
  

 

 

Tilburg University

A quantile alternative for kurtosis

Moors, J.J.A.

Publication date:

1987

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Moors, J. J. A. (1987). A quantile alternative for kurtosis. (Ter discussie FEW; Vol. 87.08). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Aug. 2022

https://research.tilburguniversity.edu/en/publications/24ab7106-1b62-42f8-a958-c329b999c516


8

n lu l IIIN IIIhI I II IVII IN II II I I I I llli I III IN



i ~~-~~-~- ~....-.,é . [ ~
~-~....."'- ~-- ~

i?~I. 1~:(4- f~...r-~t
~~. e . . . . -.-

~ r' ~f' -~.1 ~~, ..~11J f- ~~~.,.. ~

~ L, -. --.-.....~.~.~~~..~-.~.~.~~~..~,



A QUANTILE ALTERNATIVE FOR KURTOSIS

J.J.A. Moors

No. 8~.08



1

A QUANTILE ALTERNATIVE FOR KURTOSIS

J.J.A. Moors

Summary. Recently, MOORS (1986) showed that kurtosis is easily interpreted

as a measure of dispersion around the two values N t~. For this disper-

sion an alternative measure, based on quantiles, i s proposed here. It is

shown to have several desirable properties: ( i) the measure exists even
for distributions for which no moments exist, (11) it is not influenced by

the (extreme) tails of the distribution, and (iii) the calculation is

simple (and is even possible by graphical means).

1. Introduction

For any distribution the kurtosis k will be defined here as the normalized

fourth central moment (provided it exists). So, any random variable X with

expectation u:- E(X), variance Q2 .- V(X) and E(X4) C m has

k - E(x-~,)4~~4

Until recently, the interpretation of kurtosis used to be rather contro-

versial. Most statistical textbooks describe kurtosis in terma of peaked-

ness (versus flatness), while some seek the explanation in the presence of

heavy tails or in a combination of the two.

Inspired by DARLINGTON (19~0), MOORS (1986b) gave a new and useful

interpretation of k. Introduction of the standardized variable Z:- (X-

u)~Q gives k- E(Z4) - V(ZZ) t[E(Z2)]2, implying

(1.1) k - V(Z2) t 1

Therefore, k can be seen as a measure of the dispersion of Z2 around its

expectation 1 or, equivalently, the dispersion of Z around the values -1

and .1. So, k measures the dispersion of X around the two values K t~; it
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is an inverse measure for the concentration of the distribution of X in
these two points. Indeed, (1) attains the minimum value 1 for a symmetric
two-point distribution. High kurtosis therefore may arise in two situa-
tions:

(i) concentration of probability mass near u(corresponding to a
peaked unimodal distribution), or

(ii) concentration of probability mass in the tails of the distri-
bution.

The existence of these two possibilities explains the past confu-
sion about the meaning of kurtosis.

The first three moments of a given distribution measure location,
dispersion and skewness, respectively. For these characteristics of the
distribution well-known alternative measures exist, based on quantiles:
the median Q, the half interquantile range R and the quantile coefficient
of skewness S. Defining an i-th quartile Qi by

(1.2) P(X C Qi) S i~4, P(X ~ Qi) S 1- i~4, i- 1, 2, 3

leads to the expressions

1'-Q2

(1.3) R - (Q3-Q1)~2

s - (Q3-2Q2}Q1)I(Q3-Q1)

Up to now, an analogous quantile coefficient of kurtosis did not exist,
most probably because a good understanding of the meaning of kurtosis was
missing. The closest to such a measure came GROENEVELD 8~ MEEDEN (1984);
for symmetric distribution, they took as quantile alternative to kurtosis
the skewness coefficient S of the 'upper half' of the distribution. See
Section 4 for a further discussion.

In the next section a new quantile measure for the dispersion of a
distribution around the values p: 6 will be presented. In view of the
interpretation of kurtosis, discussed above, this measure cen be seen as
an alternative to k. Some theoretical properties of the new measure are
derived in Section 2 as well, while the behaviour for different types of
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(symmetrical) distributions is considered in Section 3. The final Section

4 gives a short discussion of the results and surveys related literature.

2. Definition and properties

For any random variable X the octiles Ei are defined by

(2.1) P(X ( Ei) S i~8, P(X ~ Ei) 5 1- i~f~, i- 1, 2, .-.,7

Note the similarity with (1.2); E2i - Qi (i-1,2,3). For continuous X with
distribution function F, the octiles are unique and (2.1) can be simpli-
fied to

(2.2) F(Ei) - i~8 . i ' 1.2,....7

If Y is defined by Y- aX t b, it ia easily checked that aEi t b is an
octile of Y.

For E6 ) E2, the quantity T is defined as

2 ) T -
(E,~-E5) } (E3-E1)

( .3 - E6 - E2

T is proposed here as alternative to k with the following argument as
basic justification. The two terms in the numerator are large (small) if

relatively little (much) probability mass is concentrated in the neigh-

bourhood of E6 and E2, corresponding with large (small) dispersion around

(roughly) p t 6. Compare Figure 2.1.
Since both distributions in Figure 2.1 have equal E2 and E6, the

broken line shows the distribution with the larger T-value.

The denumerator in (2.3) is a normalizing constant, which guaran-
tees the invariance of T under linear transformations. Hence, T is con-

stant over any class of distributions determined by a location-scale para-

meter, e.g. the class {N(u,~2) : y. E R, ~2 ~ 0} of normal distributions.

As is well-known, k has this property too.
Of course, T takes values in R} :~ [O,m). By way of illustration

consider the symmetrical three-point distribution, defined by P(Xz0) 3 p,
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Figure 2.1. Octiles for two continuous distributions

P(X--1) - P(X-t1) -(1-p)~2. It is easily checked that for this
distribution

('0, OSp~ }

T -
~l. ~ ~ P ~ ~

holds. For p-~ or p-~, T is not uniquely determined, while T does not

exist for p) k. On the other hand, k- 1~(1-p).

Note the analogy between (2.3) and (1.3). For distributions that

are symmetrical around 0, (2.3) can be simplified to

(2.4) T - (E.~-E5)~E6

3. Behaviour of T

The new measure T will be calculated now for a number of ( classes of)
symmetrical distributions. Guidelines for the selection of these distribu-

tions were (i) the wish to cover a wide range of k-values and (ii) ease of
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calculation. Because of the invariance property discussed before, it suf-
fices to find T(and k) for one representative in any class determined by
a location-scale parameter. For simplicity, a distribution with mean zero
will be chosen throughout, so that (2.4) is applicable.

First of all, the following simple representative distributions
will be taken into consideration:

(i} the (standard)normal distribution N(0,1),
(ii) the triangular distribution Tr(-1,1) with density

f(x) - 1- ~x~ , 0 5 ~x~ 5 1

(iii) the uniform distribution U(-1,1),
(iv) the double triangular distribution DT(-1,1) with density

2~x~, 0 S ~x~ 5}
f(x) -

2-2~x~, } 5 ~x~ 5 1

(v) the inverse triangular distribution IT(-1,1) with density
f(x) - ~x~, -1 s x 5 1.

i~.e densities of the less familiar distributions are drawn in Figure 3.1.
,... ~ - -

I f (x)

Figure 3.1. Triangular (a), double triangular (b) and inverse triangular
(c) distribution
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Table 3.1 gives the value of the measure T for these (classes of) distri-

butions and the auxiliary quantities E5, E6 and E7; besides, k is given as
well as E(X2) and E(X4). Table 3.1 is arranged according tot decreasing k-
values.

Table 3.1. Values of T and k for selected distributions

Distri- E E6 E T E(X2) E(X4) k5 7

bution

x o.3186 0.6745 1.1503 1.233 1 3 3
Tr 0.1340 0.2929 0.5 1.250 1~6 1~15 2.4

U 0.25 0.5 0.75 i 1~3 il5 1.8
DT o.3536 0.5 0.6464 0.586 7124 31~240 1.518
IT o.5 0.7071 0.8660 0.518 i~2 1~3 1.333

Secondly, the class {Q(a),-~ 5 a 5 1} is considered, where Q(a) is the
probability distribution with the (quadratic) density

(3.1.) f(x) -(3ax2;1-a)~2, -1 s x s i

(cf. MOORS 1986a). The property

E(X2n) - (~tl)(2nt3) ' n - 0,1,2,...

is easily checked and implies

4 8at(3.2) k - ~J1
7(4at5)2

so that k is an decreasing function of a. Table 3.2 shows k and T for

selected values of a; the calculations show that T is increasing in k.
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Table 3.2. Values of T and k for selected distributions Q(a)

a E5 E6 E7 T k

-0.5 0.1683 0.3473 0.5579 1.i22 2.i43
-0.25 o,2oi6 0.4142 0.6566 1.098 2.009
0 0.25 0.5 0.75 1 1.8
0.25 0.3222 0.5961 0.8177 0.831 1.607
0.5 0.4239 0.6823 0.8612 0.641 1.443
0.75 0.5366 0.7474 0.8894 0.472 1.306
i o.6300 0.7937 0.9086 0.351 1.190

Next, the class of double gamma distributions {DG(p): p~ 0} will be con-

sidered where DG(p) has the (symmetric) density

(3-3) f(x) - 2I'(P) Ixlp-le-Ixl ~ x E R

Note that these distributions are bimodal for p~ 1; they can be obtained
from a more general class by putting the scale parameter equel to 1. From

(3.4) E(X2n) - r(Pt2n)Ir(P). n s 0.1,2....

it follows

(3.5) k - (Pt3)(P}2)
(Pti)P

so that k is decreasing in p. To find the octiles, first note that these

are the quartiles of the well-known gamma distribution C(l,p). Further,

2- i'(~,n~2) leads to the simple expressionXn

2
Eit4 - ~ x2P:i~4~ i - i.2.3
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for the octiles of DG(p). Table 3.3. shows the values of T and k for se-
lected values of p.

Table 3.3. Values of T and k for selected distributions DG(p)

p T k p T k

0.5 2.686 11.667 l0 0.433 1.418
1 1.585 6 15 0.352 1.275
1.5 1.224 4.2 20 0.304 1.205
2 1.032 3.333 30 0.248 1.135
3 0.820 2.5 40 0.214 1.101
5 0.622 1.867 50 0.191 1.081

Again, T is increasing in k according to this table.
Finally, the class of exponentisl power distributions {EP(a): 0~

a 5 1} will be discussed, extensively used by BOX 8, TIAO (1973). The den-

sity of EP(a) can be written as

(3.6) f(x) - ~(a)exPL'c(a)IYIl,a]

where

(T(3 )j~ - ~(3 )~1~2a
(3.7) W(a) - 2all, 3 a J c(a) r(a)r (a)

This class contains as special cases the double exponential distribution

(a - 1), the standard normal (a .}) and - as limiting case - the uniform
distribution U(-f ,f) (a ~ 0) .

Some algebra give

(3.8) E(X2n) - r((2n;1)a)r"-1(a)~la"(3a)

so that
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(3.9) k - r(5a)C(a)
~(3a)

Table 3.4 shows the octiles as well as T and k for selected values of oc.
The octiles were obtained by numerical integration; the results agree with
Table 3.2.2 of BOX 8~ TIAO (1973), except the value of E6 for a- 0.25,
which is 0.80 according to Box end Tiao.

Table 3.4. Values of T and k for selected distributions EP(a)

a E5 E6 E7 T k

0 0.4330 0.8660 1.2990 1 1.8
o.i25 0.4197 0.8397 i.2683 1.oi1 i.923
0.25 0.3900 0.7863 i.229o 1.067 2.188
0.375 0.3543 0.7293 1.i903 1.146 2.548
0.5 0.3186 0.6745 1.1503 1.233 3
0.625 0.2853 0.6231 1.1089 1.322 3.553
0.75 0.2549 0.5754 1.0665 1.410 4.222
0.875 0.2277 0.5311 1.0234 1.498 5.029
i o.2034 o.490i 0.9803 1.585 6

Figure 3.1 shows the values of T and k for all distributions con-

sidered. A simple relation does not exist, as was to be expected: after
all, T and k are quite different measures. Roughly apeaking, however, T is
an increasing function of k. For comparison Figure 3.2 shows the analogous
picture for the two familiar measures of dispersion, R and Q.
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4. Discussion

The dispersion of a distribution around the two values u t a can be mea-
sured by means of the kurtosis k. An alternative measure T based on quan-
tiles was introduced here. Just as k, T is dimensionless and invariant
under location-scale transformations.

T is very analogous to the familiar quantile measures for diaper-
sion and skewness and therefore has similar advantages. The calculation is

easy and can even be done by graphical means. T is not very sensible to

the extreme tails of the distribution and hence more robust than k. Dis-

tributíons for which k is not defined still can have finite T. E.g. no
moments exist for the Cauchy distribution; however, from the distribution

function in the standard case

(4.1) F(x) - 2 t n arc tg x

easily follows

(4.2) Eif4 - tg (in~8), i- 1. 2, 3

so that T - 2.
Based on the convexity considerations of VAN ZWET (1964) and OJA

(1981), GROENEVELD 8~ MEEDEN (1984) discussed several so-called tailness
measures for symmetric distributions only. The measures considered are in
fact skewness measures, applied to the 'upper half' of a distribution;

starting from S in (1.3) this leads to the tailness measure

E
(4 3) bi - 1

- 2E6 t E5
F`I - E5

As an alternative to the kurtosis k, bi has definite drawbacks. If the two

halves of the symmetric distribution are symmetric as well, bi equals

zero, of course. wh11e k(and T) may vary. E.g., consider the clasa of

double triangular distributions {DT(c): c 2 1} with densities f(x) sket-

ched in Figure 4.1.
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f Cx)

i
~ ~ i
~- --- ! -- ~-- - t

Figure 4.1. Double triangular distribution DT(c)

It is easy to check that k ranges from 1 to 1.518 and T from 0 to 0.586,
while bi is identically zero. This reflects the fact that bi essentially
is a measure of skewness. On the other hand, T is a(relative) measure of
dispersion: (2.4) can be read as 2R~Q, where R and Q from (1.3) apply to
the 'upper half' of the distribution. As a consequence, bi is not monotone
in k for some classes of distributions, e.g. for {Q(a) :-~ 5 a s}}.

Values of T were calculated for some ( clasaes of) probability
distributions, ell of them symmetrical ( around 0). Calculations for skew
distributions are in progress. For choosing an appropriate probability
model to describe empirical data, characterizations of large classes of
distributions in the so-called (p1,~2)-plane are a useful tool (cf. PEAR-
SON 1954); here pl and ~2 (- k) are the third and fourth standardized
moments. The aim is to construct similar characterizations in the (S,T)-
plane.
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