
A Quality-Based Requirement Prioritization Framework Using Binary Inputs

Carlos E. Otero, Erica Dell, Abrar Qureshi
Department of Mathematics and Computer Science

University of Virginia - College at Wise
Wise, VA USA

cotero@virginia.edu

Luis D. Otero
Department of Engineering Systems

Florida Institute of Technology
Melbourne, FL USA

lotero@fit.edu

Abstract— Despite the clear need to prioritize requirements in
software projects, finding a practical method for requirements
prioritization has proven difficult. Existing requirements
prioritization methods that provide the most consistent results
are also the most complex, and therefore the most difficult to
implement. More informal methods save time and are easier
to apply, but may not be suitable for practical scenarios
because they lack the structure and consistency required to
properly analyze requirements. This paper proposes a novel
and practical approach for prioritizing requirements in
software projects. The proposed approach attempts to quantify
the quality of requirements to provide a measurement that is
representative of all quality criteria identified for a specific
software project. The derived quality measurement can be
easily computed to serve as the main metric for requirements
prioritization.

Keywords: Requirements Engineering, Requirements
Prioritization, Desirability Functions, Software Engineering,
Software Quality,Software Process

I. INTRODUCTION
 Software is continuing to become an increasingly integral
part of day-to-day life. Its presence is ubiquitous; people
rely on software for a myriad of purposes, from controlling
safety systems in automobiles to recreation. As the
prevalence of software increases, so does the complexity, as
well as the number of requirements that are derived for
modern software projects [1]. This presents a dilemma for
program managers and software engineers, who must
complete projects given a finite amount of resources and
time. Inevitably, some requirements cannot be fulfilled if a
project is to be completed on schedule. In order to ensure
that the most important requirements are implemented, it is
essential that requirements be prioritized
appropriately. Project managers, customers, and other
stakeholders must determine the benefit and costs associated
with each requirement, and establish their relative
importance.
 Despite the clear need to prioritize requirements, finding
a simple and effective method for requirements
prioritization has proven difficult. Two important factors
associated with requirements prioritization are the benefit
and cost of each requirement [2]. However, according to
Herrmann et al., the techniques studied in their systematic
review (SR) use a process designed to estimate the benefit

of entire systems as opposed to the benefits of individual
requirements. In fact, they reported that, "We found no
methods which estimate benefit for individual
requirements." [2].
 Another challenge to requirements prioritization is that
many existing methods are too complex to be implemented
by software organizations. According to [3], project
managers still lack access to requirements prioritization
techniques that are sufficiently effective, as well as
practical. There appears to be, in existing requirements
prioritization methods, a tradeoff between consistency and
ease of use. The methods that provide the most consistent
results are also the most complex, and therefore the most
difficult to implement. More informal methods save time
and are easier to apply, but are not suitable for complex
projects because they lack the structure and consistency
required to properly analyze a complex set of requirements
[4]. In order to surmount these challenges and facilitate
widespread adoption of requirements prioritization
techniques, more practical methods must be devised.
 This paper proposes a novel approach for prioritizing
requirements in software projects. The proposed approach
attempts to quantify the quality of requirements to provide a
measurement that is representative of all quality criteria
identified for a specific software project. The derived
quality measurement can be used as the main metric for
requirements prioritization. The remainder of the paper is
organized as follows. Section II provides a brief summary of
previous work on requirements prioritization. Section III
provides a brief summary of the solution approach. Section
IV provides detailed explanations of the desirability
functions technique. Section V presents the results of a case
study. Finally, Section VI provides summarized conclusions
and highlights of the proposed approach.

II. BACKGROUND WORK
 As software has become more complex, and project
managers are forced to make concessions and trade-offs to
complete projects on schedule, requirements prioritization
has become an increasingly important part of ensuring the
success of a project. There are many compelling arguments
as to why requirements prioritization is necessary. One of
the most compelling is made by Karl Wiegers. He argues
that limited resources inevitably mean that some

2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation

978-0-7695-4062-7/10 $26.00 © 2010 IEEE

DOI 10.1109/AMS.2010.48

187

requirements cannot be implemented, and that the decisions
about which requirements are the most important are better
made in early development stages rather than in "emergency
mode" towards the end of a project [4].
 Most requirements prioritization methods (RPM) involve
examining requirements through the framework of benefit
and cost [2]. In other words, requirements are analyzed on
the basis of how much benefit that fulfilling the requirement
will provide to the customer, as well as any costs associated
with its implementation. This information is then used in
some manner to rank the requirements in terms of their
importance.
 There are a number of methods that currently exist for
approaching requirements prioritization. Many of these
methods are quantitative, and employ a very systematic
approach to gathering data and assigning values to various
factors associated with requirements in order to compute a
priority [2]. Other methods rely on making somewhat
informal generalizations and groupings before trying to
assign priorities. This is typically done to reduce the
amount of time necessary to compute priorities, but may
sacrifice some consistency [5].
 One of the most consistent methods that have been
developed is the Analytic Hierarchy Process (AHP)[3]. All
possible pairs of requirements are enumerated, and then the
perceived importance of each requirement is ranked in
relationship to its pair. The most important requirement
from each pair is assigned a value, while the requirement of
lesser importance is given the reciprocal of that value. The
redundancy of AHP does produce consistent requirements;
however it also makes the process impractical for all but
small projects [4], [5].
 Several other methods employ a variation of the pair-wise
comparisons performed for AHP. Hierarchy AHP is the
most closely related; the process is nearly identical to AHP,
except that requirements are first subjectively prioritized as
low, medium, or high. Pair-wise comparisons are then
performed on the requirements of each group [5]. Other
algorithms, such as a binary search tree, and bubble-sort
have also been used to compare requirements in pairs. With
the exception of bubble sort, these methods require fewer
comparisons than AHP. However they are still not feasible
for larger projects, nor do they provide the same level of
consistency [5].
 Total Quality Management (TQM) and Quality Function
Deployment (QFD) are two other quantitative methods used
to prioritize requirements. TQM ranks requirements against
a set of criteria that have been deemed necessary for the
success of a project [4]. A priority rank is then determined
based on the weight of the success criteria and the
requirement. QFD correlates the value a proposed product
feature has to a customer with specific requirements in order
to determine priority. These methods are regarded as
robust, however it is well known that the time and
commitment needed to execute them has prevented their
wide-scale adoption by organizations [4].

 Despite the myriad of methods that have been proposed,
research suggests that none have gained universal acclaim,
nor have they been widely adopted [3]. While some
methods like AHP, QFD, and TQM seem to produce more
consistent prioritizations, [4], [5] they are also complex,
time-consuming, and difficult to implement [4]. Other less
formal methods may save time initially, but could cause
problems in the later stages of a project if appropriate
factors are not accounted for. Lehtola’s study on the
practical challenges of RPM suggests that project managers
do not have access to a method that is both simple and
effective [4]. In order to increase the effectiveness of
requirements prioritization, new methods need to be
developed that save time, yet preserve the accuracy that
more robust methods currently offer.

III. SOLUTION APPROACH
To properly evaluate the quality and priority of

requirements in software projects, analysts must follow a
methodology that takes into consideration the quality
attributes of requirements that are considered important for
specific software projects. In addition, the methodology
must provide capabilities to determine the relative
importance of each identified quality attribute. This would
allow the methodology to provide a requirement
prioritization scheme that represent how well requirements
meet quality attributes and how important those quality
attributes are for the identified software project.

To create such methodology, the following approach is
proposed. First, once requirements are elicited, a set of
quality attributes are identified as evaluation criteria. These
attributes are defined in terms of many different features,
where each feature is determined to be present or not. Once
all features are identified, each requirement is evaluated
against each feature using a simple binary scale (i.e., 0 or 1).
Requirements that satisfy the highest number of features
would expose a higher level of quality (or priority) for that
particular quality attribute. Once all requirements are
evaluated and measurements computed for all features, the
proposed approach uses desirability functions to fuse all
measurements into one unified value that is representative
of the overall quality of the requirement. This unified value
is computed by using a set of desirability functions that take
into consideration the priority of each quality attribute.
Therefore, the resulting priority of each requirement is
derived from decision-makers’ goals for a specific software
project. This result in a requirement prioritization approach
based on how well requirements meet quality attributes and
how important those quality attributes are for the identified
software project.

IV. DESIRABILITY FUNCTIONS
Desirability functions are a popular approach for

simultaneous optimization of multiple responses [6], [7].
They have been used extensively in the literature for process
optimization in industrial settings, where finding a set of

188

operating conditions that optimize all responses for a
particular system is desired. Through desirability functions,
each system response yi is converted into an individual
function di that varies over the range 0 ≤ di ≤ 1, where di = 1
when a goal is met, and di = 0 otherwise [7]. Once each
response is transformed, the levels of each factor are
typically chosen to maximize the overall desirability, which
is represented as the geometric mean of all m transformed
responses [6]. Alternatively, when factors are uncontrollable
by analyst, the overall desirability value can be used to
characterize the system based on the multiple selected
criteria.

Similar to the characterization of industrial processes, the
evaluation of the quality of requirements in software systems
can be approached by finding the set of criteria that provide
the optimal benefit vs. cost value for a particular application.
When formulated this way, desirability functions can be used
to provide a unified measurement that characterizes the
quality of requirements based on a set of predefined project
criteria. Once the desirability of all requirements is
computed, analyst can use this information to determine the
relative priority of requirements and select the best ones
simply by choosing the most desirable one for a particular
project.

A. Computing Desirability
The first step in the desirability functions approach

involves the selection of requirements for a particular task.
Ideally, the initial list of requirements would be easily
identified for the specified assignment. However, in most
practical scenarios this is not the case; leaving requirement
analysts with the complex task of eliciting requirements from
multiple sources, deriving requirements from one or more
imposed requirement, and disambiguating the existing set.
The results of these non-trivial efforts are captured in the
requirements vector, as presented in (1).

(1)

Once the requirement vector is identified, each

requirement can be evaluated against a set of quality
attributes QA1, QA2,.., QAn. The evaluation process takes
places as follow. First, each quality attribute is defined in
terms of m features, where m>1. The evaluation scale for
each feature is binary; that is, the feature is evaluated as
being present/true or missing/false. For example,
requirements can be prioritized based on their type. In this
case, the quality attribute Type can be defined with the
following features: Functional, Imposed, and Product.
Typically, a functional requirement imposed by the
customer—as opposed to derived by the development
team—on the product itself (instead of on the process) would
be of higher priority. Therefore, the highest priority
requirement (based on the Type quality attribute) would be

one where Functional=1, Imposed=1, and Product=1.
Similarly, the lowest priority requirement based on the Type
quality attribute is one where Functional=0, Imposed=0, and
Product=0. With this framework in place, a measurement of
the importance of the jth requirement based on the ith quality
attribute (e.g., Type) can be computed using (2),

m

f
y

m

x
x

ij

∑
== 0 (2)

where m is the number of features identified for the ith
quality attribute. This computation normalizes the
evaluation criteria to a scale of 0 – 100, where 0 represents
the lowest score and 100 the highest. The overall assessment
of the requirement set based on all quality attributes is
captured using the quality assessment matrix Q presented in
(3). As seen, each yij value of the matrix represents the score
of the jth requirement based on each individual ith quality
attribute. It is important to point out that the quality
assessment matrix can be extended to evaluate requirements
based on any quality attributes containing numerous features.

(3)

Finally, to assess the importance of each quality attribute,

a weight vector W is created where ri represents the
importance of the QAi quality attribute using the scale 0 – 10,
where 0 represents lowest importance and 10 represents
highest importance. The weight vector W is presented in (4).

 (4)

Once the information of X, Q, and W is collected,

desirability values for each requirement can be computed
using the desirability matrix d presented in (5). As seen,
each dij value of the matrix represents the desirability of the
jth requirement based on each individual ith quality attribute.

 (5)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nn

n
n

X 2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mnnn

m

m

m

yyy

yyy
yyy
QAQAQA

Q

21

22212

12111

21

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mr

r
r

W 2

1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mnnn

m

m

ddd

ddd
ddd

d

21

22212

12111

189

Each individual desirability value dij is computed
according to requirement analysts’ goals. For example,
quality attributes that are represented positively by a higher
yij value are transformed using the maximization function in
(6) [7]. Alternatively, quality attributes that are represented
negatively by a higher yij value (e.g., penalties such as cost
and risk) are transformed using the minimization function in
(7) [7],

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≤≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

≤

=

Ty

TyL
LT
Ly

Ly

d

ij

ij

r
ij

ij

ij

i

1

0

 (6)

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≤≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

<

=

Uy

UyT
TU
yU

Ty

d

ij

ij

r
ij

ij

ij

i

0

1

(7)

where L and U are the lower and upper limits, T is the target
objective (e.g., 100 for maximization, 0 for minimization),
and ri is the desirability weight for the ith quality attribute. It
is important to note that (6) and (7) are the normal equations
for the desirability function approach. However, through
experimentation, it was found that the approach for
requirements prioritization performed better when dij > 0.
Therefore, as heuristic, when dij is less than .0001, the dij
value is set to .0001. A desirability weight of r = 1 results in
a linear desirability function; however, when r > 1, curvature
is exposed by the desirability function to emphasize on being
close to the target objective (T). When 0 < r < 1, being
close to the target objective is less important. Once
individual desirability values for each quality attribute are
computed, the overall requirement desirability value can be
computed using (8). As seen, each overall desirability value
is computed as the geometric mean of all m individual
desirability values for requirements 1, 2, …, n.

 (8)

 Once the overall desirability value is computed for all
requirements, requirement analysts’ can use this value as a
priority measurement derived from the predefined quality
attributes and their relative importance for the project.

V. CASE STUDY
This section presents results of a requirement

prioritization case study using the proposed approach. The
case study evaluates 10 requirements based on the following
identified quality attributes: Type, Scope, Customers
Satisfaction, Perceived Impact (PMF), Application-Specific
Attributes, and Penalties.

1) Type: The type of the requirement. Requirement type

is defined with the following features: Functional, Imposed,
and Product.

2) Scope: The scope of the requirement. This quality

attribute asseses the impact of this requirmenent on the
overall system. Requirements that affect many (or all)
subsystems are determined to have higher priority than
requirements that affect minimal number subsystems. Scope
is defined with the following features: Subsystem 1 (S1),
Subsystem 2 (S2), …, Subsystem n (Sn)

3) Customer Satisfaction:The number of customers the

requirement satisfies. The higher the number of customer
the requirement satisfies, the higher the desirabilty of the
requirement. Customer Satisfaction is defined with the
following features: Customer 1 (C1), Customer 2 (C2), …,
Customer n (Cn)

4) Perceived Impact (PMF): The perceived impact the

requirement has on the project based on expert opinion.
This quality attribute asks each software lead the question
“Is this requirement Perceived as a Major Functionality
(PMF)?”. Perceived Impact is defined in terms of all leads
(software, hardware, systems). Therefore the features are:
Lead 1 (L1), Lead 2 (L2), …, Lead n (Ln)

5) Application-Specific: The attributes that are

important to the specific software application. Depending
on the application domain (e.g., safety critical systems),
requirements dictating a specific functionality will have
higher importance. In this case study, application-specific
is defined with the following features: Usability (U),
Performance (P), Safety (S), Security (S), Reliability, and
Interoperability (I).

6) Penalties: The penalties associated with the

requirement. Requriements are associated with varied types
of penalties, for example cost, risk, complexities, etc. This
quality attribute is designed to ask the question “Is the
requirement perceived as costly/risky/complex?”. Penalties
is defined with the following features: Costly (C), Risky (R),
and Complex (Cx).

Using synthetic data for the identified quality attributes

and the parameters presented in Table I, the binary input

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

∏

∏

∏

=

=

=

mm

i
in

mm

i
i

mm

i
i

d

d

d

D

1

1

1

1
2

1

1
1

190

evaluation, individual requirement desirability values, and
overall requirement desirability (i.e., D) are presented in
Tables II and III. As seen in Table I, all lower and upper
boundaries are set to 0 and 100 respectively. Also, the
quality attribute 3 (i.e., customer satisfaction) has been
identified as having the highest priority. This is
accomplished by setting the weight r=5, where as all other
weights are set to r=1. Finally, the target values for quality
attributes 2, 4, and 5 have been set to 70. This means that
for QA2, QA4, and QA5, the requirements in (1) are
considered 100% desirable if they meet or exceed 70% of
each quality attribute’s features.

TABLE I - DESIRABILITY FUNCTION PARAMETERS

Parameters Benefits Cost

QA1 QA2 QA3 QA4 QA5 QA6

Lower (L) 0 0 0 0 0 0

Upper (U) 100 100 100 100 100 100

Target (T) 100 70 100 70 70 0

Weight (r) 1 1 5 1 1 1

 As seen, each requirement has been evaluated using the
identified features for each quality attribute. The binary
input scale is used to determine the presence of features.
Using the proposed approach, the most desirable
requirement (based on the quality attributes) is R8, followed
by R4, R5, and so on. It is important to notice the
following. When evaluating R8 for QA1, the resulting
individual desirability value is 100% because R8 is a
functional requirement, imposed by the customer, and a
product requirement. That is, all features of QA1 are
present in R8. However, when evaluating R8 for QA5,
since the target value (T) is 70%, there is more latitude to
having missing features and still obtain a high individual
desirability value. In this case, the resulting desirability
value for QA5 is 95%. Similar to this case study, project-
specific parameters can be specified for the desirability
function to properly prioritize the requirements in industry
scenarios.

TABLE II – BINARY INPUT EVALUATION

Req QA1=Type QA2=Scope QA3=Customers QA4=PMF QA5=App-Specific QA6=Penalty
Func Imp Prod S1 S2 S2 C1 C2 C3 C4 L1 L2 L3 L4 U P S SEC R I C R Cx

R1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1

R2 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0

R3 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1

R4 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 0 1

R5 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0

R6 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0

R7 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1

R8 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1

R9 1 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1

R10 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0

TABLE III – QUALITY MATRIX IN TABULAR FORM

Req QA1=Type QA2=Scope QA3=Customers QA4=PMF QA5=App-Specific QA6=Penalty Overall
Desirability Func Imp Prod L1 L2 L3 C1 C2 C3 C4 L1 L2 L3 L4 U P S SEC R I C R Cx

R1 0.6667 0.9524 0.0313 0.7143 0.9524 0.0001 10.51%

R2 0.6667 0.4762 0.2373 1.0000 0.9524 0.3333 53.68%

R3 1.0000 0.4762 0.0313 0.7143 0.7143 0.6667 41.44%

R4 0.6667 1.0000 0.2373 1.0000 0.4762 0.6667 60.74%

R5 1.0000 0.4762 0.2373 0.3571 0.9524 0.6667 54.30%

R6 0.6667 1.0000 0.0010 0.7143 0.4762 0.6667 22.99%

R7 0.3333 0.9524 0.0010 0.7143 0.4762 0.0001 4.68%

R8 1.0000 0.9524 0.2373 1.0000 0.9524 0.6667 72.36%

R9 1.0000 0.4762 0.0313 0.7143 0.7143 0.0001 9.55%
R10 0.3333 1.0000 0.2373 1.0000 0.4762 0.3333 48.21%

191

VI. C ONCLUSION
 The research presented in this paper develops an
innovative approach for evaluating the quality of
requirements in software projects based on multiple quality
evaluation criteria. Specifically, it presents a methodology
that uses Desirability Functions to create a unified
measurement that represents how well requirements meet
quality attributes and how important the quality attributes
are for the project. Through a case study, the approach is
proven successful in providing a way for measuring the
quality of requirements for specific projects.
 There are several important contributions from this
research. First, the approach is simple and readily available
for implementation using a simple spreadsheet. This can
promote usage in practical scenarios, where highly complex
methodologies for requirement evaluation are impractical.
Second, the approach fuses multiple evaluation criteria and
features to provide a holistic view of the overall requirement
quality. In addition, the approach is easily extended to
include additional quality attributes not considered in this
research. Finally, the approach provides a mechanism to
evaluate the quality of requirements in various domains.
By modifying the parameters of the desirability functions,
quality and priority of requirements can be evaluated by
taking consideration of prioritized quality attributes that are
necessary for different software domains. Overall, the
approach presented in this research proved to be a feasible
technique for efficiently evaluating the quality and priority
of requirements in software projects.

VII. REFERENCES
[1] Svensson, R., Gorscheck, T., Regnell, B., Torkar, R., Shahrokni, A.,

Feldt, R. (n.d.), Quality Requirements in Industrial Practice - an
interview study at eleven case organizations [Online]. Available:
http://richard.torkar.googlepages.com/QRinindustry_RBS.pdf Mar.
2010.

[2] Herrmann, A., Daneva, M., “Requirements Prioritization Based on
Benefit and Cost Prediction: An Agenda for Future Research,” 16th
IEEE International Requirements Engineering Conference, 2008.

[3] Lehtola, L., Kauppinen, M., & Kujala, “Requirements Prioritization
Challenges in Practice,” Proceedings of 5th International Conference
on Product Focused Software Process Improvement, pp. 497-508,
2004.

[4] Weigers, K. E., “First Things First: Prioritizing Requirements,”
Software Development, vol. 7, no. 9, 1999.

[5] Karlsson, J., Wohlin, C., Regnell, B., “An Evaluation of Methods for
Prioritizing Software Requirements,” Information and Software
Technology, vol. 39, pp. 939-947, 1998.

[6] Derringer, G., Suich, R., “Simultaneous Optimization of Several
Response Variables,” Journal of Quality Technology, vol. 12, pp.
214-219, 1980.

[7] Montgomery, D., Design and Analysis of Experiments, Wiley, 7th
Edition, 2008.

192

