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ABSTRACT

Refactoring is an important activity to improve software internal
structure. Even though there are many refactoring approaches, very
few consider their impact on the software quality. In this paper,
we propose a software refactoring approach based on quality at-
tributes. We rely on the measurements of the Quality Model for
Object Oriented Design (QMOOD) to recommend Move Method
refactorings that improve software quality. In a nutshell, given a
software system S , our approach recommends a sequence of refac-
torings R1,R2, . . . ,Rn that result in system versions S1, S2, . . . , Sn ,
where quality(Si+1) > quality(Si ). We empirically calibrated our
approach, using four systems, to find the best criteria to measure
the quality improvement. We performed three types of evaluation
to verify the usefulness of our implemented tool, named QMove.
First, we applied our approach on 13 open-source systems achiev-
ing an average recall of 84.2%. Second, we compared QMove with
two state-of-art refactoring tools (JMove and JDeodorant) on the
13 previously evaluated systems, and QMove showed better recall,
precision, and f-score values than the others. Third, we evaluated
QMove, JMove, and JDeodorant in a real scenario with two propri-
etary systems on the eyes of their software architects. As result,
the experts positively evaluated a greater number of QMove rec-
ommendations.
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QMOOD Quality Model;
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1 INTRODUCTION

The refactoring process changes the code to improve the internal
structure without compromising its external behavior [8]. Cur-
rently, there are many refactoring approaches where the degree
of automation can vary [4, 13, 20, 21]. Nevertheless, there are very
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few that consider their impact on software quality metrics. Conse-
quently, a software system may be refactored into a version that
worsens its overall quality.

In this paper, on the context of a search-based software engi-
neering research, we propose a semi-automatic software refactor-
ing approach based on software quality metrics. We rely on the
measurements of the Quality Model for Object Oriented Design
(QMOOD) [3] to recommend Move Method refactorings that im-
prove software quality. In a nutshell, given a software system S , our
approach recommends a sequence of refactorings R1,R2, . . . ,Rn
that result in system versions S1, S2, . . . , Sn , where quality(Si+1) >
quality(Si ). Indeed, our approach provides software architects a
real grasp whether refactorings improve software quality or not.

We empirically calibrated our approach to find the best criteria
to assess software quality improvement. First, we modified four
systems by randomlymoving a subset of its methods to other classes.
Second, we verified if our approach would recommend the moved
methods to return to their original place. After testing ten different
calibration criteria, we calibrated the approach with the one that
achieved the best recall average (57.5%, specifically).

We also implemented QMove, a prototype plug-in for Eclipse
IDE that supports our proposed restructuring approach with our
current calibration. The plug-in receives as input a Java system
and outputs the better sequence of Move Method refactorings that
improves the overall software quality.

Finally, we performed three types of evaluation. First, we eval-
uated our approach on 13 open-source systems. Similar to our
calibration method, we modified the original systems by randomly
moving a subset of their methods to other classes. Next, we verified
if our approach recommended the moved methods to return to their
original classes. As result, QMove could move back 84.2% of the
methods, on average. Second, we compared QMove with JMove and
JDeodorant on the same 13 systems used before. As result, the state-
of-the-art tools showed lower precision, recall, and hence f-score
values than the ones achieved by QMove. Last, we performed a
comparative evaluation of these tools in two proprietary systems
that was oversaw by experts developers, and our approach obtained
a greater number of positively evaluated recommendations.

The remainder of this paper is organized as follows. Section 2
presents the basic concepts to better understand our approach.
Section 3 describes our approach, the calibration process, and the
tool support. Section 4 reports three types of evaluation to verify our
approach. Section 5 exhibit the threats to validity. Finally, Section 6
discusses the related work and Section 7 concludes.

https://doi.org/10.1145/3275245.3275247
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2 BACKGROUND

This section presents fundamental concepts for understanding our
proposed approach. Section 2.1 describes basic concepts on refac-
toring. Section 2.2 introduces the QMOOD model for quality assess-
ment, and Section 2.3 shows precision, recall and f-score concepts.

2.1 Refactoring

In the literature, there are different terms for refactoring, such as
remodularization and restructuring, and the concepts of each term
are interrelated. Remodularization is a process that changes the
modular design of a software for purposes of adaptation, evolution,
or correction, and this process does not require the behavior of the
system to be changed [19]. Restructuring is the transformation of
one form of representation into another at the same level of relative
abstraction, while preserving the external behavior of the system
(functionality and semantics) [6].

Refactoring is basically restructuring applied to object-oriented
programming, which can be described as transformations in a soft-
ware that preserve its behavior, with the main idea to redistribute
classes, methods, and attributes by class hierarchy to facilitate fu-
ture adaptations and extensions [14]. From the several types of
refactoring, we highlight the Move Method, which is the core of
our proposed restructuring approach. A Move Method refactoring
consists in moving a method from one class to another. The move
can even occur to classes in different packages. There are many rea-
sons to move a method to a different class. A common scenario for
this refactoring is when developers realize that a method depends
more from members from another class than its own (a bad smell
named Feature Envy).

2.2 Quality Model for Object Oriented Design

There are several ways to measure quality of an object-oriented soft-
ware, such as CKmetrics (Chidamber and Kemerer) [5], MOOD (Met-

rics for Object Oriented Design) [1, 2], and QMOOD (Quality Model

for Object Oriented Design) [3]. Our approach relies on the latter
due to its coverage achieved through its six quality attributes and
11 design properties, which together provide a broader overview
of the quality of the software compared to other quality metrics for
object-oriented design.

QMOOD quality model measures software quality aspects in
object-oriented projects by six quality attributes based on ISO 9126,
namely reusability, flexibility, understandability, functionality, ex-
tensibility, and effectiveness. Calculating values for each attribute
provides an analysis on the quality of a software as a whole or on a
subset of the six mentioned attributes. QMOOD also helps to access
object-oriented design property, provides search-based refactoring,
and quantifies quality attributes with the help of equations [12].

This model defines 11 object-oriented design properties and links
them to an appropriate design metric (Table 1). Then, it proposes
equations using the design properties to measure the six quality
attributes (Table 2) [3]. We employ these equations in our approach.

Each calculated quality attribute serves as a parameter to provide
a notion of the current quality of the software, i.e., greater its value,
better is the characteristic assigned to it, opposite to other metrics
that provide values between 0 and 1. For example, a system S has
reusability attribute value equals to 10. Assume that developers

Table 1: Design Metrics for Design Properties

Design Metric Design Property

DSC (Design Size in Classes) Size
NOH (Number of Hierarchies) Hierarchies
ANA (Average Number of Ancestors) Abstraction
DAM (Data Access Metrics) Encapsulation
DCC (Direct Class Coupling) Coupling
CAM (Cohesion Among Methods of Class) Cohesion
MOA (Measure of Aggregation) Composition
MFA (Measures of Functional Abstraction) Inheritance
NOP (Number of Polymorphic Methods) Polymorphism
CIS (Class Interface Size) Messaging
NOM (Number of Methods) Complexity

Table 2: Equations for Quality Attributes

Quality

Attribute

Equation

Reusability
-0.25*Coupling +0.25*Cohesion +0.5*Messaging
+0.5*Size

Flexibility
+0.25*Encapsulation -0.25*Coupling +0.5*Composition
+0.5*Polymorphism

Understandability
-0.33*Abstraction +0.33*Encapsulation -0.33*Coupling
+0.33*Cohesion -0.33*Polymorphism -0.33*Complexity
-0.33*Size

Functionality
+0.12*Cohesion +0.22*Polymorphism +0.22*Messaging
+0.22*Size +0.22*Hierarchies

Extendibility
+0.5*Abstraction -0.5*Coupling +0.5*Inheritance
+0.5*Polymorphism

Effectiveness
+0.2*Abstraction +0.2*Encapsulation +0.2*Composition
+0.2*Inheritance +0.2*Polymorphism

change the source code of S , generating a new version of the system,
S ′, and reusability attribute value increased to 15. Therefore, there
was an increase of 50% in reusability value, which means that S ′

has a smaller number of repeated codes and a greater possibility of
their reuse in other systems, compared to S .

2.3 Recall, Precision and F-Score

A view on the performance of a sample data can be given by the
precision-recall curve, which is commonly summarized in a sin-
gle indicator [9], e.g., the f-score value. Given a classifier and an
instance, there are four possible outcomes: (i) if the instance is posi-
tive and it is classified as positive, it is counted as a true positive (tp);
(ii) if it is classified as negative, it is counted as a false negative (fn);
(iii) if the instance is negative and it is classified as negative, it is
counted as a true negative (tn); and (iv) if it is classified as positive,
it is counted as a false positive (fp) [7].

We use these outcomes to calculate precision and recall values
and consequently obtain the f-score value, as follows [16].

precision =
tp

tp + fp
recall =

tp

tp + fn

f − score = 2 ×
precision × recall

precision + recall

3 PROPOSED APPROACH

Wepropose a semi-automatic restructuring approach by usingMove
Method refactoring and six quality attributes defined by QMOOD
(refer to Table 2). The main idea is, given a software system S ,
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to move methods between classes in S in order to recommend a
sequence of refactorings R1,R2, . . . ,Rn that result in system ver-
sions S1, S2, . . . , Sn , where quality(Si+1) > quality(Si ).

First, the approach calculates the six quality attributes for the
analyzed software. Second, we detect every method that could
be automatically moved to another class. Third, for each method,
we move it to different classes that can receive it automatically,
recalculate the quality attributes, and return it to its original class.
Fourth, we include the refactoring that achieved better quality
improvement to the recommendation list and repeat the third step
for the remaining methods.

After we have processed every method, we present a recom-
mendation list showing the sequence of Move Method refactorings
ordered by the first to last recommendation found on fourth step.

3.1 Motivation Example

This section illustrates a Move Method refactoring scenario where
our approach could be useful. Suppose a small Java system S with
two classes: A and B. Class A has two methods: methodA1 and
methodA2. For this example, method methodA2Ðwhich receives
a B object as a parameterÐshould be in class B. Therefore, this cre-
ates a new system version S′ when we move the method. Figure 1
shows a UML diagram of the classes described in our example,
before and after we move the aforementioned method.

Figure 1: Move Method applied to our Example

When we apply our approach to system S, we first compute the
QMOOD quality attributes for S. Then, we detect methodA2 as a
method that could be moved to another class. The method is moved
to class B creating the new system version S′. We recompute the
quality metrics for S′ and then we return the method to class A,
where it originally came from. In this particular case, since there
are only two classes, our approach finishes the analysis. However,
when there are other classes, our approach would repeat the process
by moving the method to another class and recalculating the quality
metrics again.

Table 3 shows the QMOOD quality attributes for S and S′, and
the difference between S′ and S. Even though flexibility, under-
standability, and functionality values remain the same, the values
for the other three quality attributesÐreusability, extendibility, and
effectivenessÐimprove. Since it shows better quality attributes, our
approach would recommend methodA2 to be moved to class B (as
previous illustrated in Figure 1).

Table 3: Quality Attributes for our Example

Quality Attribute S S’ S’ - S

Reusability 1.4 1.5 0.1
Flexibility -0.12 -0.12 0
Understandability 0.2 0.2 0
Functionality 0.25 0.25 0
Extendibility 0.69 0.72 0.03
Effectiveness -1.4 -1.31 0.09

3.2 Algorithm

Algorithm 1 describes our proposed approach. It is worth noting
that before we execute the algorithm, we make a copy of the ana-
lyzed system, and the algorithm is executed in this copy (and not
in the actual system).

Algorithm 1: Proposed Approach Algorithm

1 Input: methods, a list with every method and their respective class from the
analyzed system

2 Output: recommendations, an ordered sequence of Move Method refactoring
that can be applied to the analyzed system

3 begin
4 potRefactor :=∅

5 currentMetrics := calculateMetrics()
6 for each method m in methods do
7 if m can be automatically refactored to a class C then
8 potRefactor := potRefactor + {m, C}
9 end

10 end

11 candidates :=∅

12 metrics :=∅

13 while potRefactor , ∅ do
14 for each refactoring ref in potRefactor do
15 applyRefactoring(ref)
16 metrics := calculateMetrics()
17 undoRefactoring(ref)
18 if fitness(metrics) > fitness(currentMetrics) then
19 candidates := candidates + {ref, metrics}
20 end

21 end

/* find the refactoring with the best metrics */

22 bestRefactoring := maxMetrics(candidates)
23 applyRefactoring(bestRefactoring)
24 potRefactor := potRefactor \ {bestRefactoring}
25 recommendations := recommendations + {bestRefactoring}
26 currentMetrics := bestRefactoring.metrics

27 end

28 end

The algorithm receives as input a list containing all methods
with their respective class from the analyzed system. The output
is a sequence of Move Method refactorings that resulted in better
quality metrics, ordered from highest to lowest according to the
quality measurements.

First, it calculates the current six QMOOD quality metrics for
the analyzed system (line 5). Second, it determines the meth-
ods of the system (m) that can be automatically moved to other
classes (C) (lines 6-10) and stores the pairs (m,C) in the list of po-
tential refactorings (line 8).

The next loop (lines 13-27) finishes when the list containing the
methods for potential refactoring is empty. Now, each method in
the potential refactoring list is moved (line 15), the quality metrics
are recalculated after moving the method (line 16), and the method
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returns to its original class (line 17). If the quality measurements
are better than the current ones (line 18), then the method is added
to our list as a candidate for refactoring (line 19).

After we measure every method, we select the one that achieved
the best quality metric improvement (line 22). The best refactoring
is applied to the system copy (line 23), removed from the potential
refactoring list (line 24), and added to the recommendations (line 25).
The new calculated metrics for the best refactoring becomes the
system baseline now (line 26). After the execution of Algorithm 1,
the sequence of refactorings is recommended to the user.

3.3 Calibration

Our calibration is related to the fitness function from Algo-
rithm 1 (line 18). The fitness function defines how we compare
the quality attributes to determinate if there is an improvement
according to our requirements. Our objective is to identify the best
set of requirements for the fitness function to make our approach
recommend better refactoring options.

3.3.1 Systems. Table 4 reports information about the four sys-
tems we use in calibration process, such as size in terms of lines of
code (LOC), and number of classes and methods. We chose these

Table 4: Systems used in calibration process

System Version # of classes # of methods LOC

JHotDraw 4.6 674 6,533 80,536
JUnit r4.12 1092 2811 26,111
MyAppointments 1.0 22 99 1,213
MyWebMarket 1.0 18 107 1,034

four systems because they were implemented following commonly
architectural standards and hence most of their methods are proba-
bly located in the correct classes. We randomly moved to different

classes 20 methods of JHotDraw and JUnit, and five methods of
MyAppointments and MyWebMarket.

The information about these methods and classes (original and
the one it has been moved to), we called Gold Set. We rely on
the Gold Set to verify if our approach recommends moving those
methods back to their original classes. In theory, it would be chosen
the fitness function that recommends more methods from the
Gold Set.

Next step of calibration process consists of elaborating different
strategies for the fitness function configuration to observe which
one is the most effective w.r.t. the larger number of methods from
the Gold Set being moved back to their original classes.

3.3.2 Strategies. For this calibration process stage, we define
five different types of fitness functions using two different kinds of
metrics valuesÐthe absolute and relative values of QMOOD quality
attributesÐand we run our approach in the modified versions of
the systems for each type of calibration. Absolute values refer to
original values of each calculated metric, and the relative values
refer to improvement (or worsening) percentages of the metrics
after a Move Method refactoring.

We assume S as a system, S ′ as its version after a Move Method
refactoring, andM as a metrics set consisting of reusability, flexibil-
ity, understandability, functionality, extendibility, and effectiveness.

Also, we consider M% as the set with the percentage difference
between the values of each metric ofM in S and S ′.

In first calibration type, our criterion is the more simplistic where
we verified if none of the quality attributes decreased and at least
one attribute increased. Therefore, Equation 1 uses absolute values
of each metric before and after the refactoring, while Equation 2
uses relative values.

Abs#1: ∀m ∈ M, m(S ′) ≥ m(S) ∧ ∃m ∈ M, m(S ′) > m(S) (1)

Rel#1: ∀m% ∈ M%, m% ≥ 0 ∧ ∃m% ∈ M%, m% > 0 (2)

We discovered that the effectiveness values get worse in themajor-
ity of theGold Set and hence we discarded correct recommendations.
In the second calibration, since the effectiveness rarely changed in
the first calibration, we adjusted the fitness function to disregard
this quality attribute, while maintaining the other criteria from the
first calibration. Therefore, we altered the absolute and relative
fitness functions (Equations 3 and 4, respectively).

Abs#2: ∀m ∈ M \ {effectiveness}, m(S ′) ≥ m(S)

∧ ∃m ∈ M \ {effectiveness}, m(S ′) > m(S)
(3)

Rel#2: ∀m% ∈ M% \ {effectiveness}, m% ≥ 0

∧ ∃m% ∈ M% \ {effectiveness}, m% > 0
(4)

In the third calibration, our criterion is as simplistic as the
first one where we compare the overall sum of all six quality at-
tributes. Thus, Equation 5 represents absolute version of the func-
tion fitness and Equation 6 represents the relative one.

Abs#3: s = sum(M),

s(S ′) > s(S)
(5)

Rel#3: sum(M%) > 0 (6)

In the fourth calibration, we modified the fitness function
based on the following two observations: (i) in the second calibra-
tion, flexibility, understandability, and extensibility improved but
the remaining attributes (reusability and functionality) decreased;
and (ii) Shatnawi and Li [18] stated that Move Method refactoring
usually increases the values for flexibility, understandability, and
extensibility. Therefore, particularly in this calibration, we consider
only these three attributes: flexibility, understandability, and exten-

sibility; disregarding the others. Therefore, considerM ′ as a subset
of M consisting of flexibility, understandability and extensibility
metrics andM ′% as the percentage difference between the values of
each metric ofM ′ in S and S ′. Equations 7 and 8 represent absolute
and relative versions of the fitness function, respectively.

Abs#4: ∀m ∈ M’, m(S ′) ≥ m(S)

∧ ∃m ∈ M’, m(S ′) > m(S)
(7)

Rel#4: ∀m% ∈ M’%, m% ≥ 0

∧ ∃m% ∈ M’%, m% > 0
(8)

In the fifth and last calibration type, we used the following three
design metrics (Table 1): CAM (cohesion), DCC (coupling), and CIS
(messaging). We chose these metrics because they are the QMOOD
design metrics that usually change when a method is moved. We
then establish the criteria for the fitness function that cohesion,
coupling, and messaging cannot decrease. Therefore, consider DM
as a set with CAM, DCC, and CIS design metrics and DM% as the
percentage difference between the values of each design metric of
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DM in S and S ′. Equations 9 and 10 represent absolute and relative
fitness functions, respectively.

Abs#5: ∀m ∈ DM, m(S ′) ≥ m(S)

∧ ∃m ∈ DM, m(S ′) > m(S)
(9)

Rel#5: ∀m% ∈ DM%, m% ≥ 0

∧ ∃m% ∈ DM%, m% > 0
(10)

3.3.3 Results. Table 5 reports the calibration types, the number
of recommended methods (RM), the recommendations from the
Gold Set (GM) and we also calculated precision, recall, and f-score,
considering GM as true positives, RM −GM as false positives, and
|Gold Set | −GM as false negatives.

Table 5: Calibration Results

JHotDraw JUnit

ST RM GM P R F RM GM P R F
Abs#1 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Rel#1 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Abs#2 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Rel#2 33 5 15.1% 25.2% 18.8% 30 10 33.3% 50.0% 40.0%
Abs#3 43 13 30.2% 65.0% 41.2% 39 16 41.0% 80.0% 54.2%
Rel#3 43 13 30.2% 65.0% 41.2% 39 17 43.5% 85.0% 57.6%
Abs#4 40 13 32.5% 65.0% 43.3% 36 16 44.4% 80.0% 57.1%
Rel#4 40 13 32.5% 65.0% 43.3% 36 16 44.4% 80.0% 57.1%
Abs#5 36 4 11.1% 20.0% 14.2% 30 9 30.0% 45.0% 36.0%
Rel#5 37 5 13.5% 25.0% 17.5% 52 11 21.1% 55.0% 30.5%

MyAppointments MyWebMarket

ST RM GM P R F RM GM P R F
Abs#1 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#1 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#2 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#2 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#3 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#3 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#4 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#4 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Abs#5 4 2 50.0% 40.0% 44.4% 2 2 100.0% 40.0% 57.1%
Rel#5 4 2 50.0% 40.0% 44.4% 3 3 100.0% 60.0% 75.0%
Acronyms: ST - Strategy, Abs - Absolute Calibration, Rel - Relative Calibration,
RM - Recommended Methods, GM - Gold Set Methods, P - Precision, R - Recall, F - F-Score.

We determined that we should focus our analysis on recall values.
The measure of precision and f-score is jeopardized since we cannot
ensure that recommendations that do not belong to the Gold Set

are indeed wrong. In other words, we can mostly guarantee that
the methods we moved around (i.e., those that belong to the Gold
Set) are misplaced.

The first and second calibration strategies obtained an average
of 38.8% for both Abs#1, Rel#1, Abs#2, and Rel#2. Since the number
of recommendations being the same, consequently resulting in the
same recall values.

For the third calibration, Abs#3 had the average recall of 56.2%,
the best result so far, since is an increase of 17.4% w.r.t. the previous
strategies. However, for Rel#3, the average recall rose to 57.5%, i.e.,
a subtle increase of 1.3%. It occurs due exclusively to the difference
of recall values calculated for JUnit, which in Abs#3 was 80% and
Rel#3 was 85%. Thus, we now consider Rel#3 to be the best.

In the fourth calibration, the average recall for both Abs#4 and
Rel#4 were 56.2% (the same found for Abs#3), so we keep Rel#3 as
the best. Last, in the fifth calibration, Abs#5 had an average recall
of 36.2%, while Rel#5 had an average of 45%. These values are lower
than the one of Rel#3, so they were discarded.

Thus, we chose calibration Rel#3, which obtained the highest
average recall value of 57.5%, to be used by our approach as the
fitness function, i.e., the criterion of comparing the metrics by
improvement percentage of the sum of QMOOD quality attributes.

3.4 Tool Support

We implemented our approach as a plug-in for the Eclipse IDE,
called QMove1. By default, our tool relies on calibration Rel#3 but
it provides ways to define the preferable calibration option based
on users’ experience. Figure 2 demonstrates an example of using
QMove on a system. When developers run the tool, it shows a view
with the recommended refactoring sequence. The view shows the
method’s current location, the suggested class to move it, and the
percentage increase in QMOOD quality metrics when the refactor-
ing is applied. Note, for instance, that recommendation ID 1 sug-
gests to move methodB2 from pckg.B to pckg.A since it improves
68.28% of metrics values. For each recommendation, QMove allows
to apply it or check detailed information w.r.t. its QMOOD met-
rics values. Note again that, while reusability remains the same,
recommendation ID 1 improves flexibility from -2.5 to -2 (+0.5),
effectiveness from -1.5 to -1.25 (+0.25), extendibility from 2.56 to
2.625 (+0.065), functionality from 4.291 to 4.676 (+0.385), and un-
derstandability from -5.555 to -5.047 (+0.508). Finally, there is also
the option to automatically apply all refactorings in the order our
approach suggests.

Figure 2: QMove plug-in2

4 EVALUATION

Section 4.1 reports a synthesized analysis we performed running
our QMove tool on 13 open-source systems. Section 4.2 compares
QMove with two state-of-the-art tools similar to ours by running
JMove and JDeodorant on the same 13 systems used in the previ-
ous evaluation. Finally, Section 4.3 reports an evaluation in a real
scenario, where we ran our tool, JMove, and JDeodorant in two
proprietary systems together with their software architects.

1https://github.com/pqes/QMove, verified 2018-07-04. The execution time of our tool
is mostly lengthy. For example, QMove running on JHotDraw (largest system of our
calibration) takes about 1 day and on the evaluated systems takes between 1 and 7 days.
Nevertheless, we claim that our approach should be used in remodularization tasks,
which occur once in a while, and it is indeed not suitable for continuous application.
2One could question rec. ID 1 improves 68.28% and rec. ID 2 improves 196.85%. However,
rec. ID 1 is the best in version Si and rec. ID 2 is the best in version Si+1 . Particularly
in this example, rec. ID 2 in Si would improve 58.95%, which is less than 68.28%.

https://github.com/pqes/QMove
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4.1 Synthesized Evaluation

This section evaluates our proposed refactoring approach through
QMove in open-source systems.

Subject systems:We rely on 13 open-source systems (Table 6) that
possess well-defined architectures and are active projects. These
systems have been used in the evaluation of a third-party work [20],
which facilitates comparing our approach to JMove and JDeodorant.

Table 6: Subject Systems

System Version # of classes # of methods LOC

Ant 1.8.2 1,474 12,318 127,507
ArgoUML 0.34 1,291 8,077 67,514
Cayenne 3.0.1 2,795 17,070 192,431
DrJava r5387 788 7,156 89,477
FreeCol 0.10.3 809 7,134 106,412
FreeMind 0.9.0 658 4,885 52,757
JMeter 2.5.1 940 7,990 94,778
JRuby 1.7.3 1,925 18,153 243,984
JTOpen 7.8 1,812 21,630 342,032
Maven 3.0.5 647 4,888 65,685
Megamek 0.35.18 1,775 11,369 242,836
WCT 1.5.2 539 5,130 48,191
Weka 3.6.9 1,535 17,851 272,611

Methodology: Similarly to our calibration, we modified the
subject systems by randomly moving their methods to other
classes. Those methods represent our Gold Set and our evaluation
consists in verifying whether QMove recommend to move methods
from our Gold Set back to their original classes.3

Results: Table 7 reports the evaluation results for each system, the
total number of recommended methods, the Gold Set (GS) size, the
recommendations from the Gold Set (GS), and the achieved f-score,
precision, and recall. Our evaluation results shows 84.2% average
recall for methods in the Gold Set. This result is similar to the one
found in the calibration process, where the highest recall in our
chosen strategy was 85%. On the other hand, the average f-score
and precision in the evaluation were lower than the calibration. It is
somehow expected since the systems used in the calibration process
have been carefully implemented following commonly architectural
standards.

We also performed a more detailed analysis of the recommen-
dations, considering the precision and recall values for each rec-
ommendation, allowing the behavior observation of these values
during the execution of our approach. Therefore, Figures 3 and 4
show a graph containing the precision and recall results, respec-
tively, for all subject systems. We used the logarithmic scale for a
better representation of data variation, mostly in relation to the
first found recommendations.

We can note that precision values in general tend to be higher
in the first recommendations, and throughout of the remaining
recommendations, the precision undergoes a decline until the last
recommended method. Regarding recall, the observed behavior is

3We do not rely on the same Gold Set from [20] because we use a more recent version
of Eclipse to implement and run our approach. We noticed, nevertheless, that Eclipse
Photon has more preconditions to apply a Move Method than used to be when the
nowadays version could not move back some methods from [20].

Table 7: Evaluation Results4

System Recs. GS Size Recs.GS F-score Prec. Recall

Ant 135 25 25 31.2% 18.5% 100.0%
ArgoUML 71 32 13 25.2% 18.3% 40.6%
Cayenne 245 47 46 31.5% 18.7% 97.8%
DrJava 90 18 16 29.6% 17.7% 88.8%
FreeCol 112 17 13 20.1% 11.6% 76.4%
FreeMind 47 12 11 37.2% 23.4% 91.6%
JMeter 52 25 22 57.1% 42.3% 88.0%
JRuby 101 41 23 32.3% 22.7% 56.1%
JTOpen 162 39 36 35.8% 22.2% 92.3%
Maven 36 24 22 73.3% 64.1% 91.6%
Megamek 193 35 32 28.0% 16.5% 91.4%
WCT 46 29 25 66.6% 54.3% 86.2%
Weka 114 31 29 40.0% 25.4% 93.5%
Average 39.1% 27.1% 84.2%

Figure 3: Precision Results

Figure 4: Recall Results

the opposite of precision, i.e., a low recall in the first recommen-
dations and a high value in the last recommendations. This behav-
ior shows a tendency that the first recommendations provided by
QMove have high accurate in finding methods that are erroneously
located, and throughout the remaining recommendations, most of
these methods are recommended but with less precision.

In order to find the situation where our approach provides the
best possible precision and recall values, we made further analysis
through precision and recall values at different stages of the Move
Method recommendations, specifically when we set the number
of recommendations as three (Top3), five (Top5), ten (Top10), and
n (TopN ), being n the size of the gold set for each system used in
the evaluation (e.g., n = 25 for Ant according to Table 7).

Figure 5 graphically illustrates the precision behavior and shows
the data referring to the average precision of Top3 to TopN , the
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letter represented by the dotted line. The average precision is 71.8%
for the first three recommendations, 67.7% for the first five, 66.9%
for the first ten, and 52.1% for the first n recommendations. Note
that our approach is more precise in the first recommendations to
move methods that improve QMOOD quality attributes.

Figure 5: Precision Tops

Figure 6 contains a graph representing the recall value for the
TopN recommendations, as well as containing a dotted line repre-
senting the average recall rate for all analyzed systems. It shows
that the first n recommendations have an average recall of 53.1%,
with a standard deviation of 25.6%. Thus, considering the number
of randomly moved methods for each system, the tendency is that
53.1% of them are recommended to return to their original classes
with a 52.1% precision.

Figure 6: Recall Tops

Another strategy to verify the results is using f-score value in the
same way that was used in the calibration (Section 3.3). Thereupon,
we generate graphs for each of the 13 systems used in the evaluation,
containing the precision, recall, and f-score behavior (Figure 7). Our
goal is to observe the point that the f-score has its highest value,
which consequently sets the highest values of precision and recall,
before the f-score values begin to decline. This allows us to find the
number of recommendations necessary for our approach to detect
as many Gold Set methods as possible, while maintaining a high
precision and recall rate. All the graphs are in logarithmic scale,
and the abscissa axis has the size of 250, to simplify the comparison
between them.

By analyzing the graphs represented in Figure 7, we detected the
points where the f-score has its highest value, and for each point we

extracted the corresponding precision, recall, and recommendation
number. We also calculated the positions of the recommendations
in function of n, where n is the size of the Gold Set for that system.
Table 8 reports the results of this analysis showing for each system
the recommendation position, the recommendation position in
function of n, the f-score, precision, and recall values.

Table 8: Best F-Score at Recommendation

System Rec. Pos. Rec(n) F-Score Prec. Recall
Ant 17th 0.68 66.6% 82.3% 56.0%
ArgoUML 11th 0.34 41.8% 81.8% 28.1%
Cayenne 55th 1.17 56.8% 52.7% 61.7%
DrJava 22nd 1.22 60.0% 54.5% 66.6%
FreeCol 6th 0.35 17.3% 33.3% 11.7%
FreeMind 10th 0.83 81.8% 90.0% 75.0%
JMeter 30th 1.2 80.0% 73.3% 88.0%
JRuby 78th 1.90 38.6% 29.4% 56.1%
JTOpen 32nd 0.82 87.3% 96.8% 79.4%
Maven 25th 1.04 85.7% 84.0% 87.5%
Megamek 37th 1.05 66.6% 64.8% 68.5%
WCT 29th 1 65.5% 65.5% 65.5%
Weka 101th 3.25 43.9% 28.7% 93.5%
Average - 1.14 62.6% 64.4% 64.5%

As can be seen, the extracted data resulted in an average of
62.6% of the f-score values, with a standard deviation of 20.93%.
Consequently, to find the number of recommendations needed to
have the highest precision and recall values of 64.4% and 64.5%,
respectively, are 1.14 x n. Therefore, considering all the systems
used in the evaluation, our approach is able to detect, among the
first 1.14 x n Move Method recommendations, 64.5% of methods
contained in the Gold Set with 64.4% precision.

4.2 Comparative Evaluation

We perform a comparative analysis between our approach and the
JMove and JDeodorant tools.

Subject systems:We used the same systems used in our synthe-
sized evaluation (refer to Table 6).

Methodology:We ran JMove and JDeodorant on these 13 systems
to verify if they recommend moving back the methods from our
Gold Set.

Results: Table 9 reports the number of refactoring recommenda-
tions by each tool (Recs.), the number of refactoring related to
methods from the Gold Set (Recs. GS), and the f-score, precision,
and recall values calculated through the mean of the precision and
recall values for each analyzed system.

Table 9: Comparative Results

System Recs. Recs. GS F-score Prec. Recall

QMove 1,404 313 39.1% 27.1% 84.2%
JMove 2,091 113 10.1% 6.6% 30.1%
JDeodorant 1,364 117 15.7% 13.4% 29.5%

As we can see in Table 9, QMove performed better than the other
tools for all metrics. QMove f-score was 39.1%, which is more than
twice as JDeodorant (15.7%) and almost four times as JMove (10.1%).
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Figure 7: Recall, precision and f-score results

Considering precision and recall, QMove also performed at least
twice as much as the other tools.

Figure 8 shows the overlap of the Move Method recommenda-
tions belonging to the Gold Set of the three evaluated tools.

Figure 8: Overlapping between comparative results

QMove exclusively recommended 150 Gold Set methods, while
JMove and JDeodorant exclusively recommended 12 and 13, respec-
tively. QMove and JMove together recommended 66 methods, and

QMove and JDeodorant recommended 69 Gold Set methods. The
three tools together recommended 28 methods, and the refactorings
that JMove and JDeodorant both recommended were only seven.
We argue that the techniques are complementary since the state-
of-the-art tools could indicate 32 correct recommendations that
QMove could not.

4.3 Real Scenario Evaluation

This section evaluates our proposed refactoring approach through
QMove in real-world systems.

Subject systems:We rely on two proprietary systems developed
by GT4W - Geo Technology for Web, a IT company located in
Lavras, Minas Gerais, Brazil. Table 10 reports data about these
systems.5 ReMent is a demand management system and Cyssion a
concession management system. We chose these systems because

5We changed the names of the systems for confidentiality purposes.
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they are in an advanced phase of implementation, have well-defined
architectures through the MVC (Model-View-Controller) model,
and are developed in Java.

Table 10: Proprietary Systems

System # of classes # of methods LOC

ReMent 140 222 7,484
Cyssion 216 574 16,021

Methodology: Besides executing QMove, we also executed
JMove and JDeodorant on these systems in order to compare the
results. Two expert developers (one for each system) evaluated
recommendations provided by each tool. Using the Likert scale [11],
the evaluation methodology consisted of developers answering,
for each recommendation, the question "How do you rank this
Move Method recommendation?". The answer to this question
could be one of five available: (1) Strongly not recommended,
(2) Not recommended, (3) Neither recommended nor recommended,
(4) Recommended, or (5) Strongly recommended. We leave free the
option of the experts to justify the chosen option, thus gathering
useful information that could contribute to our evaluation.

Results: For ReMent, JMove and JDeodorant gave no recommen-
dations. QMove, on the other hand, recommended five methods
for ReMent, where three were evaluated as łStrongly not recom-
mendedž and two as łNeither recommended nor recommendedž.

For Cyssion, Table 11 reports the evaluation results of the 41,
five, and six recommendations triggered by QMove, JMove, and
JDeodorant, respectively.

Table 11: Cyssion Experts’ Evaluation

Rec. Classification QMove JMove JDeodorant

(5) Strongly Recommended 2 0 0
(4) Recommended 4 2 0
(3) Neither Recommended Nei-
ther Not Recommended

2 1 1

(2) Not Recommended 6 0 0
(1) Strongly Not Recommended 27 2 5
Total 41 5 6

Considering the positive evaluations, which are those recommen-
dations that were evaluated as (4) and (5), QMove had six, against
two and zero of JMove and JDeodorant, respectively. Also, including
as positive the recommendations that were evaluated as (3) because
their neutrality, QMove would have eight recommendations against
three from JMove and one from JDeodorant. Figure 9 shows the
overlap between the recommendations found for all three tools,
making it clear that only one recommendation was found at the
same time by QMove and JMove, which is evaluated as (4).

Figure 9: Overlapping between Cyssion results

These results demonstrate that QMove was relatively more ef-
fective in finding practically useful recommendations. However,

there were a high number of recommendations evaluated as (1)
and (2) for the two systems, and the reasons for this can be ex-
plained by comments from the experts when we were conducting
the evaluation.

First, most of the comments focused on justifying evaluations
(1) and (2) because of the meaningless moves, such as moving an
accessor method of a private attribute. Second, experts commented
that some recommendations involved methods that were being
overwritten from an interface (@override annotation), and moving
them would cause compilation errors. Third and last, there were
comments on methods used by frameworks, and moving them to
other classes would hinder the functioning of the framework. These
issues will be considered in our future work.

Concluding this evaluation, QMove was able to find positively
evaluated methods in greater quantity than JMove and JDeodorant,
and the number of negatively evaluated recommendations can be
reduced with adjustments in the preconditions of QMove.

5 THREATS TO VALIDITY

Next, we identify at least two threats to validity in our study.

Internal Validity:We modified the subject systems to evaluate our
approach by randomlymovingmethods from one class to another in
order to verify whether these methods are recommended to return
to their original classes or not. This fully-random methodology
implies in the possibility of a moved method improves QMOOD
quality attributes in its new class. In this case, our approach would
not recommend such a method since returning to its original class
would worsen our fitness function. However, since our approach
achieved a recall rate of 84.2%, we can at least assume that most
methods worsen quality metrics when they were moved.

External Validity: The subject systems used in the calibration and
evaluation are implemented in Java. One could argue that this
could affect the use of our proposed approach in other systems that
use different programming languages. Nevertheless, our fitness
function is based on the QMOOD model, whose quality metrics
can be measured for any object-oriented project, regardless of the
underlying programming language.

6 RELATED WORK

In this section, we highlight and discuss some studies that are
closely related to our proposed restructuring approach.

Terra et al. [20] propose JMove, a tool for Move Method refac-
torings. Given a methodm located in a class C , it calculates two
similarities using Jaccard: (i) the average similarity betweenm and
the remaining methods inC and (ii) the average similarity between
m and the methods in another class C ′. If the similarity measured
in C ′ is greater than the one measured in C , then C ′ is a potential
candidate class to receive m. However, JMove deals with meth-
ods that have more than four dependencies, while our approach
does not have this restriction, consequently increasing the scope of
potential recommendations.

Tsantalis and Chatzigeorgiou [21] present JDeodorant, a tool
that suggests Move Method refactorings as solutions to the Feature
Envy design problem. JDeodorant defines a metric called Entity
Placement that is used to evaluate whether a recommendation
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reduces coupling, defined by the Jaccard distance between the class
itself and outer entities, and improves cohesion, defined by the
Jaccard distance between the class itself and inner entities. Whereas
JDeodorant is based only on cohesion and coupling metrics, our
approach, using the QMOODmodel, provides a broad set of metrics
that measure improvements to overall quality of the system.

Mkaouer et al. [15] propose an approach that searches for a se-
quence of refactoring actions to maximize the six QMOOD quality
attributes while minimizing the number of refactoring actions. Al-
though their approach covers more refactoring types, it does not
analyze all refactoring options, which may lead to a sub-optimum
restructuring. In contrast, our approach analyzes every possibility
but currently considers only the Move Method refactoring.

O’Keeffe and Cinnéide [17] present a tool for refactoring based
on three QMOOD quality attributes, called Code-Imp. They propose
four search algorithms to maximize flexibility, understandability,
and extensibility. Even though their tool supports many refactoring
types, it does not support the Move Method refactoring, which is
the refactoring we used in our approach.

Griffith et al. [10] describe an approach to detect code smells by
using CK (Chidamber-Kemerer) and size-oriented metrics, whereas
our approach uses a more solid model. They employ a genetic algo-
rithm to find the best refactoring sequence that removes the most
number of code smells. While their approach outputs the refac-
toring in a UML class diagram, our approach allows the software
architect to perform the recommended refactorings automatically
in the source code.

7 FINAL REMARKS

Even though there are many refactoring approaches, very few con-
sider their impact on the software quality. In this paper, thereupon,
we proposed a search-based approach to recommend Move Method
refactorings that improve QMOOD quality attributes. QMove re-
ceive as input a given software system S and recommends a se-
quence of refactorings R1,R2, . . . ,Rn that result in system ver-
sions S1, S2, . . . , Sn , where the sum of all six QMOOD quality at-
tributes is greater in Si+1 that in Si .

In our first evaluation, we evaluated our approach in 13 open-
source systems by randomly moving 375 methods. On average, our
approach could move 84.2% of the methods back to their original
classes. More important, our approach is able to detect, among the
first 1.14 × n recommendations (where n is the size of the Gold Set
for each system), 64.5% of methods contained in the Gold Set with
64.4% precision, on average.

In our second evaluation, we compared QMove with JMove and
JDeodorant on the same 13 systems used in the first evaluation.
As result, the state-of-the-art tools showed lower precision, recall,
and hence f-score values than the ones achieved by QMove. While
QMove recall value was 84.2%, JMove and JDeodorant recall values
were 30.1% and 29.5%, respectively. Nevertheless, we argue that
the techniques are complementary since the state-of-the-art tools
could indicate 32 correct recommendations that QMove could not.

In our third evaluation, we evaluate QMove, JMove, and JDeodor-
ant in a real scenario on the eyes of the software architects. As result,
the software architects positively evaluated six out of 46 recom-
mendations from QMove, two out of five from JMove, and none

out of six from JDeodorant. Although QMove found more correct
Move Method opportunities, it triggered much more false positives
than the state-of-the-art tools.

Future work includes: (i) to incorporate other types of refactor-
ings, such as Extract Class and Extract Method, (ii) to improve
QMove preconditions to avoid false positives, and (iii) to rely on
other metrics and other search-based algorithms to allow users to
set up their own fitness function and search-based algorithm.
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