frequency in the entire database, that is, we
derive gd(t) for t, based on its sample frequency gs(t). In contrast to
the uncertainty-preserving approach described earlier, we keep only a
single value for gd(t). Specifically, we identify the value for gd(t) that
maximizes the probability of observing the tuple frequency gs(t) in the
sample.

Pr{gd(t)
∣

∣gs(t)} =
Pr{gs(t)

∣

∣gd(t)} · Pr{gd(t)}

Pr{gs(t)}
(26)

We derive Pr{gs(t)
∣

∣gd(t)} and Pr{gd(t)} as discussed before for the
uncertainty-preserving approach. Notice that Pr{gd(t)} depends on the
value of βg .

Step 3 Estimate distribution parameter, βg . In this step, we estimate the most
likely distribution parameter βg that generates the tuple frequencies
estimated in step 2. We derive βg by fitting a power law. We explore
two methods to fit a power law: the maximum likelihood (MLE)-based
approach [Goldstein et al. 2004; Newman 2005] and a less principled
(but extensively used) log regression-based (LogR) method [Adamic and
Huberman 2002; Newman 2005]. We refer to the iterative estimation
method that uses MLE-based fitting as Iter-MLE, and we refer to the
estimation method that uses log regression-based fitting as Iter-LogR.

Step 4 Check for convergence of βg . If the βg values computed in two iterations
of the algorithm are close, then stop. Otherwise, repeat steps 2 and 3.

Estimating |Tgood| and |Tbad|. The final step in the parameter estimation
process is to estimate |Tgood| and |Tbad|, for which we numerically solve Eqs. (5)
and (6). Specifically, we rewrite Eqs. (5) and (6) as

E[|T
good
retr |] = |Tgood| ·

|Dr |
∑

j=0

Prg (ti

∣

∣|Dgp| = j) · Pr(|Dgp| = j). (27)

E[|T bad
retr |] = |Tbad| ·

|Dr |
∑

j=0

Prb(ti

∣

∣|Dgp| + |Dbp| = j) · Pr(|Dgp| + |Dbp| = j). (28)

During the estimation process we know the number of good tuples observed

after processing Dr ; this is essentially E[|T
good
retr |] in Eq. (27). Furthermore, we

can derive the probability Prg of observing a good tuple, after retrieving Dr

documents, using the estimated values for βg and |Dg |. The only unknown in
Eq. (27) is |Tgood|. So, we solve Eq. (27) for |Tgood|. We can derive |Tbad| is the same
manner using the observed bad tuples, namely E[|T bad

retr |], and Prb in Eq. (28).
To summarize, we showed how we can estimate the various database-specific

parameters used in our analysis. Our discussion so far has assumed that we
have complete knowledge of whether an observed tuple is good or not. In prac-
tice, though, we do not know this. We now relax that assumption and discuss
two methods to address this issue.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:24 • A. Jain and P. G. Ipeirotis

5.2 Rejection-Sampling-Based MLE-Partitioning Approach

When estimating parameters of a database, we retrieve and process a document
sample using some execution strategy. Upon observing a tuple in the output we
do not know whether this tuple is good or bad. This assumption, however, is the
basis for the analysis that we presented so far. In this section, we show how we
can alleviate this assumption by using a technique based on the idea of rejection

sampling. Intuitively, this technique randomly splits the set of extracted tuples
into good and bad by using the ROC analysis from Section 3.2 and then uses
the randomized split to perform the analysis.

The basic idea behind this technique is that we do not necessarily need to
know the absolutely correct classification for each tuple. If we have a roughly
correct classification of the tuples into good and bad, then the analysis presented
previously should be able to handle the noise and still return good results.

Consider a tuple t generated during the parameter estimation process using
an execution strategy consisting of an extraction system E tuned at setting θo.
This tuple may be good or bad. This depends on two main factors: (a) the ability
of E to differentiate between good tuples (signal) and bad tuples (noise), and (b)
the prior distribution of the good and bad tuples that we feed to E. (Intuitively,
the more E can correctly identify a good tuple, the higher the probability of an
output tuple being a good tuple; similarly, the larger the number of good tuples
that we feed to E, the higher the number of observed tuples that will be good.)
Instead of preserving the uncertainty about the tuple, for estimation purposes,
we can make a decision and consider it either good or bad. To make this decision,
we use the idea of rejection sampling and classify tuple t at random, using a
biased coin.

An important part for generating a representative split of tuples into good
and bad is to select properly the bias of the coin. This bias depends on the ability
of the extraction system to distinguish signal from noise events. As discussed
in Section 3.2, the first step to generate a ROC curve is to derive the probability
distributions for signal and noise across all θ settings. For each setting, we know
sig(θ), which is the fraction of all good tuples that are generated at θ setting,
and nse(θ), which is the fraction of bad tuples generated at θ setting. Therefore,

for a tuple the probability that it is good (signal) is sig(θ)
sig(θ)+ nse(θ) ·

|Tgood|

|Tgood|+|Tbad|
and

we use that as a basis for the split. Figure 6 shows our overall process for
classifying a tuple t observed at setting θo using a biased coin.

One issue with this value is that we do not know the |Tgood| and |Tbad| val-
ues during the estimation process. So, we begin with some initial value for

|Tgood|

|Tgood|+|Tbad|
and split the observed tuples based on this initial value. Using

these partitioned tuples, we proceed with the estimation process as discussed
in Section 5.1 and derive values for |Tgood| and |Tbad|; then, we update our ini-
tial guess. As we retrieve and process more documents, we further refine this
value.

Using the aforementioned partitioning approach, we generate a deterministic

split of all the observed tuples, and we can now proceed with the estimation
process as detailed in Section 5.1. In principle, our technique is similar to Monte

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:25

Fig. 6. Classifying an observed tuple t as a good or bad tuple.

Carlo techniques [Gelman et al. 2003], but instead of trying multiple potential
splits we simply take one; we observed that a single partition tends to work
well in practice and is more efficient than multiple attempts.

5.3 Uncertainty-Preserving Approach

In the absence of any signal-to-noise ratio information or any other mechanism
to partition the tuples, we can extend our general theory from Section 4 to esti-
mate the parameters only based on the tuples observed in a document sample.
Our second estimation approach preserves the uncertainty about the nature of
a tuple, and estimates the desired parameters by exhaustively considering all
possible scenarios involving each observed tuple.

Given a document d that contains t0(d) tuples that we observe using the
maximum-sensitivity setting (see Section 5.1), we denote by g (d) the total num-
ber of good tuples and by b(d) the total number of bad tuples in d , such that
g (d) + b(d) = t0(d). We do not know the exact values for g (d) and b(d), and so
we examine an entire range of possible values for g (d) and b(d), given t0(d).
Specifically, we consider all (x, y) pairs such that (x, y) ∈ g (d) × b(d). Our
goal then is to identify the parameter values that maximize the probability of
observing the tuples for all documents, for the given (x, y) pairs for each docu-
ment. For efficiency, without loss of accuracy, we focus only on the most likely
breakdown of the tuples observed for each document, instead of all possible
breakdowns.

Estimating |Dg |, |Db |, |De |. We first identify the most likely breakdown of
the observed tuples for each document. Consider a document d that contains
t0(d) tuples, of which we have observed s(d) tuples using the initial execution
strategy. Our goal is to identify the most likely values for g (d) and b(d) that
generated s(d) tuples after processing d . Using an MLE-based approach, we
identify g (d) and b(d) that maximize

Pr{g (d) = x, b(d) = y |s(d) = t, (x + y) = t0(d)}

=
Pr{s(d)|g (d) = x, b(d) = y} · Pr{g (d) = x} · Pr{b(d) = y}

Pr{s(d)}
. (29)

We derive the first factor in the numerator, Pr{s(d)
∣

∣g (d) = x, b(d) = y}, based
on our discussion from Section 4. Specifically, we know that the number of tuples
extracted by the extraction system at θ setting follows a binomial distribution

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:26 • A. Jain and P. G. Ipeirotis

with the probability of success given as tp(θ). Similarly, the number of bad
tuples extracted by the extraction system depends on fp(θ). So,

Pr{s(d)|x, y} =

s(d)
∑

g=0

Binom
(

g , x, tp(θ)
)

· Binom((s(d) − g), y , fp(θ)).

To compute the probability that a document d contains g (d) good tuples, we rely
on prior knowledge of the document frequency distribution, which tends to be
power law. (We verified this experimentally.) If βgd is the distribution parameter
for the frequency of good tuples in a good document, we derive Pr{g (d) = x} as

Pr{g (d) = x} =

{

|Db |

|D|
+

|De |

|D|
, x = 0

(

1 −
|Db |

|D|
−

|De |

|D|

)

· x−βgd

ζ (βgd) , x > 0
.

Similarly, to compute the probability that a document d contains b(d) bad tu-
ples, we also assume that the number of bad tuples in a document tends to follow
a power-law distribution. If βbd is the distribution parameter for the frequency
of bad tuples in a document, we derive Pr{b(d) = y} as

Pr{b(d) = y} =

{

|De |

|D|
, y = 0

(

1 −
|De |

|D|

)

·
y−βbd

ζ (βbd) , y > 0.

Finally, we compute the factor Pr{s(d)} in the denominator of Eq. (29) based
on the observed distribution for the number of tuples in a document, after pro-
cessing Dr . Using the previous analysis, we search through a space of possible
values for |Dg |, |Db |, |De |, |βgd |, and |βbd | and identify the most likely parame-
ter combination.

Estimating |βg |, |βb|, |Tgood|, |Tbad|. For the next task, we begin with iden-
tifying the most likely frequency of each tuple t observed after processing Dr

documents. As discussed in Section 5.1, the frequency of a tuple observed for
Dr may not be final. Consider a tuple t that occurs in s(t) documents among
Dr . Our goal is to identify the most likely tuple frequency d (t) of the tuple t in
the entire database that maximizes the probability of observing t s(t) times.

Pr{d (t) = k
∣

∣s(t)} = Pr{t ∈ Tgood|s(t)} · Pr{gd(t) = k|s(t)}

+ Pr{t ∈ Tbad|s(t)} · Pr{(gd(t) + bd (t)) = k|s(t)} (30)

For brevity, we denote the first factor related to the case of good tuples by Pog ,
that is, Pog = Pr{t ∈ Tgood|s(t)} · Pr{gd = k|s(t)}; similarly we denote the second
factor related to the case of bad tuples by Pob. Using Bayes rule, we rewrite Pog

in terms of values that we can derive using our analysis in Section 4. Specifically,

Pog = Pr{s(t)|t ∈ Tgood} ·
Pr{t ∈ Tgood}

Pr{s(t)}
· Pr{s(t)|gd(t) = k} ·

Pr{gd(t) = k}

Pr{s(t)}
. (31)

The preceding equation consists of five distinct quantities of which we can
derive two quantities using our earlier analysis. Specifically, we discussed how
to derive Pr{s(t)|t ∈ Tgood} and Pr{s(t)|gd(t) = k} by generalizing Eq. (7) in

Section 5.1. To compute Pr{t ∈ Tgood} in Eq. (31), we use
|Tgood|

|Tgood|+|Tbad|
, and to

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:27

Table II. Techniques to Estimate the Database-Specific Parameters

Symbol Description

PT-Exh Rejection-sampling-based approach that exhaustively searches through a
range of values for the tuple frequency distribution parameters.

PT-Iter-MLE Rejection-sampling-based approach that iteratively refines the tuple frequency
distribution parameter values and uses MLE-based approach to fit the power-law.

PT-Iter-LogR Rejection-sampling-based approach that iteratively refines the tuple frequency
distribution parameter values and uses log-based regression to fit the power-law.

UP Uncertainty-preserving approach that exhaustively considers all possible cases
for each observed tuple.

compute Pr{gd(t) = k}, we follow Eq. (21). Finally, to derive Pr{s(t)} in the
denominator, we rely on the observed frequency distribution after processing
Dr documents.

So far, we discussed how to derive the quantity Pog for the case of good
tuples. We proceed in a similar fashion for Pob by generalizing our analysis from
Section 4.2 to use gd(t) + bd (t) as random variables and derive the probability
of observing a bad tuple i times after processing Dr documents. Using the
preceding derivations, we search through a range of values for βg , βb, |Tgood|,
and |Tbad|, and pick the combination that maximizes Eq. (30). We can optimize
this estimation process by focusing on typical values of βg and βb, which tend to
be between 1 and 5; similarly, we can derive useful hints for the range of possible
values for |Tgood| and |Tbad| using the proportion of good and bad tuples observed
when generating the ROC curves (Section 3.1).

To summarize, in this section we discussed our approach to estimate various
database-specific parameters that are necessary for our analysis in Section 4,
by exploring several ways for deriving these parameters. We summarize these
methods in Table II. These methods along with our analysis naturally lead
to building a quality-aware optimization approach that can compare a family
of execution strategies and effectively pick an execution strategy that meets
given user-specified quality constraints. Next, we discuss our quality-aware

optimizer, which builds on our analytical models.

6. PUTTING EVERYTHING TOGETHER

In Section 3, we introduced the concept of quality curves which characterize the
output of an execution strategy (i.e., combination of retrieval strategy and an
extraction system setting) over time. These curves allow us to compare different
execution strategies, both in terms of speed and in terms of output composition,
that is, the number of good and bad tuples in the output. In Section 4, we showed
how we can estimate the quality curves for an execution strategy, given a set
of database parameters. Finally, in Section 5, we presented various methods
that estimate the necessary parameters for our analysis given the output of
the running execution strategy.

Using the analysis so far, we can outline the overall optimization strategy.

(1) Given the quality requirements, and in the absence of any real statistics
about the database, pick an execution strategy based on heuristics or based
on some “educated guesses” for the parameter values.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:28 • A. Jain and P. G. Ipeirotis

(2) Run the execution strategy, observing the generated output.

(3) Use the algorithms of Section 5 to estimate the parameter values.

(4) Use the analysis of Section 4 to estimate the quality curves, examining
whether there is a better execution strategy than the running one.

(5) Switch to a new execution strategy, or continue with the current one; go to
step 2.

In principle, the quality requirements of step 1 depend on user preferences:
Sometimes users may be after “quick-and-dirty” results, while some other times
users may be after high-quality answers that may take long time to produce. For
this article, as a concrete case of user-specified preferences, we focus on a “low-
level” quality requirement where users specify the desired quality composition
in terms of the minimum number τg of good tuples and the maximum number
τb number of bad tuples that they are willing to tolerate. Nonetheless, it may
seem unrealistic to ask users to specify such values. However, several other cost
functions can be designed on top of this low-level model: Examples include min-
imum precision, or minimum recall, or even a goal to maximize a combination
of the precision and recall within a prespecified execution time budget.

Given the user-specified requirements, τg and τb, our quality-aware optimizer

identifies execution strategies and execution times that have E[|T
good
retr |] ≥ τg

and E[|T bad
retr |] ≤ τb. Then across the candidate strategies, the one with the

minimum execution time is picked, following the general optimization outline
that was described before.

7. EXPERIMENTAL SETTINGS

We now describe our experimental settings for the experiments in Section 8,
focusing on the text collections, extraction systems, retrieval strategies, and
baseline techniques used.

Information extraction systems. We used Snowball [Agichtein and Gravano
2000] and trained it for three relations: Headquarters(Company, Location), from
Section 1, Executives(Company, CEO), and Mergers(Company, MergedWith).
For Executives, the extraction system generates tuple 〈o, e〉, where e is the CEO

of the organization o, whereas for Mergers, the extraction system generates
tuples 〈o, m〉, where organization o merged with the organization m. In our
discussion, we focus only on the case of extracting Headquarters and Executives;
our observations on Mergers largely agree with those for these two relations.
We trained two instantiations of Snowball for each relation that differed in
their extraction patterns. We refer to the extraction systems for Executives as
E1 and E2, and to the extraction systems for Headquarters as H1 and H2. For
θ , we picked minSimilarity, a tuning parameter exposed by Snowball, which is
the threshold for the similarity between the terms in the context of a candidate
tuple and terms in the extraction patterns learned for an extraction task.

Dataset. We used three datasets for our experiments, namely, a collection
of 135,438 newspaper articles from The New York Times from 1996 (NYT96), a
collection of 50,269 documents from The New York Times from 1995 (NYT95),

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:29

Fig. 7. (a) Good and (b) bad tuple frequency distribution for Headquarters.

and a collection of 98,732 newspaper articles from The Wall Street Journal

(WSJ). We used NYT96 as the training set to learn extraction patterns, and
train the retrieval strategies. For our experiments that test the quality-aware
optimizer, we used NYT95 and WSJ. Since the results for WSJ were largely
similar to the results for NYT95, for brevity we report only the results for
NYT95.

Retrieval strategies. To instantiate the retrieval strategies, we used a rule-
based classifier (created using Ripper [Cohen 1995]) for Filtered Scan. For Au-
tomatic Query Expansion we used QXtract [Agichtein and Gravano 2003] that
uses machine learning techniques to automatically learn queries that match
documents with at least one tuple. In our case, we train QXtract to only match
good documents, avoiding at the same time the bad and empty ones (the original
QXtract avoids only the empty documents).

Tuple verification. Given the datasets and the retrieval strategies, we need
to separate the tuples into good and bad. For this, we used SDC Platinum,10

a paid service that provides authoritative information about financial gover-
nance and financial transactions. Furthermore, we retrieved additional data
from Wharton Research Data Services (WRDS)11 that also provides a compre-
hensive list of datasets that can be used to verify the correctness of the extracted
tuples. For each relation and dataset, we extracted all possible tuples and clas-
sified them into good and bad tuples, using the aforementioned resources. We
observed that the tuple frequency distribution tends to follow a power-law for
both good and bad tuples. Figure 7 shows the token degree distributions of both
and good and bad tokens for Headquarters and similarly, Figure 8 shows the
token frequency distributions for Executives.

ROC curves. We generated the ROC curves for each extraction system by
varying the values for minSimilarity from 0 to 1, using the methodology de-
scribed in Section 3 to pick the Pareto-optimal points. We also used tenfold

10http://www.thomsonreuters.com/products_services/financial/sdc
11http://wrds.wharton.upenn.edu/

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:30 • A. Jain and P. G. Ipeirotis

Fig. 8. (a) Good and (b) bad tuple frequency distribution for Executives.

Fig. 9. ROC curves for (a) Headquarters and (b) Executives.

cross-validatation to generate the confidence intervals [Macskassy et al. 2005]
for each point. Figures 9(a) and 9(b) show the ROC curves of the extraction sys-
tems for Headquarters and Executives, respectively, along with the associated
confidence intervals.

Execution strategies. For a given relation, we generate execution strategies
by first deriving variations of the associated extraction systems by varying val-
ues for minSimilarity and then combining each variation with each of the three
document retrieval strategies. Overall, for each relation we have 2 extraction
systems, 4 different values for minSimilarity, namely, 0.2, 0.4, 0.6, and 0.8,
and 3 retrieval strategies, for a total of 24 different execution strategies per
relation.

Baseline techniques. For our experiments, we refer to our quality-aware
optimization approach as Qawr. We also generated two baseline techniques.
Our first baseline uses existing work Ipeirotis et al. [2007] that predicts the
fastest execution strategy to reach a specified number of tuples. The optimizer
in Ipeirotis et al. [2007] assumes that the execution strategies only generate
good tuples (see Section 2). Therefore, we give as input to this optimizer the
total tuples needed, which is the sum of good and bad tuples, and select the

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:31

fastest execution strategy using the method in Ipeirotis et al. [2007]. We refer
to this baseline as Qign (for “quality-ignorant”).

Our second baseline technique relies on using heuristics from previously ex-
ecuted extraction tasks. Specifically, we use an extraction task as a training
task, that is, we run it first and see what execution strategies perform best for
different types of quality requirements. Based on this information, we “learn”
the most appropriate execution strategies for each quality requirement. Then,
when faced with another extraction task involving the extraction of a differ-
ent relation, we use the same extraction strategies that performed well for the
training task. We refer to this heuristics-based baseline as Heur for (“heuris-
tic”).

Combining manual and automated information extraction systems. To bet-
ter illustrate some of the properties of our framework, we also ran experiments
involving a generalized setting, where we have to make a decision between
an automated extraction system and hiring people to read the documents and
manually extract the target relations. Specifically, in addition to processing
documents using an automated extraction systems such as Snowball, we could
recruit human annotators using paid services such as Amazon Mechanical
Turk.12 In general, we expect manual extractions to be more quality-oriented
than the automated extractions, but at the same time more expensive in terms
of time and monetary cost. To build the manual extraction system we used the
Mechanical Turk Service as follows: For any given document, we requested five
annotators. The annotators had to read the entire document and identify tuple
instances of Headquarters from the document (if any), with no limit on the max-
imum number of reported instances. We instructed the annotators to provide
as answers only values that exist in the document, without any modifications
to any entity (e.g., if a document mentions a company, say “Microsoft Corp.”, the
reported company name must be identical to this and not other possible varia-
tions, such as Microsoft Corporation). We used the number of annotators that
extracted a tuple as the θ: When θ = 1, we expect to see a high true positive
rate but also a high false positive rate, as some annotators may erroneously
extract some tuples; similarly, we expect to see a low true positive rate but also
a low false positive rate when θ = 5.

Metrics. To compare the execution time of an execution plan chosen by our
optimizer against a candidate plan, we measure the relative difference in time

by normalizing the execution time of the candidate plan by that for the chosen
plan. Specifically, we note the relative difference as tc

to
, where tc is the execution

time for a candidate plan and to is the execution time for the plan picked by our
quality-aware optimizer.

8. EXPERIMENTAL RESULTS

We now discuss our experimental results. Initially, we evaluate the accuracy of
the models for predicting the output composition for an extraction system under

12http://www.mturk.com

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:32 • A. Jain and P. G. Ipeirotis

Fig. 10. Actual vs. estimated number of (a) good tuples and (b) bad tuples using Scan and H1 with
minSimilarity = 0.4, for Headquarters.

different retrieval strategies, given complete information (Section 8.1). Then,
we discuss the accuracy of our parameter estimation methods when we do not
have information about the database parameters (Section 8.2). Subsequently,
we evaluate the accuracy of our optimizer for selecting an execution plan for
a desired output quality (Section 8.3) and, finally, we compare our approach
against existing techniques for selecting an execution plan (Section 8.4).

8.1 Accuracy of the Model

The first task of our evaluation examines the accuracy of the statistical mod-
els developed in Section 4. To verify the accuracy of our analysis, we initially
assume complete knowledge of the various parameters used in the analysis.
Specifically, we used the actual tuple degree distribution information along with
the values for |Dg |, |Db |, and |De |. Given a relation, for each associated execu-

tion plan we first estimate the output quality, that is, E[|T
good
retr |] and E[|T bad

retr |],
using the analysis of Section 4, for varying values of |Dr |. Then, for each |Dr |

value, we measure the actual good and bad tuples extracted by each plan.
Figure 10 shows the actual and estimated values for the good (Figure 10(a))
and bad (Figure 10(b)) tuples generated by the execution plan for Headquarters

that uses Scan and H1 with minSimilarity = 0.4. Figures 11 and 12 show the
corresponding results for the Automatic Query Expansion and Filtered Scan
retrieval strategies. In general, our estimated values are close to the actual
ones, confirming the accuracy of our analysis. (The results are highly similar
for other settings.)

For the analysis for the bad tuples for Filtered Scan (e.g., Figure (b)), our
models underestimate the number of generated bad tuples because of a model-
ing choice: We assume that the classifier output does not affect the probability
distribution of the noise (see Section 3.1). However, this is not always true in
reality. In fact, the bad documents that “survive” the classification step tend to
contain bad tuples with noise distribution closer to the signal distribution; this
results in higher false positive rates for the bad tuples coming from bad docu-
ments that pass the document classification filter of Filtered Scan. For instance,

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:33

Fig. 11. Actual vs. estimated number of (a) good tuples and (b) bad tuples using Filtered Scan and
H1 with minSimilarity = 0.4, for Headquarters.

Fig. 12. Actual vs. estimated number of (a) good tuples and (b) bad tuples using Automatic Query
Expansion and H1 with minSimilarity = 0.4, for Headquarters.

we observed that for a relatively small number of bad tuples in Headquarters,
all documents that contain these tuples survived the classification step, thus
resulting in higher-than-estimated values for the number of bad tuples.

As part of our experimental evaluation, we also study the estimated number
of times that we observe a tuple after processing |Dr | documents. Specifically,
given |Dr |, we use our model along with the actual values for the tuple frequen-
cies to derive, for each tuple, the expected number of times that we will observe it
in the output after processing |Dr | documents. For each tuple, we also derive the
actual number of times we observe the tuple in the output. Given the estimated
and the actual number of times we observe a tuple, we studied the distribution
of the estimation error, computed as the number of actual observations minus
the estimated number of observations, across all tuples. Figure 13 shows this
distribution for good tuples for Scan (Figure 13(a)), Filtered Scan (Figure 13(b)),
and Automatic Query Expansion (Figure 13(c)); Figure 14 shows the numbers
for bad tuples for Scan (Figure 14(a)), Filtered Scan (Figure 14(b), and Auto-
matic Query Expansion (Figure 14(c)). For the case of good tuples, we observe
that for about 99% of the tuples the estimation error is less than 1, meaning that

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:34 • A. Jain and P. G. Ipeirotis

Fig. 13. Distribution of the estimation error for good tuples using (a) Scan (b) Filtered Scan; and
(c) Automatic Query Expansion, for H1 with minSimilarity = 0.4 when |Dr | = |D|/2 (log-scale).

Fig. 14. Distribution of the estimation error for bad tuples using (a) Scan, (b) Filtered Scan; and
(c) Automatic Query Expansion, for H1 with minSimilarity = 0.4 when |Dr | = |D|/2 (log-scale).

our proposed analytical models fit well to a significant fraction of the database
tuples. Furthermore, for each of the document retrieval strategies, we observed
the estimation error to be approximately normally distributed around a mean
of 0. This strengthens our previous observations: Earlier, we showed that the
estimated number of good tuples for varying number of database documents
retrieved is close to the actual values. For the case of bad tuples we observe
that for about 95% (for Scan) and about 99% (for Filtered Scan and Automatic
Query Expansion) of the tuples, the estimation error is zero. For Scan, the esti-
mation error is approximately normally distributed around the mean of 0. This
is in line with our previous observations: Figure 10 suggested that our model
accurately estimates the output composition. On the other hand, as observed
earlier, the estimation error for Filtered Scan and Automatic Query Expan-
sion is skewed towards negative values, due to the reasons that we discussed
earlier.

8.2 Accuracy of Parameter Estimation

In the evaluation presented earlier, we have seen that our techniques work well
when they have access to the correct parameter values for a database. Now,
we examine the accuracy of our parameter estimation algorithms presented
in Section 5, which is critical to the accuracy of our optimizer. Specifically, we
evaluate the performance of four estimation approaches from Section 5, namely,
PT-Exh, PT-Iter-MLE, PT-Iter-LogR, and UP (see Table II).

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:35

Fig. 15. Actual vs. estimated values of the frequency distribution parameters for (a) good tuples
and (b) bad tuples.

Fig. 16. Actual vs. estimated values for (a) |Tgood| and (b) |Tbad|.

Figure 15 shows the estimated and actual values for the power-law exponent
for the good tuples (i.e., βg , see Figure 15(a)), and for the bad tuples (i.e., βb, see
Figure 15(b)), as a function of the percentage of database documents processed.
The figures also show the actual value for βg and βb by fitting a power law to the
actual tuple frequency distribution using MLE and using log-based regression
methods (Section 5.1). We refer to these actual values as Act-MLE and Act-

LogR, respectively. Figure 16 shows the estimated and actual values for |Tgood|

(Figure 16(a)) and |Tbad| (Figure 16(b)), for varying percentage of the database
documents processed. Finally, Figure 17 shows the estimated and actual values
for |Db |

|D|
and |De |

|D|
.

The UP method tends to underestimate the parameter values associated
with good tuples, that is, the values for βg (see Figure 15(a)) and |Tgood| (see
Figure 16(a)). This is due to the fact that the overall number of good tuples in the
database is relatively lower than the total number of bad tuples, which results in

a small value for the fraction
|Tgood|

|Tgood|+|Tbad|
used by the UP approach (Section 5.3).

In effect, a small value for this fraction reduces the MLE approach’s ability

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:36 • A. Jain and P. G. Ipeirotis

Fig. 17. Actual vs. estimated values for (a) |Db |
|D|

and (b) |De |
|D|

.

to differentiate between different values for
|Tgood|

|Tgood|+|Tbad|
that we exhaustively

plug-in, and thus UP picks a smaller-than-actual value for |Tgood|. We can take
this effect into consideration by using Bayesian priors [Gelman et al. 2003;
Goldstein et al. 2004] on the parameter values to guide our estimation process,
by assuming some prior distribution for the parameter values. Interestingly,
though, the UP method converges quickly to a final value and is appealing for
one-time parameter estimation scenarios.

Among the three different partition-based estimation methods (see Sec-
tion 5.2), an important case is for PT-Iter-LogR when estimating βg and |Tgood|

for small values for |Dr |. As seen in Figure 16, PT-Iter-LogR requires relatively
larger database samples to generate an estimated value for |Tgood|. This can be
traced to one main reason: For small database samples, the observed tuple fre-
quencies do not contain enough observations across different frequency values,
that is, the tuple frequency for the observed tuples is identical. Since regression-
based techniques require at least two data points (i.e., we need to observe at
least two different values of the tuple frequencies), PT-Iter-LogR fails to identify
the estimated parameters for small database samples. PT-Iter-LogR converges
to the actual values only after we have observed a good representative sample
of the tuple frequency distributions.

To collectively examine the quality of the estimates generated by each tech-
nique, we compared the number of good and bad tuples estimated for different
numbers of database documents retrieved and for various execution strategies.
Figure 18 shows the estimated and actual number of good tuples (Figure 18(a))
and bad tuples (Figure 15(b)) for each estimation method, after processing dif-
ferent percentages of the database with Scan. For reference, we show the esti-
mated values using actual tuple frequencies; see the lines labeled Est-All-Info.
Our results show that our estimates of the quality composition are close to the
actual values, with PT-Iter-MLE outperforming other techniques especially for
good tuples. In Figure 19, we show the corresponding results for FilteredScan.

To summarize, our experiments established the accuracy of an important as-
pect of our optimization approach, namely, the parameter estimation step. As
shown previously, the MLE-based approaches outlined in Section 5 correctly

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:37

Fig. 18. Actual vs. estimated number of (a) good tuples and (b) bad tuples derived for H1 with
minSimilarity = 0.4 and Scan, using estimated parameters for Headquarters.

Fig. 19. Actual vs. estimated number of (a) good tuples and (b) bad tuples derived for H1 with
minSimilarity = 0.4 and Filtered Scan, using estimated parameters for Headquarters.

converge to the actual values of the parameters. Furthermore, using these es-
timated values in our analytical model leads to correctly estimating the output
compositions for various execution strategies.

8.3 Quality of Choice of Execution Strategies

After verifying the accuracy of the model and of the parameter estimation,
we now study the accuracy of the optimizer choices. Specifically, we examine
whether the optimizer picks the fastest execution strategy for given output-
composition requirements. In particular, the optimizer takes as input two
thresholds, τg and τb, specifying that the extraction relation must contain

at least τg good tuples and at most τb bad tuples, that is, |T
good
retr | ≥ τg and

|T bad
retr | ≤ τb. (Alternatively, we can specify thresholds for precision and recall of

the output.)
For these experiments, we use the PT-Iter-MLE estimation method from

Section 5 and our analysis of Section 4 to derive the quality curves for each
combination of retrieval strategy and extraction system. Given the output

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:38 • A. Jain and P. G. Ipeirotis

Fig. 20. Actual vs. estimated number of (a) good tuples and (b) bad tuples derived for H1 with
minSimilarity = 0.4 and Automatic Query Expansion, using estimated parameters for Headquar-

ters.

restrictions |T
good
retr | ≥ τg and T bad

retr ≤ τb, we identify the points on the quality

curves for which E[|T
good
retr |] ≥ τg and E[|T bad

retr |] ≤ τb. Then, across these qualify-

ing candidate execution plans, we pick the one with the fastest execution time.
To evaluate the choice of execution strategies for a query, we compare the exe-

cution time for the chosen plan S against that of the alternate executions plans
that also meet the τg and τb output quality requirements. Tables III and IV
show the results of our experiments for Headquarters and Executives, respec-
tively, for different values of τg and τb. For each choice of values for τg and τb,
we show the number of candidate plans, among the total 24 plans considered
(Section 7), that meet the τg and τb output quality requirements. Furthermore,
we show the number of candidate plans that result in faster executions than
the plan chosen by our optimizer and the number of candidate plans that result
in slower executions than the chosen plan. Finally, to highlight the difference
between the execution time for the chosen execution strategy and other can-
didates, we compute the relative times for all plans as discussed in Section 7
and then show the minimum and maximum values as range indicators for both
plans that are faster and slower than the chosen plan.

As shown in the results, our optimizer selects Automatic Query Expansion as
the document retrieval strategy for lower values of τg and τb, and progresses to-
wards selecting Filtered Scan, eventually picking Scan for higher values of τg .
Automatic Query Expansion and Filtered Scan focus on the good documents
and aim at generating relations with fewer bad tuples as compared to Scan.
However, the maximum achievable number of good tuples are limited for Auto-
matic Query Expansion and Filtered Scan (see Section 4) and thus, for higher τg

values, the optimizer picks Scan as the retrieval strategy. In our experiments,
we observed that execution plans that employ Filtered Scan result in higher
execution times that those using Automatic Query Expansion and therefore,
Automatic Query Expansion is picked over Filtered Scan whenever possible.
For most cases, the optimizer selects the fastest execution plan among the can-
didate plans, as indicated by the low or zero values for the number of candidates

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:39

Table III. Statistics on the Choice of Execution Strategies for Different Output Quality
Requirements

Relative Time Range
Output Quality
Requirements Chosen Plan Faster Plans Slower Plans# Candidate # Faster # Slower
τg τb Plans IE θ X Plans Plans min max min max

8 1 9 H1 0.8 AQG 0 4 — — 7.87 49.75
8 4 13 H1 0.6 AQG 0 9 — — 7.83 51.19
8 8 15 H1 0.6 AQG 0 10 — — 7.83 51.19
8 16 20 H1 0.4 AQG 0 14 — — 7.83 51.19

16 3 12 H1 0.6 AQG 0 6 — — 19.33 74.71
16 8 15 H1 0.6 AQG 0 10 — — 17.73 76.88
16 16 20 H1 0.4 AQG 0 12 — — 11.33 76.88
16 32 21 H1 0.4 AQG 0 14 — — 11.33 76.88
16 80 24 H1 0.4 AQG 0 16 — — 11.33 76.88
32 6 12 H1 0.6 AQG 0 6 — — 29.79 129.27
32 16 15 H1 0.6 AQG 0 10 — — 28.70 129.27
32 32 20 H1 0.4 AQG 0 14 — — 26.94 129.27
32 64 21 H1 0.4 AQG 0 14 — — 26.94 129.27
32 160 24 H1 0.4 AQG 0 16 — — 26.94 129.27
64 12 11 H1 0.6 AQG 0 7 — — 33.25 134.86
64 32 15 H1 0.6 AQG 0 10 — — 31.52 134.86
64 64 19 H1 0.4 AQG 0 13 — — 25.92 134.86
64 128 23 H1 0.2 AQG 0 20 — — 1.64 221.73
64 320 24 H1 0.2 AQG 0 22 — — 1.64 221.73

128 25 11 H1 0.6 AQG 0 7 — — 51.38 167.21
128 64 15 H1 0.6 AQG 0 10 — — 47.16 167.21
128 128 18 H1 0.4 AQG 0 16 — — 1.46 244.31
128 256 23 H1 0.2 AQG 0 18 — — 1.46 244.31
128 640 24 H1 0.2 AQG 0 20 — — 1.46 244.31
256 51 12 H1 0.6 AQG 0 8 — — 75.11 329.66
256 128 17 H1 0.4 AQG 0 10 — — 72.54 329.66
256 256 19 H1 0.4 AQG 0 13 — — 64.01 329.66
256 512 21 H1 0.2 AQG 0 18 — — 1.17 384.85
256 1280 20 H1 0.2 AQG 0 18 — — 1.17 384.85
512 102 8 H2 0.6 FScan 6 1 0.25 0.95 1.06 1.06
512 256 11 H2 0.4 FScan 1 8 0.96 0.96 1.02 4.38
512 512 11 H2 0.4 FScan 2 8 0.85 0.96 1.02 4.38
512 1024 14 H2 0.2 FScan 1 12 0.94 0.94 1.07 4.87
512 2560 16 H2 0.2 Scan 9 6 0.27 0.85 1.02 1.40

1024 204 3 H2 0.6 FScan 0 2 — — 3.61 4.04
1024 512 11 H2 0.4 FScan 1 8 0.96 0.96 1.01 4.31
1024 1024 9 H2 0.4 FScan 2 6 0.85 0.96 1.07 4.31
1024 2048 14 H2 0.2 FScan 1 11 0.94 0.94 1.07 4.79
1024 5120 11 H2 0.2 Scan 1 6 0.85 0.85 1.00 1.46
2048 20480 2 H2 0.2 Scan 0 0 — — — —

(Specified using τg and τb, and for Headquarters). (IE stands for information extraction system, and X for

document retrieval strategy.)

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:40 • A. Jain and P. G. Ipeirotis

Table IV. Statistics on the Choice of Execution Strategies for Different Output Quality
Requirements

Relative Time Range
Output Quality
Requirements Chosen Plan Faster Plans Slower Plans# Candidate # Faster # Slower

τg τb Plans IE θ X Plans Plans min max min max

10 8 8 E1 0.8 AQG 0 7 — — 1.12 23.97
10 10 10 E1 0.8 AQG 0 9 — — 1.12 23.97
10 60 20 E1 0.8 AQG 0 19 — — 1.00 23.97
10 110 20 E1 0.8 AQG 0 19 — — 1.00 23.97
30 24 8 E1 0.8 AQG 0 7 — — 1.13 45.00
30 30 8 E1 0.8 AQG 0 7 — — 1.13 45.00
30 180 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 44.86
30 330 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 44.86
45 36 8 E2 0.6 AQG 2 5 0.89 1.00 1.00 58.88
45 45 8 E2 0.6 AQG 2 5 0.89 1.00 1.00 58.88
45 270 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 66.13
45 495 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 66.13
70 56 8 E1 0.8 AQG 0 7 — — 1.13 46.63
70 70 8 E1 0.8 AQG 0 7 — — 1.13 46.63
70 420 20 E1 0.2 AQG 2 17 0.96 0.96 1.08 44.75
70 770 20 E1 0.2 AQG 2 17 0.96 0.96 1.08 44.75

150 200 3 E2 0.6 FScan 0 2 — — 1.02 1.09
150 300 5 E1 0.4 FScan 0 4 — — 1.09 1.25
175 225 1 E2 0.6 FScan 0 0 — — — —
175 500 3 E1 0.4 FScan 0 2 — — 1.09 1.15
175 150 1 E2 0.6 FScan 0 0 — — — —
345 3795 3 E2 0.6 Scan 0 2 — — 1.00 1.13
345 2070 3 E2 0.6 Scan 0 2 — — 1.00 1.13
345 2520 3 E2 0.6 Scan 0 2 — — 1.00 1.13
375 3000 3 E2 0.6 Scan 0 2 — — 1.00 1.14
410 660 1 E2 0.6 Scan 0 0 — — — —
490 6660 2 E2 0.2 Scan 0 1 — — 1.14 1.14

(Specified using τg and τb, and for Executives). (IE stands for information extraction system, and X for document

retrieval strategy.)

with faster execution than the chosen plan. For cases where the chosen plan is
not the fastest option, the execution time of faster candidates is very close to
the one of the chosen plan (e.g., relative time for faster plans is close to 1). On
the other hand, the alternative slower plans, eliminated by our optimizer, have
execution times that can be an order of magnitude larger.

In our next experiment, we used our quality-aware optimizer for generat-
ing Headquarters, while considering query execution strategies that involve
both automated information extraction systems, such as Snowball, and manual
information extraction systems generated using the Mechanical Turk service
(see Section 7). We observed that, in general, the manual extractions tend to
be more quality-oriented than the automated extractions, but at the same time
more expensive in terms of time and monetary cost.

Table V shows the choices of execution strategies picked by the optimizer
for a random set of 2,000 documents (and corresponding results are given in
Table VI). As seen in the table, using the automated extraction system (Au)
results in “quick-and-dirty” executions, that is, our optimizer selects Au when

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:41

Table V. Choice of Execution Strategies Using Query Execution Strategies that Involve Manual
(Ma) and Automated (Au) for Different Output Quality Requirements

Relative time range
Output

Quality Requirement Chosen Plan Faster Plans Slower Plans
Candidate # Faster # Slower

τg τb Plans IE θ Plans Plans min max min max

10 10 1 Ma 5 0 0 — — — —
40 80 4 Ma 2 0 3 — — 4.00 12.75
40 500 6 Au 0.6 0 5 — — 80.30 665.01
60 2000 6 Au 0.2 0 5 — — 43.50 93.50

200 200 2 Ma 4 0 1 — — 6.07 6.07
300 320 3 Ma 3 0 2 — — 4.85 7.27
400 300 1 Ma 4 0 0 — — — —
400 1400 4 Ma 1 0 3 — — 2.40 6.08

(Specififed using τg and τb, and for Headquarters). (IE stands for information extraction system.)

the user-specified requirement for τb is relatively high. On the other hand,
using the manual extraction system (Ma) results in “slow-and-high-quality”
executions and our optimizer appropriately selects Ma when users desire high-
quality results.

8.4 Comparing with Baselines

Table VII compares the performance of our optimization approach, Qawr with
the baseline Qign for different choices of values for the quality thresholds τg and
τb. For each value for τg and τb, we show the choice of execution plan along with
the actual quality and the execution time for both Qawr and Qign. As shown in
Table VII, Qign fails to produce executions that meet the τg and τb requirements
for all cases; on the other hand, Qawr produces execution plans that meet all
but one of τg and τb requirements. The execution plans picked by Qign are
generally faster than those picked by Qawr, as Qign largely overestimates the
output quality and suggests retrieving fewer documents than necessary, but
the Qign executions do not meet the output given quality requirements.

We compared Qawr with two variations of Heur. Specifically, for our first
variation we used Headquarters as the training task and Executives as the
target task; for our second variation we switched the training and target task
relations. Table VIII shows the performance of Heur and Qawr for the task of
extracting the Executives relation, for different choices of values for the qual-
ity thresholds. (To allow for a fair comparison, we used only one extraction
system per relation.) As shown in Table VIII, Heur sometimes fails to pick a
suitable execution plan, even when such a plan exists. In other cases, when
both techniques pick an execution plan, the chosen execution plans meet the
quality requirements. However, the execution time of the plans chosen by Heur

can be orders of magnitude higher than that for the Qawr plan. The analogous
experiments for the task of generating Headquarters generated similar results.
In this case, we observed that the Heur execution plans were faster than those
picked by Qawr; but unfortunately, the Heur plans did not meet the quality
requirements, unlike the Qawr plans.

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:42 • A. Jain and P. G. Ipeirotis

Table VI. Statistics on the Choice of Execution Strategies Using Qign and Qawr for
Different Output Quality Requirements

Execution based on Qign Execution based on Qawr

Output Execution Output Execution Output
Quality Requirement Plan Quality Relative Plan Quality

τg τb IE θ X |T
good
retr | |T bad

retr | Time IE θ X |T
good
retr | |T bad

retr |

8 4 H1 0.4 Scan 0 0 0.05 H1 0.6 AQG 39 6
8 16 H1 0.4 Scan 0 0 0.1 H1 0.4 AQG 45 23

16 8 H1 0.4 Scan 0 0 0.1 H1 0.6 AQG 39 6
16 16 H1 0.2 Scan 0 6 0.16 H1 0.4 AQG 45 23
64 12 H2 0.2 Scan 0 9 0.08 H1 0.6 AQG 77 22
64 32 H2 0.2 Scan 0 14 0.1 H1 0.6 AQG 77 22

128 25 H2 0.2 Scan 0 18 0.09 H1 0.6 AQG 293 99
128 64 H2 0.2 Scan 0 23 0.12 H1 0.6 AQG 293 99
256 51 H2 0.2 Scan 0 34 0.03 H2 0.6 FScan 137 63
256 128 H2 0.2 Scan 2 46 0.03 H2 0.4 FScan 258 247
512 102 H2 0.2 Scan 4 76 0.03 H2 0.6 FScan 254 106
512 256 H1 0.4 AQG 79 48 0.05 H2 0.4 FScan 391 391

1024 512 H1 0.4 AQG 309 256 0.02 H2 0.6 Scan 1169 519

(specified using τg and τb, and for Headquarters). (IE stands for information extraction system and X for

document retrieval strategy.)

Table VII. Statistics on the Choice of Execution Strategies Using Qign and Qawr for
Different Output Quality Requirements

Execution based on Qign Execution based on Qawr

Output Execution Output Execution Output
Quality Requirement Plan Quality Relative Plan Quality

τg τb IE θ X |T
good
retr | |T bad

retr | Time IE θ X |T
good
retr | |T bad

retr |

10 40 E1 0.2 Scan 0 9 1.722 E1 0.8 AQG 24 17
10 80 E1 0.2 Scan 0 19 0.32 E1 0.8 AQG 24 17
45 195 E1 0.8 AQG 16 24 0.265 E1 0.4 AQG 78 161
70 270 E1 0.8 AQG 16 24 0.02 E1 0.2 AQG 94 416
70 1120 E1 0.8 AQG 35 65 0.01 E1 0.2 AQG 94 416

115 150 E1 0.8 AQG 16 24 0.04 E2 0.4 FScan 110 356

(specified using τg and τb, and for Executives). (IE stands for information extraction system and X for

document retrieval strategy.)

To summarize, Qawr outperforms the two baselines, namely, Qign and Heur,
and selects superior execution plans that efficiently meet the output quality
requirements by taking into account the quality of the extraction systems and
the associated retrieval strategies.

Evaluation conclusion. We demonstrated the efficiency and effectiveness of
our quality-based optimizer for selecting efficient execution plans that meet the
user-specified quality requirements. Furthermore, we compared with existing
baselines (one based on Ipeirotis et al. [2006] and one based on heuristics) and
we demonstrated the superiority of our approach.

9. RELATED WORK

Information extraction has received significant attention in the recent years
(see Riloff and Jones [1999], Etzioni et al. [2004], Agichtein and Gravano [2000],

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:43

Table VIII. Statistics on the Choice of Execution Strategies Using Heur and Qawr for Different
Output Quality Requirements

Output Execution based on Qign Execution based on Qawr

Quality Execution Output Execution Output
Requirement Plan Quality Plan Quality

Relative

τg τb θ X |T
good
retr | |T bad

retr | Time θ X |T
good
retr | |T bad

retr |

2 10 0.6 AQG 5 4 1.65 0.8 AQG 15 9
10 380 0.6 Scan 43 118 34.94 0.8 AQG 24 17
45 1495 0.6 Scan 225 764 104.2 0.6 AQG 73 76
60 2120 0.6 Scan 294 963 133.55 0.2 AQG 85 336
75 770 — — — — — 0.2 AQG 99 458

115 2050 — — — — — 0.4 AQG 143 328

(Specified by τg and τb, and for Headquarters.) (X stands for document retrieval strategy.)

Mansuri and Sarawagi [2006], Pasca et al. [2006] and references therein). A
large family of existing solutions [Riloff and Jones 1999; Etzioni et al. 2004;
Agichtein and Gravano 2000; Mansuri and Sarawagi 2006; Pasca et al. 2006] fo-
cus on improving extraction accuracy by directly manipulating the information
extraction system for a given task. Another direction of work related to infor-
mation extraction is that of representation: Gupta and Sarawagi [2006] and Ca-
farella et al. [2007] presented approaches to use probabilistic databases to ma-
terialize extracted relations after appropriately deriving the probability of each
tuple being correct, following the Scan strategy that we discussed in the article.

Retrieval strategies for information extraction traditionally use the Scan
strategy, where every document is processed by the information extraction sys-
tem (e.g., Grishman [1997], Yangarber and Grishman [1998]). Some systems
use the Filtered Scan strategy, where only the documents that match specific
URL patterns (e.g., Brin [1998]) or regular expressions (e.g., Grishman et al.
[2002]) are processed further. Agichtein and Gravano [Agichtein and Gravano
2003] presented query-based execution strategies. More recently, Etzioni et al.
[2004] used what could be viewed as an instance of Automatic Query Genera-
tion to query generic search engines for extracting information from the Web.
Cafarella and Etzioni [Cafarella and Etzioni 2005] presented a complemen-
tary approach of constructing a special-purpose index for efficiently retrieving
promising text passages for information extraction. Such document (and pas-
sage) retrieval improvements can be naturally integrated into our framework.
These retrieval strategies, though, have resulted in relatively “static” pipelines
for an extraction task. In this article, we initiate the need to study (in a prin-
cipled manner) and appropriately exploit the effects of available configuration
parameters for extraction systems (as black-boxes) and various crawl- or query-
based document retrieval strategies.

ROC curves have been long used to study the performance of radio receivers;
in machine learning, ROC curves are preferred when evaluating the ability
of binary decision-making process, such as classifiers, at discriminating signal
from noise. ROC curves have been so far mainly used to graphically summarize
the performance of a decision-making process. In the context of information
extraction systems, Hiyakumoto et al. [Hiyakumoto et al. 2005] explored ROC

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:44 • A. Jain and P. G. Ipeirotis

curves but mainly to generate “rules” based on the visual representation of
ROC curves. In our article, we introduced the ROC generating process for an
information extraction system and showed how it can be effectively utilized to
build robust optimization techniques.

Our parameter estimation and optimization approach is conceptually re-
lated to adaptive query execution techniques developed for relational data
(e.g., Ives et al. [1999], Avnur and Hellerstein [2000]) and to database sam-
pling techniques (e.g., Chaudhuri et al. [1998]). The basic difference is that we
assume a parametric retrieval model, which in turn allows us to use a maximum
likelihood-based estimation model for parameter estimation.

There is also work on estimating the output quality for an extraction sys-
tem, although existing research focuses on estimating the quality of extraction
per se, and not the effect of document retrieval strategies on output quality.
Agichtein [Agichtein 2005] presented a heuristic-based approach on automati-
cally tuning an extraction system’s parameter. To identify a good configuration,
Agichtein uses precision-recall curves, and thus this strategy suffers from be-
ing sensitive to the distribution of test set documents. In contrast, we decouple
the effect of test set on performance measurement by using ROC curves to
characterize an extraction system. Downey et al. [2005] present a probabilis-
tic model for deciding the confidence in a tuple, using evidence gathered from
the text database and appropriately accounting for the strength of this evi-
dence. The work in Downey et al. [2005] estimates the probability that a tuple
is good, based on its frequency on the set of extracted tuples. The technique,
though, assumes a Scan retrieval strategy and will not work for other retrieval
models.

Earlier work [Ipeirotis et al. 2007; Jain et al. 2007a, 2007b] has presented
query optimization approaches for extraction tasks but substantially differs
from our work presented in this article. Ipeirotis et al. [2007] presented an-
alytic models for predicting the execution time of various document retrieval
strategies, with the goal of picking the strategy that reaches a target recall in
the minimum amount of time. We build on Ipeirotis et al. [2007], and expand
it to include the concept of quality estimation. In particular, we remove the
(unrealistic) assumption that the extraction system is perfect, and we estimate
the execution time and the quality of the output; we also pick the appropri-
ate settings for the extraction system. Furthermore, we present an estimation
framework that allows us to deal with unknown parameter values of the es-
timation framework. Our experimental comparison in Section 8.4 shows that
our techniques outperform the approach in Ipeirotis et al. [2007]. Finally, Jain
et al. [2007a] presented a query optimization approach for simple SQL queries
over (structured data extracted from) text databases. We consider multiple doc-
ument retrieval strategies to process a SQL query, including Scan, Automatic
Query Generation, and other query-based strategies. Unlike our setting, how-
ever, Jain et al. [2007a] focuses on extraction scenarios that involve multiple
extraction systems, whose output might then need to be integrated and joined to
answer a given SQL query. The SQL query optimization approach in Jain et al.
[2007a] accounts for errors originating in the information extraction process,
but relies mainly on heuristics and does not use the rigorous statistical models

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:45

that we presented here, and hence cannot benefit from MLE-based estimation
to estimate the values of unknown database parameters.

10. FURTHER DISCUSSION, FUTURE DIRECTIONS, AND CONCLUSION

We introduced a rigorous model for estimating the quality of the output of an
information extraction system when paired with a document retrieval strategy.
We showed how to generate a ROC curve that can generate a statistically robust
performance characterization of an extraction system, and then built statistical
models that use the ROC curves concept to build the quality curves that predict
the performance of coupling an extraction system with a retrieval strategy. Our
analysis helps predict the execution time and output quality of an execution
plan. Based on our analysis, we then show how to use these predictions to
pick the fastest execution plan that generates output that satisfies the quality
characteristics.

Our work can be expanded in a number of ways. An important step is to
extend our analysis and the evaluation thereof for other information extraction
systems. While information extraction is an exciting research area, much work
remains to be done until extraction systems can be easily deployed and used in a
black-box form as used in this article, and, hence, the feasibility of our approach
naturally relies on the progress in the field of information extraction. As new
information extraction systems become available, the experimental evaluation
of our query optimization approaches can be expanded to include them. Another
direction is to include n-ary relations for values of n larger than 2: Our research
has thus far focused on extraction systems that generate binary relations. For
n-ary relations, we need to adapt the tuple verification method discussed in
Section 7 to automate the evaluation of tuples with more than two attributes.
For this, one simple approach is to decompose each n-ary tuple into its binary
constituents, and individually evaluate each binary component, deeming the n-
ary tuple as good if each binary component is identified to be a good binary tuple.

Besides information extraction techniques, we could also expand our experi-
mental evaluation by using other text databases, such as arbitrary collections of
Web pages. The core principles underlying our query optimization approaches
are general, and our optimization approaches and evaluation techniques do
not make any restrictive assumptions regarding the datasets used. So, we ex-
pect to observe results similar to those presented here when using other text
collections. However, to obtain good performance, identifying the underlying
distribution of the frequency of the tuples may be useful: Our analysis exploits
the knowledge of the general family of the distribution (i.e., a power-law distri-
bution) of tuple frequencies for both good and bad tuples. While most real-world
text collections follow a power-law distribution, our analysis can also be eas-
ily extended for other distributions. Fortunately, several methods have been
proposed for determining the distribution parameters for common distribution
classes, which can then be plugged into our analysis.

In our query optimization approach, we follow a “0/1” approach and deem
each tuple to be good or bad based on external gold-standard sets. A promis-
ing direction for future research is to follow a holistic approach that considers

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:46 • A. Jain and P. G. Ipeirotis

evidence (e.g., tuple frequency) gathered from the underlying database [Downey
et al. 2005]. To stay within a database framework, such an approach would be
a Group-By operation, examining the full output of the query before generating
the output. For instance, users may specify the minimum number of documents
in which a tuple must occur.

At the heart of our query optimization work lies the critical task of determin-
ing whether an observed tuple is good. This task is important for two purposes:
(a) to evaluate the output of the extraction systems and, in turn, the perfor-
mance of the query optimizer during evaluation; and (b) to derive database-
specific statistics used during parameter estimation. Automated verification
at a large scale is a hard problem and, similarly, finding comprehensive gold-
standard sets may not be feasible in some cases [Jain et al. 2009]. Ideally, we
would like to automatically verify a tuple based on the evidence gathered from
the underlying database in a reliable manner. Approaches that leverage small-
scale manual annotation (e.g., using on-demand services like Amazon’s Me-
chanical Turk13) to improve scalable automatic verification techniques [Sheng
et al. 2008] are promising directions for improving the current state-of-the-art.

Overall, we believe that the ideas behind our query optimization approaches
are fairly generic and we expect them to be adaptable to ongoing developments
in information extraction. Furthermore, although continued research will un-
doubtedly improve the performance of information extraction systems, the
underlying principles of selecting a desirable execution plan or an extraction-
system knob configuration are widely applicable and we expect them to main-
tain their usefulness.

REFERENCES

ADAMIC, L. A. AND HUBERMAN, B. A. 2002. Zipf ’s law and the Internet. Glottometrics 3, 143–150.
AGICHTEIN, E. 2005. Extracting relations from large text collections. Ph.D. thesis, Columbia Uni-

versity.
AGICHTEIN, E. AND GRAVANO, L. 2000. Snowball: Extracting relations from large plain-text collec-

tions. In Proceedings of the 5th ACM Conference on Digital Libraries (DL’00).
AGICHTEIN, E. AND GRAVANO, L. 2003. Querying text databases for efficient information extraction.

In Proceedings of the 19th IEEE International Conference on Data Engineering (ICDE’03).
AGICHTEIN, E., IPEIROTIS, P. G., AND GRAVANO, L. 2003. Modeling query-based access to text

databases. In Proceedings of the 6th International Workshop on the Web and Databases,

(WebDB’03), 87–92.
AVNUR, R. AND HELLERSTEIN, J. M. 2000. Eddies: Continuously adaptive query processing. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data, 261–272.
BRIN, S. 1998. Extracting patterns and relations from the World Wide Web. In Proceedings of the

1st International Workshop on the Web and Databases (WebDB’98). 172–183.
CAFARELLA, M. J. AND ETZIONI, O. 2005. A search engine for natural language applications. In

Proceedings of the 14th International World Wide Web Conference (WWW’05). 442–452.
CAFARELLA, M. J., RE, C., SUCIU, D., ETZIONI, O., AND BANKO, M. 2007. Structured querying of Web

text: A technical challenge. In 3rd Biennial Conference on Innovative Data Systems Research

(CIDR’07).
CHAUDHURI, S., MOTWANI, R., AND NARASAYYA, V. R. 1998. Random sampling for histogram construc-

tion: How much is enough? In Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD’98), 436–447.

13http://www.mturk.com

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

A Quality-Aware Optimizer for Information Extraction • 5:47

COHEN, W. W. 1995. Fast effective rule induction. In Proceedings of the 12th International Con-

ference on Machine Learning (ICML’95), 115–123.
COHEN, W. W. 2004. Minorthird: Methods for identifying names and ontological relations in text

using heuristics for inducing regularities from data. http://minorthird.sourceforge.net.
DOWNEY, D., ETZIONI, O., AND SODERLAND, S. 2005. A probabilistic model of redundancy in information

extraction. In Proceedings of the 19th International Joint Conference on Artificial Intelligence

(IJCAI’05), 1034–1041.
EGAN, J. P. 1975. Signal Detection Theory and ROC Analysis. Academic Press.
ERDREICH, L. S. AND LEE, E. T. 1981. Use of relative operating characteristic analysis in epidemi-

ology. Amer. J. Epidemiol. 114, 5, 649–662.
ETZIONI, O., CAFARELLA, M. J., DOWNEY, D., KOK, S., POPESCU, A.-M., SHAKED, T., SODERLAND, S., WELD,

D. S., AND YATES, A. 2004. Web-Scale information extraction in KnowItAll (preliminary results).
In Proceedings of the 13th International World Wide Web Conference (WWW’04), 100–110.

FAWCETT, T. 2003. ROC graphs: Notes and practical considerations for data mining researchers.
Tech. rep., HPL-2003-4, HP Labs.

GELMAN, A., CARLIN, J. B., STERN, H. S., AND RUBIN, D. B. 2003. Bayesian Data Analysis, 2nd ed.
Chapman and Hall/CRC.

GOLDSTEIN, M., MORRIS, S., AND YEN, G. G. 2004. Problems with fitting to the power-law distribu-
tion. The Eur. Phys. J. B - Condensed Matter Complex Syst. 41, 2, 255–258.

GRISHMAN, R. 1997. Information extraction: Techniques and challenges. In Information Extraction:

A Multidisciplinary Approach to an Emerging Information Technology, International Summer

School, (SCIE-97). 10–27.
GRISHMAN, R., HUTTUNEN, S., AND YANGARBER, R. 2002. Information extraction for enhanced access to

disease outbreak reports. J. Biomedical Inf. 35, 4, 236–246.
GUPTA, R. AND SARAWAGI, S. 2006. Curating probabilistic databases from information extraction

models. In Proceedings of the 32nd International Conference on Very Large Databases (VLDB’06).
HIYAKUMOTO, L., LITA, L. V., AND NYBERG, E. 2005. Multi-Strategy information extraction for question

answering. In Proceedings of the International Florida Artificial Intelligence Research Society

Conference (FLAIRS’05), 678–683.
IPEIROTIS, P. G., AGICHTEIN, E., JAIN, P., AND GRAVANO, L. 2006. To search or to crawl? Towards a

query optimizer for text-centric tasks. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, 265–276.
IPEIROTIS, P. G., AGICHTEIN, E., JAIN, P., AND GRAVANO, L. 2007. Towards a query optimizer for text-

centric tasks. ACM Trans. Database Syst. 32, 4.
IVES, Z. G., FLORESCU, D., FRIEDMAN, M., LEVY, A. Y., AND WELD, D. S. 1999. An adaptive query execution

system for data integration. In Proceedings of the 1999 ACM SIGMOD International Conference

on Management of Data (SIGMOD’99), 299–310.
JAIN, A., DOAN, A., AND GRAVANO, L. 2007a. Optimizing SQL queries over text databases. In Proceed-

ings of the 24th IEEE International Conference on Data Engineering (ICDE’08). 636–645.
JAIN, A., DOAN, A., AND GRAVANO, L. 2007b. SQL queries over unstructured text databases. In

Proceedings of the 23rd IEEE International Conference on Data Engineering (ICDE’07).
JAIN, A., IPEIROTIS, P. G., AND GRAVANO, L. 2009. Building query optimizers for information extraction:

The SQoUT project. In SIGMOD Rec. Special Issue on Managing Information Extraction.
MACSKASSY, S. A., PROVOST, F., AND ROSSET, S. 2005. Roc confidence bands: An empirical evaluation.

In Proceedings of the 22nd International Conference on Machine Learning (ICML’05). 537–544.
MANSURI, I. AND SARAWAGI, S. 2006. A system for integrating unstructured data into relational

databases. In Proceedings of the International Conference on Data Engineering (ICDE).
NEWMAN, M. E. J. 2005. Power laws, Pareto distributions and Zipf ’s law. Contemporary Phys. 46, 5,

323–351.
PASCA, M., LIN, D., BIGHAM, J., LIFCHITS, A., AND JAIN, A. 2006. Names and similarities on the Web:

Fact extraction in the fast lane. In Proceedings of the Meeting of the Association of Computational

Linguistics (ACL).
PROVOST, F. J. AND FAWCETT, T. 2001. Robust classification for imprecise environments. Mach.

Learn. 42, 3, 203–231.
RILOFF, E. AND JONES, R. 1999. Learning dictionaries for information extraction by multi-level boot-

strapping. In Proceedings of the National Conference on Artificial Intellegence (AAAI).

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

5:48 • A. Jain and P. G. Ipeirotis

SHENG, V., PROVOST, F., AND IPEIROTIS, P. G. 2008. Get another label? Improving data quality and data
mining using multiple, noisy labelers. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’08).
YANGARBER, R. AND GRISHMAN, R. 1998. NYU: Description of the Proteus/PET system as used for

MUC-7. In Proceedings of the 7th Message Understanding Conference (MUC-7).

Received May 2008; accepted October 2008

ACM Transactions on Database Systems, Vol. 34, No. 1, Article 5, Publication date: April 2009.

