
Proceedings of the 1997 JEEE 
International Conference on Robotics and Automation 

Albuquerque, New Mexico - April 1997 

A Quality Measure for Compliant Grasps 

Qiao Lin, Joel Burdick 
Dept. of Mechanical Engineering 

California Inst. of Technology 

Elon Rimon 
Dept. of Mechanical Engineering 

Technion, Israel Inst. of Technology 
Pasadena, CA 91125 Haifa, ISRAEL 

Abstract- This paper presents a systematic approach 
for quantifying the quality of compliant grasps. Ap- 
propriate tangent and cotangent subspaces to the ob- 
ject’s configuration space are studied, from which frame- 
invariant characteristic compliance parameters are de- 
fined. Physical and geometric interpretations are given to 
these parameters, and a practically meaningful method is 
proposed to make the parameters comparable. A frame- 
invariant quality measure is then defined, and grasp op- 
timization using this quality measure is discussed with 
examples. 

1 Introduction 
This paper presents a quality measure for compliant 

grasps. Compliance plays a dominant role in passive 
grasps such as workpiece fixturing, and can also be used 
to model the finger forces in active grasps. To our knowl- 
edge, this is the first systematic approach to quantify- 
ing the quality of compliant grasps. The approach is 
frame-invariant and physically appealing. It applies to 
the grasping of 2D and 3D objects by any number of 
fingers, and can be used to determine the optimal fin- 
ger placement. For the sake of convenience, the term 
grasping will also apply to fixturing. 

Compliant grasps have received much attention. 
Hanafusa and Asada [3] used a linear spring model to 
find stable 3-fingered planar grasps. Nguyen [ll] used 
a linear spring model to compute the stiffness matrix of 
more general grasps. Howard and Kumar [4] also used a 
linear spring compliance model to study grasp stability, 
but included the effects of contact geometry. In study- 
ing compliance due to friction, Cutkosky and Wright [l] 
noted that stability is influenced by initial loading as 
well as local curvature. While the linear spring com- 
pliance model has been widely used by roboticists, it is 
not supported by experiments or results from elasticity 
theory. Rimon and Burdick [14] used overlap functions 
to model nonlinear compliance effects. Lin, Burdick and 
Rimon [7] use these overlap functions to compute and 
analyze the grasp stiffness matrix for various contact 
models, including the widely verified and theoretically 
justified Hertz model. While the overlap model is used 
for illustration, our grasp quality measure can be used 
with any compliance model. 

Nearly all prior work on quantifying grasp effective- 
ness has assumed rigid body mechanics. Let the wrench 
(i.e. force and torque) due to a unit force applied by a 

contacting finger be termed a generating wrench. Li and 
Sastry [6] suggests a quality measure that is the small- 
est singular value of the grasp matrix, whose columns 
consist of the generating wrenches. Kirkpatrick, Mishra 
and Yap [5] define the radius of the maximal ball in- 
scribed in the convex hull of the generating wrenches 
as a quality measure. This idea is also followed by Fer- 
rari and Canny [2]. However, these quality criteria are 
flawed by their dependence on the choice of coordinate 
frame; a grasp which is optimal under one choice of ref- 
erence frame may fail to be optimal under another. Sev- 
eral authors have devised schemes to avoid this problem. 
Markenscoff and Papadimitriou [9] minimize the worst- 
case finger forces needed to balance any external unit 
force acting on the object. Mirtich and Canny [lo] first 
compute the grasps that best counteract pure forces. 
Among these grasps, the one that best resists torques is 
chosen to be optimal. Teichmann [15] finds the largest 
inscribed ball (as defined in Ref. [5]) for all choices of co- 
ordinate frames, but does not discuss the computation 
of the optimal grasp. 

This paper concerns the systematic development of 
quality measures for compliant grasps. Frame invari- 
ance is one of the main attributes of our approach. We 
consider frame-invariant subspaces of the object’s tan- 
gent and cotangent spaces, from which frame-invariant 
characteristic compliance parameters are defined. We 
give novel geometric interpretations to these parame- 
ters, which are also defined by Patterson and Lipkin [12] 
in a different manner. We also propose a practically 
meaningful method for making these parameters com- 
parable, and define a frame-invariant quality measure. 
Examples demonstrate these ideas. 

2 Background 

A grasp or fixturing arrangement consists of an ob- 
ject B contacted by IC fingers AI, .  . . , Ak. We assume 
that the contacts are frictionless, and that the bodies 
have a smooth boundary near the contact points. The 
bodies are assumed to be quasi-rigid, and the fingers Ai 
stationary. In the quasi-rigid assumption, deformations 
due to compliance effects are assumed to be localized 
to the vicinity of the contact points, so that the overall 
motion of B relative to Ai can be described using rigid 
body kinematics. This is an excellent assumption for 
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fixturing of mechanical parts. 
Since the fingers Ai are stationary, we can focus on 

the following configuration space (c-space) of B, which 
is denoted C. Choose a fixed world reference frame, 
Fw, and a frame FB fixed to B. A configuration of 
B is specified by the position, d E R3, and orientation, 
R E S0(3) ,  of FB relative to Fw. C-space is given 
hybrid coordinates q = (d ,B)  E R3 x R3,  which map to 
(d ,  R(B)). The mapping R(B) is given by R(B) = exp(@, 
where B is a skew-symmetric matrix such that 8 x = 0 x x 
for x E R3.  The tangent space to C at a configuration 
q, denoted by T&, is the set of all tangent vectors, or 
velocities of B, at q. In hybrid coordinates, tangent 
vectors can be written as vectors q = (w, w ) ,  where w E 
R3 is the velocity of the origin of FB, and w E R3 is the 
angular velocity of 3B. The wrench space at q,  denoted 
by T;C, is the set of all wrenches (or covectors) acting 
on B. A wrench takes the form w = ( f , ~ )  in hybrid 
coordinates, where f E R3 is a force acting at FB'S 
origin and T E R3 is a torque. In the planar case, letting 
the z-axis be perpendicular to the plane and dropping 
the identically zero components, we have w, f E R2 and 

The hybrid parametrization of c-space depends on the 
choice of frames. Consider a new world frame, Fw, dis- 
placed from FW by ( d w ,  Rw), and a new object frame, 
FB, displaced from FB by (db, R b ) .  A configuration 
with coordinates q would now have different coordinates 
Q. The tangent and cotangent vectors transform as fol- 
lows: 

where the transformation matrix for the 3D and 2D 
cases are given bv 

h h 

W , T  E R. 

6 = T - l q ,  W = TTw, (1) 

R J&db 
v 

and T3x3 = (0" ), (2) 

respectively. Here J = i), and & = R(B0). Since 
d ,  and R b  do not appear in T ,  a translation of FW or 
a rotation of FB do not affect the transformation. 

Rimon and Burdick [14] proposed a model for contact 
compliance which use overlap functions. These func- 
tions allow one to ignore the specific details of deforma- 
tions when B and Ai are quasi-rigid. Rather, the net 
contact force is modelled as a function of the overlap 
of the two undeformed rigid body volumes that results 
from a relative displacement. The overlap approach is 
briefly reviewed here. In the absence of deformation, the 
two bodies B and Ai contact at a single point, and af- 
ter deformation occurs the bodies inter-penetrate. The 
overlap between B and Ai, denoted S i ,  is the minimum 
amount of translation separating t? from Ai. Clearly, 
Si depends on 23's configuration: Si = Si(q). We define 
Si = 0 when B and Ai are disjoint or maintain surface 
contact. The net contact force is assumed to act on B at 

the initial contact point, in the direction of the separat- 
ing translation. The force's magnitude, denoted fi, is 
assumed to depend on the overlap Si(q): fi = f i (Si(q)) .  
The simplest model assumes that fi is a linear function 
of the overlap: 

where ki is determined by the material and surface prop- 
erties of B and Ai. While this model is linear in S i ,  it is 
typically not linear, since Si is nonlinear in q. More so- 
phisticated contact models can be formulated by choos- 
ing appropriate functions f i ( S i ) .  See [7] for details. 

Consider a grasp of B at a configuration qo. The 
arrangement of fingers forms an equilibrium grasp if (in 
the absence of any external wrench) the finger forces 
produce a zero net wrench on B. When subjected to 
an arbitrary external disturbance, 23 may be displaced 
from qo.  The grasp is stab2e if B returns to qo after 
the external disturbance is removed. A more formal 
discussion of stability can be found in Ref. [14]. 

The elastic potential energy of the system consisting 
of the object B and fingers AI, .  . . , dk is: 

f i ( & )  = ki&, (3) 

k ..All") 

II(q) = J -*'a' f i (S)dS.  
k l  0 

(4) 

It can be verified that -6iqq) is differentiable almost ev- 
erywhere, hence II(q) is differentiable. In the absence of 
a disturbing wrench, an equilibrium grasp is character- 
ized by: 

k 

Vn(q0) = fi(6io)Vbio = a, (5) 
i=l 

where Si0 = Si(q0) and VSio = VSi(q0) .  A sufficiently 
small displacement of B can be approximated by a 
tangent vector. For this reason we will interchange- 
ably use the terms tangent vector and local displace- 
ment. The stiffness matrix is defined as the Hessian 
K = D2II(q0) of the potential II. Denoting fl = 2 
and D2&0 = DZ&(qo),  it follows from (5) that 

k 

K = { f~(S io)V&oV&oT + f i(&o)D2&o}- (6)  
i=l 

Therefore, the stiffness matrix can be computed from 
the overlaps Si and their derivatives. The reader is re- 
ferred to Ref. [7] for the computation of K .  As is well 
known, at points q = qo + q in the vicinity of qo the 
stiffness matrix gives the wrench acting on B, according 
to the formula w = Kq. 

We observe that the two summands in Eq. (6) gener- 
ally depend on the initial deformations 6io. It is shown 
in 171 that the second term depends on the surface curva- 
tures at the contacts, while the first term does not. We 
say that the first term accounts for first order geomet- 
rical effects, while the second term accounts for second 
order (curvature) effects. If the first term alone is posi- 
tive definite, the grasp is stable to  first order. Otherwise, 
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if the entire K is positive definite, the grasp is stable to  
the second order. The relative contributions of first and 
second order effects on grasp stability and stiffness are 
analyzed in Ref. [7]. 

We conclude this section with the following change- 
of-frame formula for the stiffness matrix: 

where I? is the stiffness matrix associated with the new 
frames FW and FB. This formula can be derived from 
(1) and the fact that Vn(qo) = 0. 

3 Principal Stiffness Parameters 
This section defines the characteristic compliance pa- 

rameters of a grasp, based on the stiffness matrix K ,  and 
the compliance matrix C K-l .  For clarity, we note 
that w = Kq while q = Cw. We use the following 
partition of K and C into 3 x 3 matrices: 

K = T ~ K T ,  (7) 

K =  (41 K 1 2 ) ,  C =  ' 1 2 ) .  (8) 
K,T, K22 c,T, czz 

Note that the diagonal blocks are positive definite, since 
K and C are. We-use q1 and q 2  for the translational and 
rotational components of q = (w, w ) ,  and use w1 and w2 
for the force and torque components of 'w = (f, T ) .  

3.1 Formal Development 
The eigenvalues of K ,  which could provide important 

insight into the stiffness matrix, are not frame invariant. 
To circumvent this difficulty, we look at the tangent sub- 
space defined by 

That is, V consists of the small displacements that in- 
duce a pure reaction torque on B. Using the partition 
of K ,  we obtain V = { (w,w)  : w = -KG1K12w}, from 
which it follows that V can be Darametrized as 

V = (4 E Tq,C : f = (KQ)1 = 0). 

q = Pw where P = -(-K$K12). (9) 
Let K v  denote the restriction of k to V. Rlcalling that 
the stiffness matrix represents the symmetric bilinear 
operator D211(qo), we have that wTKvw = wTPTKPw 
for arbitrary w. Thus under our parametrization of V ,  
KV has the representation 

Since K maps q E V to pure-torque wrenches, we have 
that 

K v  = PTKP = K22 - KZKG'K12. 

(K4)z = Kv W .  (10) 
Consider now two new frames 7~ and FB, with over- 

bars denoting objects associated with these frames. The 
linear operator KV has the following invariance prop- 
erty. 
Proposition 3.1 ([$I). Let V and v be the subspaces 
parametrized by (9) in the q and ij coordinates. Let l?v 
be the restriction of K to V .  Then K obeys the orthog- 
onal transformation 

Hence the eigenvalues of Kv are frame-invariant. 
Kv = R , ~ K ~ & .  

Dually, consider the following wrench subspace: 
w = {w E q 0 c  : w = (CW)2 = 0). 

In words, W is the subspace of wrenches that induce 
pure translation, and this subspace can be parametrized 
as 

I 
w = Q f  & =  ( -C,-,lC,T, ) * (11) 

Using this parametrization, the restriction of C to W ,  
denoted CW, is CW = QTCQ = Cll - C12C;'C& = 
K;'. Moreover, the resulting pure-translation is given 
by v = (Cw)l = Cw f, where w E W .  
Proposition 3.2. Let W be the subspace parametrized 
by (11) in the Q coordinates, and let Cw be the re- 
striction of the compliance matrix 6 to  W. Then CW 
obeys the orthogonal transformation 6w = RWTCwR,. 
Hence, the eigenvalues of Cw = K;' are frame- 
invariant. 

Propositions 3.1 and 3.2 lead to the following obser- 
vations. The behavior of K on V characterizes the ro- 
tational stiffness of the grasp. Regardless of frame lo- 
cation, the same pure-torque is elicited in response to 
an instantaneous displacement in V .  Similarly, the be- 
havior of C on W characterizes the translational com- 
pliance of the grasp. A wrench in W generates the same 
pure-translation when using different frames. Since the 
tangent subspace V and the image of W under Cw span 
TqOC, the two subspaces characterize the grasp compli- 
ance completely. Summarizing these observations and 
using the fact that CW = KG', we call the eigenval- 
ues pi (i = 1,2,3)  of Kv the principal rotational st i f f-  
nesses, and the eigenvalues oi (i = 1,2,3)  of K11 = Ckl 
the principal translational stiffnesses of the grasp. In 
particular, omin = min{oi) is the smallest principal 
translational stiffness. The associated eigenvectors are 
called principal rotational and translational stiffness di- 
rections, respectively. 

For planar grasps it can be shown that there is a 
unique location of the origin of FB, given by 

such that K s X 3  takes the block-diagonal form K = 
diag(ILTK1lR,, p ) .  That is, the translation and ro- 
tational effects are decoupled about this special point, 
called the center of compliance [ l l ] .  The principal trans- 
lational and rotational stiffnesses of the grasp are phys- 
ically the translational and rotational stiffnesses about 
the center of compliance. 

3.2 Screw Coordinates Interpretation 
While searching for a 3D analog of the center of com- 

pliance, Patterson and Lipkin [12] were the first to rec- 
ognize the existence of the principal stiffness directions. 
They used screw coordinates, and now we show that our 
principal parameters are equivalent to the ones derived 

da = RT JKG1 K12, (12) 
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by Patterson and Lipkin. First we briefly review the 
notion of screw coordinates. 

A one-dimensional tangent subspace of the form { q  = 
e ( v , w )  : 0 E R} with llwll = 1, is given screw coordi- 
nates as follows. The instantaneous screw axis is parallel 
to w and passes through the point v x w. The pitch, h, 
is equal to V . W .  For a one-dimensional wrench subspace 
{w = a( f , r )  : a E R} with l l f l l  = 1, the screw axis is 
parallel to f and passes through the point f x r. The 
pitch is h = f . r. 

Consider now a tangent vector qi E V ,  where qi is 
an eigenvector of Kv associated with the eigenvalue 
pi .  Using (9), there exists a unit vector wi such that 
qi = Pwi. Then (10) gives T = (K&)2 = piwi. 
That is, the displacement along cj  causes a pure-torque 
about the screw axis associated with q i .  On the other 
hand, for w = Qfi E W where f i  is an eigenvector of 
CW associated with the eigenvalue l/oi, we have that 
w = (Cw)l = (l/oi)fi. Hence, the wrench w gener- 
ates a pure-translation along its screw axis. Patterson 
and Lipkin [12] call the screw axis associated with these 
eigenvectors the twist- and wrench-compliant axes, re- 
spectively. 

3.3 Geometric Interpretation 
We now present a novel interpretation of the principal 

stiffnesses. Consider the quadratic form @(Q) = $qTKQ, 
where q E TqoC. The level set S defined by @(q)  = 1 
is a 5-dimensional elliptical surface, and a point on S 
corresponds to a displacement that produces unit elas- 
tic energy. Consider the intersection, denoted S,, of 
S with the subset of TpoC determined by the equation 
w = const. Letting @,(U) @ ( U ,  w ) ,  the points w E S, 
satisfv 

1 ' T  
@,(U) = -uTK1lu + -W KVW = 1, 

2 2 ~ 

where U = v + KGlK12w. Hence for each fixed w,  
S, is an ellipsoid with principal semi-axes of length 
d ( 2  - w T K v  w ) / o i  (i = 1,2,3). These lengths are 
frame-invariant, and when w = 0 the lengths are @ 
(i = 1,2,3). 

Next we consider the collection of points in S, de- 
noted Sn, at which the vectors normal to S have zero 
v-components. For any Q = (w,w) E Sn, the condi- 
tion (O@(q))l = 0 implies that w = -KC1K12w and 
consequently @ ( q )  = i w T K v w  = 1. By setting the v- 
coordinates of the points in Sn to zero, we obtain the 
projection of S, to the subspace v = 0 as follows. 

Y 

This is an ellipsoid with principal semi-axes of lengths m, where pi for i = 1,2,3 are the eigenvalues of 
Kv . 

For planar grasps S is 2-dimensional. Fig. 1 shows 

1 
(Sn),=o = { ( v , w )  : v = 0 and G w T K v w  = 1). 

~ 
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two such ellipsoids for a 4-fingered grasp of the quadri- 
lateral given in Fig. 4 with fingers placed on the edges 
AB (at the vertices A and B) ,  BC (at C) and D A  (at 
D), respectively. The upright ellipsoid in the figure cor- 
responds to the origin located at the center of compli- 
ance with coordinates (6.15,5.54), while the slanted el- 
lipsoid corresponds to the origin located at (0,O). The 
lengths of the principal semi-axes of each horizontal 
cross section of S are frame invariant. Similarly, the 
projection of S is bounded by two points, whose w- 
coordinates are &a. These two points are frame 
invariant, and S is always bounded by the two horizon- 
tal planes w = &I. 

Fig. 1. The elastic energy ellipsoid in TqoC 

For the wrench space on which the quadratic form 
q(w) = i w T C w  is defined, we have the following anal- 
ogous interpretation, shown in Fig. 2. The level set 7 
given by *(w) = 1 is a 5-dimensional elliptical surface 
corresponding to wrenches that induce unit elastic en- 
ergy. The intersection q of 7 with the set f = const 
is an ellipsoid whose principal semi-axes are equal to c pi (2  - f T K - ' f )  (i = 1,2,3) and are frame-invariant. 
When f = 0,  the principal semi-axes of 5 are given by a. Let 7h be the subset of 7 such that the normal 
vector to 7 at a point w E 7 h  has zero r-component. 
The projection of 7 h  to the subspace r = 0 is given by 

(7h),=0={(f ,r):  r=O and - fTKG1f  =l}. 

Since KG1 = CW is frame invariant, the principal semi- 
axes of ('&),=o, given by &, are frame invariant. 

In the planar case, the elliptical surface 7 intersects 
the r-axis at two points whose coordinates are ffi 
(Fig. 2). If 7 is vertically oriented, the horizontal pro- 
jection of 7 is the planar ellipse f fTKG1 f = 1. Any 
other 7 is inscribed in the vertical cylinder whose base 
set is this ellipse. These features can be observed in 
Fig. 2, for the same grasp as used for Fig. 1. The upright 
and slanted ellipsoids correspond to the same frames as 
their counterparts in Fig. 1. 

4 A Frame-Invariant Quality Measure 
Guaranteeing that the displacement of a grasped ob- 

ject will not exceed a specified tolerance is one of the 

1 
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Fig. 2. The elastic energy ellipsoid in T&C 

most important concerns in fixture design [13]. Hence 
we wish to develop a grasp quality measure which is re- 
lated to the deflection of the object under the action 
of disturbing forces. In particular, we wish to relate 
the principal translational and rotational stiffnesses to 
the object’s deflection, and use this relation to evaluate 
alternative grasps. 

Let q = 6(v, w )  be a displacement of B,  where 1 1 ~ 1 1  = 1 
if w = 0, and llwll = 1 if w # 0. We define the deflection 
of B due to a displacement q as the maximal displace- 
ment of any point in B. Since B is bounded, such a 
maximal displacement always exists and is independent 
of frame choice. If w = 0, the deflection is simply 101. 
If w # 0, let pmaz(q )  be the maximal distance from the 
screw axis of q to B’s boundary points. The deflection is 
101dpma2(q)2 + (U w ) ~ ,  where v.w is the pitch of 4. For 
planar grasps v - w = 0 and 23’s deflection is 101pmaz(4). 

First we present our quality measure in the context 
of planar grasps. For planar grasps, we wish to com- 
pare the principal rotational stiffness p with the small- 
est principal translational stiffness omin. As previously 
discussed, p and omin are associated with pure rota- 
tion and translation of B with respect to the center of 
compliance. The deflection of the object can be used 
to compare these two parameters as follows. Consider a 
rotation of B of magnitude O about the center of com- 
pliance. Then the deflection of B due to this rotation is 
161pmaz, where pmaz is the maximal distance from the 
center of compliance to B’s boundary. The equivalent 
stiffness associated with p, denoted peq, is defined by 
the relationship: 

1 1 
Z/1eq(Pmaz6)2  = 2po2 , 

where the right hand side is the elastic energy generated 
by the rotation 6. This relationship yields 

(13) 
CL 

Peq = ~ 

( p m a r ) 2  * 
The parameters peq and omin are now comparable. We 
define the grasp quality measure as: 

The scalar Q measures the worst-case characteristic 
stiffness based on B’s deflection. Moreover, 8 is frame 
invariant. 

We now define the quality measure for a 3D grasps. 
For 3D objects, we must scale the principal rotational 
stiffnesses pi so that they become comparable with the 

8 = min{Umin, p e q } .  (14) 

translational stiffnesses. Let qi = (wi,wi) E V be 
the eigenvector of Kv associated with pi, such that 
llwill = 1. Then the elastic energy generated by the 
displacement 6qi is given by +pie2, while the deflec- 
tion of the object due to Oqi is O d ( p m a z i ) 2  + (vi . wi)2, 
where pmazi  = pmaz(4 i ) -  Analogously to the 2D case, 
we define peqi by the following energy equivalence rela- 
t ionship 

2 p e q i  ( B d ( p m a z i ) 2  + (Vi  . Wi)’) = p e 2 ,  1 2 1  

which yields 
for i = 1,2,3.  (15) Pi Peqi = 

(Pmazi)2 + (vi * ~ i ) ~  
We define the following 3D grasp quality measure: 

Again, Q is a frame-invariant scalar which measures the 
worst-case characteristic stiffness as determined by B’s 
deflection. 

5 Optimal Grasping of Polygons 
To illustrate our methodology and its possible util- 

ity, we apply the quality measure (14) to the planar 
polygonal objects grasped by three or four disc fingers. 
For simplicity, we employ the overlap model of Eq. (3). 
Since each finger boundary has constant curvature and 
a’s edges are straight, the stiffness coefficient ki is as- 
sumed to be the same for all finger locations on a given 
edge. We exclude finger placements at vertices and 
choose coincident frames FW and FB. 

Let the contact configuration space (contact c-space) 
be the set of all possible contact arrangements (each 
contact can be parametrized by a scalar). For polyg- 
onal objects, the contact c-space can be decomposed 
into subspaces corresponding to different combinations 
of edges. 

Consider the computation of pmaz for polygons. If 
the center of compliance is at p ,  p m a z ( p )  is the distance 
from p to the farthest vertex of L?. For efficient computa- 
tion, we may presort the plane into regions whose points 
correspond to the same farthest vertex. Let {wl, . . . , U,} 
be the vertices of B. For vertex vi, let Hj be the closed 
half plane that does not contain vi and is bounded by 
the bisector between U, and v j  ( j  # i). Let Ri be the in- 
tersection of these half planes. Then pmaz(p) = lip- vi11 
for p E Ri. Clearly, Rf is a convex polygonal region, 
and = R2. 

5.1 Optimal Three-Finger Grasping 
For 3-fingered planar equilibrium grasps, the stiff- 

ness matrix corresponding to a particular edge triplet 
(Fig. 3), can be computed according to (6 ) .  A formula 
is given in the following proposition. In the proposition, 
ni are the unit contact normals pointing into L?. Also, 
the total initial finger force is f~ = 

Q = min{omin, peq1, pep27 peqs}. (16) 

f i (6 io) .  
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Proposition 5.1 ( [ 8 ] ) .  If the origin of Fw coincides 
with the point of concurrency, the stiffness matrix for  a 
grasp employing a given triplet of edges takes the f o r m  

with the principal rotational stiffness given by 
2 fT a sin a1 sin a 2  sin a3 

’= sinal +sinaz +sinas 
where ai are the triangle’s three angles and a is the ra- 
dius of its circumscribed circle. Moreover, the center of 
compliance coincides with the concurrency point. 

Fig. 3. 3-finger grasp on a particular edge triplet 

It follows that umin is the smallest eigenvalue of the 
2 x 2 matrix E:=, kininiT, and is constant for the given 
edge triplet. It is even more interesting to observe that 
p ,  resulting from curvature effects and depending on 
the total finger force fT, is also constant for all grasp 
arrangements on the same edge triplet. For the grasp to 
be stable, fT must assume a positive value (i.e., initial 
deformations are nonzero). Since the first order effects 
are dominant, peq << crmin and therefore 

(17) 
2 fT a sin a1 sin a 2  sin a3 

pkax (sin a1 + sin a 2  + sin as). & = p e q  = 

In practice, fT is fixed at a value which is the same for 
all edge triplets, and a threshold value E can be chosen 
for umin such that a triplet with emin < E is rejected. 

For an edge triplet whose inward normals positively 
span R2,  the collection of stable equilibrium grasps is 
parametrized by the location of the concurrency point. 
Consider the three strips in Fig. 3. The two lines bound- 
ing each strip are perpendicular to an edge, and pass 
through the edge’s endpoints. For each point in the 
region S formed by intersecting the three strips, there 
exists a finger placement such that this point is the con- 
currency point of the contact normals. 

For a given fixed preloading fT, the quality mea- 
sure (17) is maximized over a given edge triplet as p L a X  
is minimized. This agrees with the intuition that the 
deflection of B about the concurrency point due to a 
unit torque is minimized for the optimal grasp. For a 
given edge triplet, we maximize pkax ,  a positive definite 
quadratic function, over a collection of convex polygonal 
regions described in [8]. While these convex quadratic 
programming problems can be solved by many efficient 
algorithms, the optimal grasp arrangement is very intu- 

itive when the geometric center1 belongs to S. In this 
case the optimal concurrency point location coincides 
with the geometric center, and the optimal quality mea- 
sure is given by (see footnote l for the radius T O ) .  

2 fT a sin a1 sin a 2  sin a3 

ri  (sin a1 + sin a 2  + sin a3) ’ &opt = 
Example 5.1. Consider grasping a quadrilateral by 
three identical fingers (Fig 4). We take ki = 1 (i = 
1,2,3) without loss of generality. The radius of the ob- 
ject is 6.7315 and its geometric center is at (6.5,1.75). 
For the edge triplets (AB, BC, CD) and (AB,  BC, DA) 
stable grasps exist, with the optimal grasps given by 
arrangements I and 11, respectively. We have umin = 
0.8609 and e/fT = 0.081 for grasp I, while Umin = 
1.2764 and Q / ~ T  = 0.0955 for grasp II, which is globally 
optimal. 

I \ 
A(0,O) 8 B(13,O) 

Fig. 4. 3-finger quadrilateral grasps 

5.2 Optimal Four-Finger Grasping 
A 4-fingered polygonal grasp involves three or four 

edges. Thus edge combinations of interest include all 
triplets and quadruplets of edges. For a given edge 
combination, let yi be the moment about the origin 
of the inward unit normal ni to the ith edge. Use 
s = ( s ~ , s z , s ~ , s ~ ) ~ ,  where si = a~i, to parametrize 
4, the contact c-space. Since the geometric constraints 
on contact locations are all linear inequalities, 4 is a 
convex polytope. Moreover it is bounded since no finger 
can be placed at infinity. 

Let Ni = a n i ,  and hi(si) = (N:,S?)~. Then the 
stiffness matrix is given 

(18) 
\ \  f 

where N = (NI ,  N2, N3, N4) and the Lcond order effects 
have been neglected [7]. 

For a given edge combination, the contact normals 
do not change directions and the matrix N is constant. 
Hence the smallest principal translational stiffness is a 
constant. Using (18), we find the dependence of the 
principal rotational stiffness on contact configuration: 
’(s) = sT@s, where @ = I-NT(NNT)-lN. From (12) 
and (18) the center of compliance as a function of s is 
given by &(S) = I’s, where I? = J(NNT)-lN. Thus in 
the polygonal region Ri we can write pen as 

.?,as 

‘Here the geometric center is the point po  at which PO = 
minpERz pmaz(p )  = pmal: (po) ,  and TO is called the radius. 
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If there is some feasible s such that peq(s) 2 omin, then 
the corresponding grasp is optimal for this edge com- 
bination. Otherwise peq can be maximized, which is 
considered below. 

Define d i ( s )  = det (hi+l, hi+2, hi+3) (mod 4), for 
i = 1,2 ,3 ,4 .  Ref. [8] shows that the stiffness matrix 
K ( s )  is positive definite if and only if d l ( s ) ,  -dz(s), 
&(s) and -d4(s) are all nonzero and have the same 
sign. Therefore the collection of stable grasps is S1 US,, 
where SI and Sz are bounded convex polytopes in R4. 
s1 = 6 n {S E I R ~  : d l ( ~ ) , - d 2 ( S ) , d 3 ( s ) , - d 4 ( ~ )  < o } ,  
s2 = 6n { S  E [ R ~  : dl(s),--d2(S),d3(s),-dq(~) > o}. 

We can maximize pep over convex polyhedral regions 
of the form P = Si n Vj, where Vj = { s  E R4 : rs E 
Rj}. For t E R, define $(t)  = maXsEp 4(t, s)  where 

+(t ,  s )  = sTas - t (rs - vilT(rs - vi). 
Proposition 5.2. If the function $ has a zero, it is 
unique. Moreover, t* = peq(s*) = maxsEp peq(s) if and 
only if $(t*) = +(t*, s* )  = 0. 

This proposition is proved in Ref. [8]. It follows that 
maximizing peq over P is equivalent to solving the scalar 
equation $(t) = 0. The evaluation of the function $ is 
an indefinite quadratic programming problem. While 
indefinite quadratic programming is NP-hard, there are 
many efficient approximate algorithms. In fact, with our 
4-dimensional problems, an exhaustive search scheme 
is quite affordable. The remarkable fact is that global 
optimality is guaranteed at reasonable cost despite the 
nonconvex and strongly nonlinear nature of the quality 
measure. 

(1.175,3.525) 

I \ 
(0,O) (13,O) 

Fig. 5. Global optimal grasp of a quadrilateral 

Example 5.2. Let us look at the quadrilateral used in 
Example 5.1 and assume ki = 1. By considering all fea- 
sible edge combinations we can find the optimal grasp 
associated with each combination, and then determine 
the global optimal grasp arrangement. The global op- 
timal grasp is the one in Fig. 5 ,  with optimal quality 
measure equal to omin = 1.684 < peq = 1.865. 
6 Conclusion 

While compliance plays an important role in grasp- 
ing and fixturing, systematic approaches to assessing 
the quality of compliant grasps have been lacking. In 
this paper we presented an effort along this direction. 
A frame-invariant quality measure was defined based on 
characteristic compliance parameters of the stiffness ma- 
trix. It applies to the grasping of 2D and 3D objects by 
any number of fingers, and can be used to determine the 

optimal finger placement. The promise of this quality 
measure is shown by examples applying it to polygo- 
nal grasps. We believe that this quality criterion will 
allow the development of more efficient and accurate al- 
gorithms for optimal planning of compliant grasps or 
fixtures. 
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