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1. Introduction

Equity premium predictability has attracted the attention of both academics and

practitioners in �nance. Results are mixed, since di¤erent techniques, variables and time

periods are employed in the related research.1 The list of predictors is quite exhaustive

and typically contains valuation ratios, various interest rates and spreads, distress indi-

cators, in�ation rates along with other macroeconomic variables, indicators of corporate

activity, etc. The early contributions to equity premium predictability mainly focused

on the in-sample predictive ability of the potential predictors and the development of

proper econometric techniques for valid inference.2 Lately, interest has turned to the

out-of-sample performance of the candidate variables. Goyal and Welch (2008) show that

their long list of predictors can not deliver consistently superior out-of-sample perfor-

mance. The authors employ a variety of predictive regression models ranging from single

variable ones to their �kitchen sink� model that contains all the predictors simultaneously.

Campbell and Thompson (2008) show that when imposing simple restrictions, suggested

by economic theory, on predictive regressions� coe¢cients, the out-of-sample performance

improves and market timing strategies can deliver pro�ts to investors (see also Ferreira

and Santa-Clara, 2011). More recently, Rapach et al. (2010) consider another approach

for improving equity premium forecasts based on forecast combinations. The authors

�nd that combinations of individual single variable predictive regression forecasts, which

help reducing model uncertainty/parameter instability, signi�cantly beat the historical

average forecast. Finally, Ludvigson and Ng (2007) and Neely et al. (2011) adopt a

di¤usion index approach, which can conveniently track the key movements in a large set

of predictors, and �nd evidence of improved equity premium forecasting ability.

It still remains an open question whether there is clear evidence of equity premium pre-

dictability, with the majority of studies conducted within a linear regression framework.

However, recent contributions to the literature have pointed out that the relationship

between returns and predictors is not linear and several approaches have been proposed

1Following the related literature, equity premium is proxied by excess returns.
2Rapach and Zhou (2012) o¤er a detailed review on the issue of equity return predictability.
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to capture this non linearity. Markov-switching models are among the most popular

models for forecasting stock returns (Guidolin and Timmermann, 2009; Henkel et al.,

2011). Other well-known non-linear speci�cations include threshold models and neural

nets (Franses and van Dijk, 2000; Terasvirta, 2006; White, 2006; Guidolin et al., 2009).

Non or semi-parametric modeling represents another approach for approximating general

functional forms for the relationship between expected returns and predictors (Chen and

Hong, 2010; Ait-Sahalia and Brandt, 2001).

In this paper, we address the issue of non linearity between excess returns and pre-

dictive variables by considering predictive quantile regression models for equity premium

forecasting. We argue that due to non-linearity and non-normality patterns, a linear

approach might not be adequate for exploring the ability of various predictors to forecast

the entire distribution of returns. Looking at just the conditional mean of the return

series may �hide� interesting characteristics as it can lead us to conclude that a predictor

has poor predictive performance, while it is actually valuable for predicting the lower

or/and the upper quantiles of returns. For example, the most popular variables in the

returns prediction literature, namely the dividend-price ratio and the term spread, may

capture di¤erent aspects of economic conditions. Furthermore, not only �uctuations of

the business cycle induce a time-varying nature on mean predictive relationships, but also

across quantiles, since there is no compeling theoretical reason for the slope coe¢cients

to be constant across quantiles. To the extent that candidate predictor variables contain

signi�cant information for some parts of the return distribution, but not for the whole, a

methodology that properly integrates this information would lead to additional bene�ts.

Since the seminal paper of Koenker and Bassett (1978), quantile regression models

have attracted a vast amount of attention. Both theoretical and empirical research has

been conducted in the area of quantile regression, including model extensions, new in-

ferential procedures and numerous empirical applications; see, for example, Buchinsky

(1994, 1995) and Yu et al. (2003) among others.3 The paper more closely related to

3Applications in the �eld of �nance include Bassett and Chen (2001), Engle and Manganelli (2004),
Meligkotsidou et al. (2009), Chuang et al. (2009) and Baur et al. (2012).
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the present paper is that of Cenesizoglu and Timmermann (2008) who employ a quantile

regression approach to capture the predictive ability of a list of state variables for the

distribution of stock returns. The authors �nd quantile-varying predictability both in-

sample and out-of-sample which can be exploited in an asset allocation framework. In a

follow-up paper, Cenesizoglu and Timmermann (2012) point out that return prediction

models that allow for a time-varying return distribution lead to better estimates of the

tails of the returns� distribution and su¤er less from unanticipated outliers. Similar con-

clusions are reached by Pedersen (2010) who employs both univariate and multivariate

quantile regressions to jointly model the distribution of stocks and bonds.

In this paper, we construct robust and accurate point forecasts of the equity premium

from the quantile forecasts produced by a set of predictive quantile regressions, using

both a �xed and a time-varying weighting scheme. We design two novel forecasting

approaches which utilize distributional information, as well as information from a set of

available predictors. The �rst approach initially constructs robust point forecasts from a

set of quantile predictions all of which are based on the same predictive variable. Next,

it combines the robust forecasts obtained from di¤erent predictors using several existing

combination methods in order to produce a �nal point forecast. The second approach

initially combines all the predictions of the same quantile obtained from di¤erent single

predictor model speci�cations, in order to produce combined quantile forecasts. This

is done via a number of forecast combination methods, developed in the present paper,

which are appropriate for combining quantile forecasts. Then, our proposed approach

constructs robust point forecasts by synthesizing the combined quantile predictions. For

comparison purposes, we employ the updated Goyal and Welch (2008) dataset along

with the standard linear regression predictive framework, as well as existing methods of

combining individual forecasts from single predictor linear models. All di¤erent forecasts

are evaluated against the benchmark constant equity premium using both statistical and

economic evaluation criteria.

To anticipate our key results, we �nd considerable heterogeneity among the candi-

date variables, as far as their ability to predict the return distribution is concerned.
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More importantly, no single predictor proves successful in forecasting the entire return

distribution. Overall, superior predictive performance, both in statistical and economic

evaluation terms, is achieved under the quantile regression approach as follows. First,

a set of quantiles of the conditional distribution of returns are optimally predicted by

combining information from di¤erent predictors using a quantile forecast combination

method. Next, robust point forecasts of the equity premium are produced by synthesiz-

ing the quantile predictions using time-varying weighting schemes.

The remainder of the paper is organized as follows. Section 2 describes the econometric

models considered in this study, including predictive mean and quantile regression models.

Section 3 outlines our proposed methodology for robust estimation of the central location

of the distribution of returns. Section 4 discusses various methods of combining forecasts

from di¤erent model speci�cations in the context of standard mean regression and quantile

regression. Our dataset and the framework for forecast evaluation is presented in Section

5, while our empirical results are reported in Section 6. Section 7 outlines the economic

evaluation framework and presents the associated �ndings. Section 8 summarizes and

concludes.

2. Predictive Regressions

In this section we present the predictive regression models we employ to forecast the

equity premium, denoted by rt, using a set of N predictive variables.

2.1. Quantile Regression Models

First we consider all possible predictive mean regression models with a single predictor

of the form

rt+1 = �i + �ixit + "t+1; i = 1; : : : ; N; (1)

where rt+1 is the observed excess return on a stock market index in excess of the risk-free

interest rate at time t+1, xit are the N observed predictors at time t, and the error terms

"t+1 are assumed to be independent with mean zero and variance �
2. Equation (1) is the

standard equity premium prediction model (see, for example, Rapach et al. 2010).

The above regression speci�cation can only predict the mean and not the entire dis-
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tribution of returns in the event that the joint distribution of rt+1 and xit is not bivariate

Gaussian and, therefore, their relationship is not linear. Following the literature on the

non-linear relationship between returns and predictors (Guidolin and Timmermann, 2009;

Guidolin et al., 2009; Chen and Hong, 2010; Henkel et al., 2011) we adopt a more sophisti-

cated approach to equity premium forecasting by employing predictive quantile regression

models (Koenker and Bassett, 1978; Buchinsky, 1998; Yu et al., 2003). Quantile regres-

sion estimators are more e¢cient and more robust than mean regression estimators in

cases that non linearities and deviations from normality exist.

We consider single predictor quantile regression models of the form

rt+1 = �
(�)
i + �

(�)
i xit + "t+1; i = 1; : : : ; N; (2)

where � 2 (0; 1) and the errors "t+1 are assumed independent from an error distribution

g� (") with the �th quantile equal to 0, i.e.
R 0
�1

g� (")d" = � . Model (2) suggests that the

�th quantile of rt+1 given xit is Q� (rt+1jxit) = �
(�)
i + �

(�)
i xit, where the intercept and the

regression coe¢cients depend on � . The �
(�)
i �s are likely to vary across � �s, revealing a

larger amount of information about returns than the predictive mean regression model.

2.2. Inference on Predictive Regression Models

The predictive mean regression model can be estimated using the Ordinary Least

Squares (OLS) method. Least squares estimation is based on the fact that the expectation

of a random variable r with distribution function F arises as the point estimate of r

corresponding to the quadratic loss function �(u) = u2, i.e. it arises as the value of �r

which minimizes the expected loss

E�(r � �r) =

Z
�(r � �r)dF (r):

Therefore, the OLS estimators �̂i; �̂i of the parameters in the predictive mean regression

models in (1) can be estimated by minimizing the sample estimate of the quadratic
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expected loss,
PT�1

t=0 (rt+1 � �i � �ixit)
2, with respect to �i; �i.

4 Then, the point forecast

of the equity premium at time t+ 1, based on the ith model speci�cation, is obtained as

r̂i;t+1 = �̂i + �̂ixit:

Similarly to the expectation of the random variable r, its �th quantile arises as the

solution to a decision theoretic problem; that of obtaining the point estimate of r corre-

sponding to the asymmetric linear loss function, usually referred to as the check function,

�� (u) = u (� � I(u < 0)) =
1

2
[juj+ (2� � 1)u] : (3)

More in detail, minimization of the expected loss

E�� (r � �r
(�)) =

Z
�� (r � �r

(�))dF (r);

with respect to �r(�) leads to the �th quantile. In the symmetric case of the absolute loss

function (� = 1=2) we obtain the median. Estimators of the parameters of the linear

quantile regression models in (2), �̂i
(�); �̂

(�)

i , can be obtained by minimizing the sum
PT�1

t=0 ��

�
rt+1 � �i

(�) � �
(�)
i xit

�
; where the check function �� (u) has been given in (3).

Then, the forecast of the �th quantile of the distribution of the equity premium at time

t+ 1, based on the ith model speci�cation, is obtained as r̂i;t+1(�) = �̂i
(�) + �̂

(�)

i xit:

2.3. Forecasting Approaches based on Quantile Regression

In order to produce robust and accurate point forecasts of the equity premium based

on quantile forecasts, we utilize two di¤erent sources of information. We consider distri-

butional information, regarding how the relationship between the equity premium and

a given predictive variable varies across the conditional quantiles of returns, as well as

predictor information, regarding the di¤erent model speci�cations that can be used for

forecasting. To take account of both sources of information we propose the following two

novel forecasting approaches.

The �rst approach is designed to initially construct robust point forecasts of the equity

4The sample size T denotes any estimation sample employed in our recursive forecasting experiment.
Details on the forecasting design are given in Section 4.
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premium from a set of quantile forecasts based on a single predictor xit: This is done by

employing several �xed and time-varying weighting schemes (see Section 3). Then, these

robust point forecasts are combined in order to reduce uncertainty risk associated with a

single predictive variable. This is done by using various methods of combining predictor

information (see Subsection 4.1), based on the Mean Squared Forecast Error (MSFE).

We refer to this approach as the Combining Robust Forecasts approach (CRF).

The second approach is designed to construct point forecasts as follows. First, the

quantile forecasts obtained from di¤erent single predictor model speci�cations are com-

bined according to several combination schemes based on the asymmetric linear loss

function (see Subsection 4.2). Then, robust point forecasts are obtained by synthesiz-

ing the above quantile forecasts, that is exploiting distributional information, based on

the weighting schemes of Section 3. We refer to this second approach as the Quantile

Forecasts Synthesis approach (QFS).

3. Robust Point Forecasts based on Regression Quantiles

In this section we consider the problem of constructing robust point forecasts of the

equity premium based on quantile regression as an alternative to the standard approach

which produces forecasts based on the predictive mean regression model. Robust point

estimates of the central location of a distribution can be constructed as weighted averages

of a set of quantile estimators employing mainly �xed weighting schemes. Relaxing the

assumption of a constant weighting scheme seems to be a natural extension. A number

of factors, such as changes in regulatory conditions, market sentiment, monetary poli-

cies, institutional framework or even changes in macroeconomic interrelations (Campbell

and Cochrane, 1999; Menzly et al., 2004; Dangl and Halling, 2012) can motivate the

employment of time-varying schemes in the generation of robust point forecasts.

3.1. Point Forecasts based on a Fixed Weighting Scheme

Robust point forecasts of the equity premium can be constructed as weighted averages

of a set of quantile forecasts. First, we employ standard estimators with �xed, prespeci�ed
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weights of the form

r̂i;t+1 =
X

�2S

p� r̂i;t+1(�);
X

�2S

p� = 1;

where S denotes the set of quantiles considered. Here the weights represent probabilities

attached to di¤erent quantile forecasts, suggesting how likely to predict the return at the

next period each regression quantile is.

We consider Tukey�s (1977) trimean and the Gastwirth (1966) three-quantile estimator

given, respectively, by the following formulae

FW1: bri;t+1 = 0:25r̂i;t+1(0:25) + 0:50r̂i;t+1(0:50) + 0:25r̂i;t+1(0:75)

FW2: bri;t+1 = 0:30r̂i;t+1(1=3) + 0:40r̂i;t+1(0:50) + 0:30r̂i;t+1(2=3):

Furthermore, we use the alternative �ve-quantile estimator, suggested by Judge et al.

(1988), which attaches more weight on extreme positive and negative events as follows

FW3: bri;t+1 = 0:05r̂i;t+1(0:10) + 0:25r̂i;t+1(0:25) + 0:40r̂i;t+1(0:50)

+ 0:25r̂i;t+1(0:75) + 0:05r̂i;t+1(0:90):

Finally, we consider a fourth estimator which combines information from a larger set of

quantiles, i.e.

FW4: bri;t+1 = 0:05r̂i;t+1(0:50) + 0:05
X

�2S

r̂i;t+1(�); where S = f0:05; 0:10; :::; 0:95g:

All the above �xed weighting schemes (FW1-FW4) provide estimators of the central

location of the return distribution at time t+1. A subset of the above speci�cations has

been employed by Taylor (2007) and Ma and Pohlman (2008) among others.

3.2. Point Forecasts based on a Time-varying Weighting Scheme

Time-varying weighting schemes are derived by some optimization procedure aiming

at producing an empirical model that allows for economic changes over time and which

is capable of determining the �right� parameter values in time to help investors (Spiegel,
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2008). The variable of interest, ri;t+1, is predicted using an optimal linear combination

pt=[p�;t]�2S of the quantile forecasts r̂i;t+1(�) given by

r̂i;t+1 =
X

�2S

p�;tr̂i;t+1(�);
X

�2S

p�;t = 1:

The weights, pt, are estimated recursively using a holdout out-of-sample period contin-

uously updated by one observation at each step. Optimal estimates of the weights are

obtained by minimizing the mean squared forecast errors, Et(rt+1 � r̂i;t+1)
2; under an

appropriate set of constraints. Our optimization procedure is the analogue of the con-

strained Granger and Ramanathan (1984) method for quantile regression forecasts (see

also Timmermann, 2006; Hansen, 2008; Hsiao and Wan, 2012). Speci�cally, we employ

constrained least squares using the quantile forecasts as regressors in lieu of a standard

set of predictors. The time-varying weights on the quantile forecasts bear an interesting

relationship to the portfolio weight constraints in �nance. In this sense we constrain

the weights to be non-negative, sum to one and not to exceed certain lower and upper

bounds in order to reduce the weights� volatility and stabilize forecasts. In our empir-

ical application, we employ three time-varying speci�cations which may be viewed as

the time-varying counterparts of our FW1-FW3 schemes.5 More speci�cally, FW1 with

time-varying coe¢cients becomes

TVW1: bri;t+1 = p0:25;tr̂i;t+1(0:25) + p0:50;tr̂i;t+1(0:50) + p0:75;tr̂i;t+1(0:75);

where p�;t; � 2 S = f0:25; 0:50; 0:75g are estimated by the optimization procedure

pt = argmin
pt

E[rt+1 � (p0:25;tr̂i;t+1(0:25) + p0:50;tr̂i;t+1(0:50) + p0:75;tr̂i;t+1(0:75))]
2

s:t: p0:25;t + p0:50;t + p0:75;t = 1; 0:20 � p0:25;t � 0:40;

0:40 � p0:50;t � 0:60; 0:20 � p0:75;t � 0:40:

5Since our methodology requires a holdout out-of-sample period during which the optimal linear
combination pt is estimated, a fourth speci�cation based on FW4 is not employed due to the increased
parameter space.
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Similarly, the FW2 scheme with time-varying coe¢cients becomes

TVW2: bri;t+1 = p1=3;tr̂i;t+1(1=3) + p0:5;tr̂i;t+1(0:50) + p2=3;tr̂i;t+1(2=3);

where p�;t; � 2 S = f1=3; 0:50; 2=3g are estimated by the following optimization procedure

pt = argmin
pt

E[rt+1 � (p1=3;tr̂i;t+1(1=3) + p0:5;tr̂i;t+1(0:50) + p2=3;tr̂i;t+1(2=3))]
2 (4)

s:t: p1=3;t + p0:50;t + p2=3;t = 1; 0:15 � p1=3;t � 0:45;

0:30 � p0:5;t � 0:50; 0:15 � p2=3;t � 0:45:

Finally, the FW3 scheme with time-varying coe¢cients becomes

TVW3: bri;t+1 = p0:10;tr̂i;t+1(0:10) + p0:25;tr̂i;t+1(0:25) + p0:5;tr̂i;t+1(0:50)

+ p0:75;tr̂i;t+1(0:75) + p0:90;tr̂i;t+1(0:90);

where p�;t; � 2 S = f0:10; 0:25; 0:50; 0:75; 0:90g are estimated by the following optimiza-

tion procedure

pt = argmin
pt

E[rt+1 � (p0:10;tr̂i;t+1(0:10) + p0:25;tr̂i;t+1(0:25)+

+p0:5;tr̂i;t+1(0:5) + p0:75;tr̂i;t+1(0:75) + p0:90;tr̂i;t+1(0:90))]
2

s:t: p0:10;t + p0:25;t + p0:50;t + p0:75;t + p0:90;t = 1

0:00 � p0:10;t � 0:10; 0:15 � p0:25;t � 0:35;

0:40 � p0:50;t � 0:60; 0:15 � p0:75;t � 0:35; 0:00 �; p0:90;t � 0:10:

4. Forecast Combination

Since Bates and Granger�s (1969) seminal contribution, it has been known that com-

bining individual models� forecasts can reduce uncertainty risk associated with a single

predictive model and display superior predictive ability (see also Hendry and Clements,

2004). In the context of equity premium predictability, Rapach et al. (2010) show that
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combination forecasts of individual predictive models can consistently beat the bench-

mark. The design of our forecast experiment is identical to the one employed by Goyal

and Welch (2008) and Rapach et al. (2010). We generate out-of-sample forecasts of the

equity premium using a recursive (expanding) window. More speci�cally, we divide the

total sample of T observations into an in-sample portion of the �rst K observations and

an out-of-sample portion of P = T �K observations used for forecasting. The estimation

window is continuously updated following a recursive scheme, by adding one observa-

tion to the estimation sample at each step. As such, the coe¢cients in any predictive

model employed are re-estimated after each step of the recursion. Proceeding in this way

through the end of the out-of-sample period, we generate a series of P out-of-sample

forecasts for the equity premium fr̂i;t+1g
T�1
t=K . This experiment simulates the situation of

a forecaster in real time, since she employs data as soon as they become available.

Following Rapach et al. (2010), we consider various combining methods, ranging from

simple averaging schemes to more advanced ones, based on both the single predictor

model speci�cations of Section 2 and the robust point forecasts of Section 3. In order to

produce combined quantile forecasts we need to develop appropriate combining methods

based on the asymmetric linear loss function (Equation 3). In the following subsections

we outline the combining methods employed in this study. In Subsection 4.1 we present

the existing combining methods that are used for producing combined forecasts based

on single predictor mean forecasts or robust point forecasts, while in Subsection 4.2 we

introduce the respective combining methods that are appropriate for producing combined

quantile forecasts.

4.1. Combination Methods for Central Location Forecasting

The combination forecasts of rt+1, denoted by r̂
(C)
t+1, are weighted averages of the N

single predictor individual forecasts, r̂i;t+1, i = 1; : : : ; N , of the form r̂
(C)
t+1 =

NP
i=1

w
(C)
i;t r̂i;t+1;

where w
(C)
i;t ; i = 1; :::; N; are the a priori combining weights at time t. Some of the com-

bining methods described below require a holdout out-of-sample period during which the

combining weights are estimated. The �rst P0 out-of-sample observations are employed

as the initial holdout period. In this respect, we compute combination forecasts over the
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post-holdout out-of-sample period, leaving us with a total of T � (K + P0) = P � P0

forecasts available for evaluation.

The simplest combining scheme is the one that attaches equal weights to all individual

models, i.e. w
(C)
i;t = 1=N , for i = 1; :::; N , called the Mean combining scheme. The

next schemes we employ are the Trimmed Mean and Median ones. The Trimmed Mean

combination scheme sets w
(C)
i;t = 0 for the smallest and largest forecasts and w

(C)
i;t =

1=(N � 2) for the remaining ones, while the Median combination scheme employs the

median of the fr̂i;t+1g
N
i=1 forecasts.

The second class of combining methods we consider, proposed by Stock and Watson

(2004), suggests forming weights based on the historical performance of the individual

models over the holdout out-of-sample period. Speci�cally, their Discount Mean Squared

Forecast Error (DMSFE) combining method suggests forming weights as follows

w
(C)
i;t = m�1

i;t =
NX

j=1

m�1
j;t ; mi;t =

t�1X

s=K

 t�1�s(rs+1 � bri;s+1)2;

where  is a discount factor which attaches more weight on the recent forecasting accuracy

of the individual models in the cases where  2 (0; 1). The values of  we consider are

1:0 and 0:9. When  equals one, there is no discounting and the combination scheme

coincides with the optimal combination forecast of Bates and Granger (1969) in the case

of uncorrelated forecasts.

The third class of combining methods, namely the Cluster combining method, was

introduced by Aiol� and Timmermann (2006). In order to create the Cluster combining

forecasts, we form L clusters of forecasts of equal size based on the MSFE performance.

Each combination forecast is the average of the individual model forecasts in the best

performing cluster. This procedure begins over the initial holdout out-of-sample period

and goes through the end of the available out-of-sample period using a rolling window.

In our analysis, we consider L = 2; 3.

Next, the Principal Components combining method of Chan et al. (1999) and Stock

and Watson (2004) is considered. In this case, a combination forecast is based on the
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�tted n principal components of the uncentered second moment matrix of the individual

model forecasts, bF1;s+1, ..., bFn;s+1 for s = K; :::; t� 1. The OLS estimates of '1; :::; 'n of

the following regression

rs+1 = '1 bF1;s+1 + :::+ 'n bFn;s+1 + �s+1

can be thought of as the individual combining weights of the principal components. In

order to select the number n of principal components we employ the ICp3 information

criterion developed by Bai and Ng (2002) and set the maximum number of factors to 5.

4.2. Combination Methods for Quantile Forecasting

The DMSFE, Cluster and Principal Components combining methods have been de-

signed in the framework of standard linear regression, in order to construct forecasts that

exploit the entire set of predictive variables. The combining weights, w
(C)
i;t , are computed

based on the MSFE, that is on a quadratic loss function that measures how close to

the realized excess returns the individual forecasts are. These methods are appropriate

within the framework of the CRF approach since, according to this approach, several

robust point forecasts are �rst obtained from di¤erent single predictor quantile regres-

sions and then these point forecasts are combined in order to exploit information from

the available set of predictors. However, these combining schemes are not appropriate

for combining predictor information within the QFS approach since variable information

is now combined in the context of forecasting several quantiles of returns rather than

producing point forecasts. In this case, the MSFE is no longer suitable for measuring the

performance of the produced forecasts and has to be replaced by a metric based on the

asymmetric linear loss function.6

Below we describe how we modify the existing combining methods in order to produce

quantile forecasts that exploit variable information. These modi�ed combining methods

are new to the forecast combination literature and can be considered as a further con-

tribution of the present study. The combined quantile forecasts, r̂
(C)
t+1(�), are weighted

6We are grateful to an anonymous referee for pointing this out.
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averages of the form r̂
(C)
t+1(�) =

NP
i=1

w
(C)
i;t r̂i;t+1(�); where the combining weights, w

(C)
i;t , have

to be computed based on the check function (3).

First, we introduce the Discount Asymmetric Loss Forecast Error (DALFE) combining

method which suggests forming weights as follows

w
(C)
i;t = m�1

i;t =

NX

j=1

m�1
j;t ; mi;t =

t�1X

s=K

 t�1�s�� (rs+1 � bri;s+1(�));

where  2 (0; 1) is a discount factor. The combining weights are computed based on

the historical performance of the individual quantile regression models over the holdout

out-of-sample period and  is set equal to 0.9 and 1.

We also modify the Cluster combining method by forming L clusters of forecasts based

on their performance as measured by the asymmetric loss forecast error. The Asymmetric

Loss Cluster (AL Cluster) combination forecast is the average of the individual quantile

forecasts in the best performing cluster which contains the forecasts with the lower ex-

pected asymmetric loss values. We consider forming L = 2; 3 clusters.

Next, we introduce the Asymmetric Loss Principal Components method (AL Principal

Components) under which the combination of forecasts is based on the �tted, n; principal

components of the uncentered second moment matrix of the individual quantile forecasts,

bF (�)1;s+1, ..., bF (�)n;s+1; where the combination weights are computed by minimizing the sum

t�1X

s=K

�� (rs+1 � '1 bF (�)1;s+1 � :::� 'n bF (�)n;s+1):

The ICp3 information criterion is used to select the number n of principal components.

Finally, we put forward two combining methods under which optimal quantile fore-

casts, r̂
(C)
t+1(�), are obtained by minimizing an objective function based on the asymmetric

linear loss. More in detail, we �rst consider the following optimization scheme, which is
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an analogue of the lasso quantile regression

wt = argmin
wt

X

t

��

 
rt+1 �

NX

i=1

wir̂i;t+1(�)

!

s:t:

NX

i=1

wi = 1,

NX

i=1

jwij � �1;

where the parameter �1 is used as a control for the amount of shrinkage. We refer to this

combination quantile forecast as Asymmetric Loss Lasso (AL Lasso). We also consider

the Asymmetric Loss Ridge (AL Ridge) optimization scheme which is an analogue of the

ridge quantile regression

wt = argmin
wt

X

t

��

 
rt+1 �

NX

i=1

wir̂i;t+1(�)

!

s:t:

NX

i=1

wi = 1;

NX

i=1

w2i � �2;

where the parameter �2 is used as a control for the amount of shrinkage. In our study,

the parameters �1; �2 are set equal to 1.4 and 0.4, respectively.
7

5. Data and forecast evaluation

The data we employ are from Goyal and Welch (2008) who provide a detailed de-

scription of transformations and datasources.8 The equity premium is calculated as the

di¤erence of the continuously compounded S&P500 returns, including dividends, and the

Treasury Bill rate. As already mentioned, following the line of work of Goyal and Welch

(2008), Rapach et al. (2010) and Ferreira and Santa-Clara (2011), out-of-sample forecasts

of the equity premium are generated by continuously updating the estimation window, i.e.

following a recursive (expanding) window. Our forecasting experiment is conducted on

a quarterly basis and data span 1947:1 to 2010:4. Our out-of-sample forecast evaluation

7The above two optimization schemes can be written equivalently using the L1 norm for the lasso
quantile regression and the L2 norm for the ridge quantile regression in the objective function. More
details on lasso regression can be found in Tibsirani (1996), on lasso quantile regression in Wu and Liu
(2009) and on ridge regression can be found in Hastie et al. (2009).

8The data are available at http://www.hec.unil.ch/agoyal/. We thank Prof. Goyal for making them
available to us.
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period corresponds to the �long� one analyzed by Goyal and Welch (2008) and Rapach et

al. (2010) covering the period 1965:1-2010:4.9 The 15 economic variables employed in our

analysis are related to stock-market characteristics, interest rates and broad macroeco-

nomic indicators. With respect to stock market characteristics, we employ the following

variables.

� Dividend�price ratio (log), D/P: Di¤erence between the log of dividends paid on

the S&P 500 index and the log of stock prices (S&P 500 index), where dividends

are measured using a one-year moving sum.

� Dividend yield (log), D/Y : Di¤erence between the log of dividends and the log of

lagged stock prices.

� Earnings�price ratio (log), E/P: Di¤erence between the log of earnings on the S&P

500 index and the log of stock prices, where earnings are measured using a one-year

moving sum.

� Dividend�payout ratio (log), D/E: Di¤erence between the log of dividends and the

log of earnings.

� Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.

� Book-to-market ratio, B/M: Ratio of book value to market value for the Dow Jones

Industrial Average.

� Net equity expansion, NTIS: Ratio of twelve-month moving sums of net issues by

NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.

Turning to interest-rate related variables, we employ six variables ranging from short-

term government rates to long-term government and corporate bond yields and returns

along with their spreads as follows.

9Please note that the out-of-sample period refers to the period used to evaluate the out-of-sample
forecasts. We use the ten years 1955:1 to 1964:4 (40 quarters) before the start of the out-of-sample
evaluation period as the initial holdout out-of-sample period, required for both constructing our time-
varying robust forecasts and for several forecast combination schemes.
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� Treasury bill rate, TBL: Interest rate on a three-month Treasury bill (secondary

market).

� Long-term yield, LTY: Long-term government bond yield.

� Long-term return, LTR: Return on long-term government bonds.

� Term spread, TMS: Di¤erence between the long-term yield and the Treasury bill

rate.

� Default yield spread, DFY: Di¤erence between BAA- and AAA-rated corporate

bond yields.

� Default return spread, DFR: Di¤erence between long-term corporate bond and

long-term government bond returns.

To capture the overall macroeconomic environment, we employ the in�ation rate and

the investment-to-capital ratio de�ned as follows.

� In�ation, INFL: Calculated from the CPI (all urban consumers).

� Investment-to-capital ratio, I/K: Ratio of aggregate (private nonresidential �xed)

investment to aggregate capital for the entire economy (Cochrane, 1991).

The natural benchmark forecasting model is the historical mean or prevailing mean

(PM) model, according to which the forecast of the equity premium coincides with the

estimate, b�i, in the linear regression model (1) when no predictor is included. As a

measure of forecast accuracy we employ the ratio MSFEi
MSFEPM

; where MSFEi is the Mean

Square Forecast Error associated with each of our competing models and speci�cations

and MSFEPM is the respective value for the PM model, both computed over the out-

of-sample period. Values lower than 1 are associated with superior forecasting ability of

our proposed model/speci�cation.

In order to compare the information content in our proposed models/speci�cations

relevant to the benchmark PM model, we use encompassing tests. The notion of forecast
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encompassing was developed by Granger and Newbold (1973) and Chong and Hendry

(1986) through the formation of composite forecasts as weighted averages of the forecasts

of two competing models.10 Speci�cally, consider forming a composite forecast, r̂c;t+1;

as a convex combination of model A forecasts, r̂A;t+1; and the ones of model B, r̂B;t+1;

in an optimal way so that r̂c;t+1 = �Ar̂A;t+1 + �B r̂B;t+1; �A + �B = 1: If the optimal

weight attached to model A forecasts is zero (�A = 0), then model B forecasts encompass

model A forecasts in the sense that model B contains a signi�cantly larger amount of

information than that already contained in model A. Harvey et al. (1998) developed the

encompassing test, denoted as ENC�T , based on the approach of Diebold and Mariano

(1995) to test the null hypothesis that �A = 0; against the alternative hypothesis that

�A > 0: Let uA;t+1 = rt+1� r̂A;t+1; uB;t+1 = rt+1� r̂B;t+1 denote the forecast errors of the

competing models A and B, respectively and de�ne dt+1 = (uB;t+1 � uA;t+1)uB;t+1: The

ENC � T statistic is given by

ENC � T =
p
(P � P0)

dq
dV ar(d)

;

where d is the sample mean, dV ar(d) is the sample-variance of fds+1gT�1s=K+P0
and P �

P0 is the length of the out-of-sample evaluation window.
11 The ENC � T statistic

is asymptotically distributed as a standard normal variate under the null hypothesis.

To improve �nite sample performance, Harvey et al. (1998) recommend employing the

Student�s t distribution with P � P0 � 1 degrees of freedom. To render a model as

superior in forecasting ability, one also needs to test whether model A forecasts encompass

model B forecasts (�B = 0) by employing the ENC � T statistic based on dt+1 =

(uA;t+1 � uB;t+1)uA;t+1: When both null hypotheses are rejected, then the competing

models contain discrete information about the future and an optimal convex (�A; �B 2

(0; 1)) combination forecast can be formed. In the event that none of the hypotheses of

interest is rejected, both models contain similar information and the competing models

10See also Clements and Hendry (1998).
11For forecast horizons greater than one, an estimate of the long-run variance should be employed.
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are equivalent in terms of forecasting ability. When one of the null hypotheses is rejected,

then the respective model forecasts dominate the forecasts of the competing model.

6. Empirical Results

6.1. A motivating illustration

Before presenting our empirical results, we provide an illustration on the sources of

potential bene�ts of our proposed methodology. The aim of this exercise is to assess the

predictive ability of the individual predictor variables, xi;t; to forecast the �th quantile.

To this end, we generate forecasts employing a single predictor at a time, br(�)i;t+1 = b�(�)i +

b�(�)i xit; i = 1; :::; N; and calculate the expected asymmetric loss,
P

t ��

�
rt+1 � br(�)i;t+1

�
,

associated with each model speci�cation. Then we calculate the expected loss associated

with the quantile forecasts, br(�)t+1 = b�(�); obtained from the Prevailing Quantile (PQ)

model, i.e. the model that contains only a constant. This prevailing quantile model serves

as a benchmark in the same fashion as the historical average (prevailing mean) serves

as a benchmark in typical predictive mean regressions. Table 1, Panel A illustrates our

�ndings with highlighted (in grey) cells suggesting superior predictive ability, i.e. lower

out-of-sample values of the expected asymmetric loss. Overall, we observe considerable

heterogeneity among the candidate variables as far as their ability to predict the return

distribution is concerned. For example, the D/P and D/Y variables display predictive

ability for the 10th and 15th quantile, but mainly for the central and some right-tail

quantiles of the distribution of returns, i.e. from the 45th to the 80th quantiles. On

the other hand, DFR, INFL and I/K are valuable predictors for the left-tail and central

quantiles of the return distribution. Finally, D/E, SVAR and DFY help predicting some

upper quantiles and TBL the 30th to 45th quantiles. It is apparent that no single predictor

proves successful in predicting the entire distribution of returns.

[TABLE 1 AROUND HERE]

We now examine whether combining the information of di¤erent predictors in order to

predict each quantile enhances our ability to forecast the quantiles of the return distrib-

ution. For this purpose, we employ a variety of simple combination methods, such as the
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Mean, Median and Trimmed Mean combination strategies, as well as the proposed new

combination methods that are based on the asymmetric loss function and are appropriate

for combining quantile forecasts, i.e. the DALFE, AL Cluster, AL Principal Components,

AL Lasso and AL Ridge combination methods described in Subsection 4.2. The poten-

tial predictive ability of the combining schemes considered is outlined in Table 1, Panel

B. Our results suggest that these combination methods contain substantial information

for the future return distribution. The Mean, Trimmed Mean, DALFE and AL Ridge

methods cover the full range of the distribution, while the Median and the AL Cluster

methods are successful in all parts of the distribution, with the exception of the 90th and

the 5th quantile, respectively. The AL Principal Components combining method does

not outperform the PQ model in terms of predictive ability except for the 30th and 40th

quantile. Finally, the AL Lasso method is superior to the PQ model at forecasting the

left part of the return distribution and some right-tail quantiles.

6.2. Out-of-sample performance of predictive regressions

In this subsection, we conduct an out-of-sample forecasting exercise with the aim to

present and discuss the results of the proposed forecasting approaches, i.e. the CRF and

QFS approaches. For reasons of comparison we also present results of the combined mean

regression forecasts.

6.2.1. Performance of Mean Regression Forecasts

Table 2 reports the out-of-sample performance of both the single predictor mean

regression forecasts and the combined forecasts obtained using the combination methods

of Subsection 4.1. We refer to this forecasting approach as the Combining Mean Forecasts

approach (CMF). In particular, Table 2 presents the MSFE ratios of each of the individual

predictive regression models relative to the historical average benchmark model for the

out-of-sample period 1965:1-2010:4. Values lower than 1 indicate superior forecasting

performance of the predictive models with respect to the historical average forecast. We

observe that only four out of the 15 individual predictors, namely D/P, D/Y, DFR and

I/K, have lower than one MSFE ratios, indicating superior predictive ability.
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Next, we test the statistical signi�cance of the out-of-sample performance of the fore-

casts of the various competing models with respect to the PM forecasts using the en-

compassing test. Forecast encompassing provides a means for comparing the information

content in di¤erent forecasts. In Table 2, �A denotes the parameter associated with the

test which examines whether the PM forecasts encompass the forecasts taken from the in-

dividual predictive models, while �B denotes the parameter associated with the test that

examines whether the individual predictive model forecasts encompass the PM ones. We

observe that for the D/P, D/Y and I/K predictors we reject the null hypothesis that PM

forecasts encompass the respective individual predictor�s forecasts, and as such these vari-

ables contain useful forecasting information beyond the information already contained in

the PM model. On the other hand, we may notice that the D/P, D/Y and I/K forecasts

encompass the PM forecasts, therefore the PM forecasts do not contain any useful infor-

mation. Based on these results the D/P, D/Y and I/K forecasts dominate the forecasts

of the PM model, while the PM forecasts dominate the D/E, B/M, NTIS, LTY, LTR and

DFY forecasts. Turning to the CMF approach, our �ndings suggest that all the combining

schemes (except for the Principal Components method) produce lower than unity MSFE

ratios, indicating that the combining methods� forecasts have superior predictive ability.

The encompassing test con�rms the statistical signi�cance of our forecasts obtained from

the combining methods (with the exception of the Principal Components method). Over-

all the results of Table 2 are in line with the �ndings of Rapach et al. (2010) who found

that the D/P, D/Y and I/K predictors have signi�cant forecasting ability, and that the

combination methods outperform the individual predictive regression models.

[TABLE 2 AROUND HERE]

6.2.2. Evaluation of the Combining Robust Forecasts approach

We turn our attention to the out-of-sample performance of the robust point forecasts

obtained by using �xed weighting (FW) and time-varying weighting (TVW) schemes,

based on single predictor quantile regression models. Furthermore, we evaluate the pre-

dictive ability of the forecasts obtained by the CRF approach. Table 3 reports the MSFE
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ratios and the results of the encompassing test for the single predictor robust point

forecasts and for the CRF approach forecasts, relative to the historical average (PM)

benchmark model. Based on Panel A of Table 3, which reports the performance of the

robust point forecasts formed by the �xed weighting schemes on individual predictive

quantile models, we observe that only three predictors, namely D/P, D/Y and I/K, have

MSFE ratios below unity for all weighting schemes FW1-FW4, while DFR seems to

have some forecasting ability under the FW4 scheme. Turning to the encompassing test

results, the null hypothesis that the PM forecasts encompass the D/P, D/Y and I/K

robust point forecasts is rejected for all weighting schemes (except for I/K under FW3

scheme), indicating that the robust forecasts contain useful information. On the other

hand, the robust point forecasts encompass the PM forecasts, that is the PM forecasts do

not contain any useful information. These results are similar in spirit with those of the

individual predictive mean regression model, and indicate superior forecasting ability of

these three predictors over the historical average using di¤erent �xed weighting schemes.

Note, however, that the MSFE ratios of the robust point forecasts are lower than those of

the individual mean regression of D/P and D/Y for all weighting schemes, and of I/K for

FW1, FW2 and FW4, indicating some improvement over the mean regression approach.

[TABLE 3 AROUND HERE]

Panel B of Table 3 presents the performance of the CRF approach, where the robust

point forecasts based on the �xed weighting schemes are combined to reduce uncertainty

risk associated with a single predictor. Almost all of the combining methods, except for

the Principal Components and in some cases the Cluster 3 method, provide MSFE ratios

below unity and, hence, their forecasts dominate the PM forecast. A comparison of the

di¤erent combination techniques suggests that the DMSFEmethods rank �rst followed by

the mean combination method, since they generally provide lower MSFE ratios. Among

the four �xed weighting schemes, the FW4 scheme produces, in most of the cases, lower

MSFE ratios indicating improved predictive performance, probably due to the fact that

it utilizes distributional information obtained from a �ner grid of return quantiles.

22



The results presented in Table 3 (Panel C) concern the out-of-sample performance

of the robust point forecasts with time-varying weights (TVW1-TVW3) based on single

predictor quantile regression models. The values of the MSFE ratio indicate that four

predictors, namely D/P, D/Y, DFR and I/K, display superior forecasting ability irre-

spective of the weighting scheme employed (TVW1-TVW3). Moreover, the INFL (under

TVW1 and TVW3 scheme) and the NTIS (under TVW3 scheme) predictors have lower

than unity MSFE ratios. However, based on both encompassing tests we observe that

only the D/P, D/Y and DFR individual robust point forecasts dominate the PM forecasts

for all weighting schemes, and therefore contain valuable information. The time-varying

weighting approach suggests that an additional predictor, the DFR, may contain valuable

out-of-sample information, compared to the �xed weighting approach and the predictive

mean regression model. The improved out-of-sample performance of the robust point

forecasts using time-varying weights over the predictive mean regression model is also

apparent since most of the MSFE ratios for the individual predictors are lower than the

corresponding MSFE ratios of the predictive mean models (Table 2).

The most striking result can be drawn from panel D of Table 3, which reports the

results of the CRF approach under the time-varying weighting schemes (TVW1-TVW3).

The MSFE ratios in this case are all below unity, ranging from 0.976 for the Median

combination method using TVW2 to 0.963 for the Mean combination method using

TVW3.12 Moreover, all the MSFE ratios for the CRF approach based on time-varying

weights are lower than the corresponding MSFE ratios of both the CMF (Table 2) and

the �xed weighting CRF approach (Table 3, Panel B). The encompassing tests suggest

that the CRF forecasts dominate the PM model�s forecasts.

6.2.3. Evaluation of the Quantile Forecasts Synthesis approach

Next, we present and discuss the results of the second forecasting approach introduced

in our study, i.e. the QFS approach. The purpose of this analysis is to evaluate the fore-

casts obtained by �rst utilizing the predictor information to produce combined quantile

12Since the time-varying weighting schemes require a holdout out-of-sample period, they can only be
used together with combining methods that do not require a holdout period.
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forecasts from di¤erent individual predictive models and then synthesizing this distribu-

tional information through robust forecasting weighting schemes. This procedure aims to

provide optimal forecasts of each part of the return distribution, by appropriately com-

bining individual quantile forecasts, and then to construct robust point forecasts of the

equity premium synthesizing the combined quantile forecasts. Table 4 presents the out-of-

sample performance of the QFS robust point forecasts obtained under �xed (FW1-FW4)

and time-varying weighting schemes (TVW1-TVW3). The results of Panel A suggest

that the QFS forecasts, with the exception of the AL Principal Components combination

method, based on the �xed weighting schemes provide MSFE ratios below unity, indicat-

ing superior performance relative to the historical average benchmark. A comparison of

the di¤erent combining methods reveals that the AL Ridge method ranks �rst followed

by the DALFE, the Mean and the AL Cluster 2, since they generally provide lower MSFE

ratios. It is interesting to observe that more promising results in favor of the proposed

QFS approach arise from the use of time-varying weighting schemes (TVW1-TVW3).

More importantly, the QFS-TVW approach generates MSFE ratios below unity and in

many cases the lowest ones among the di¤erent forecasting approaches considered in our

analysis (see Table 4. Panel B). The results of Table 4 suggest that the best out-of-sample

performance is obtained by applying the QFS approach using time-varying weights to the

quantile forecasts obtained by the Mean combination method.

[TABLE 4 AROUND HERE]

Up to now our analysis has shown that the proposed forecasting methods based on

quantile regression (i.e. the CRF and QFS approaches) using time-varying weighting

provide superior forecasts, i.e. lower MSFE ratios than the standard CMF approach.

Below, we present and discuss a more formal comparison of the CMF approach with the

two alternative approaches proposed in this paper, via a series of encompassing tests.

To this end we compare all pairs of forecasts obtained by the CMF, the CRF (under

the TVW1, TVW2 and TVW3 weighting schemes) and the QFS (under the TVW1,

TVW2 and TVW3 weighting schemes) approaches using pairwise encompassing tests.
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The results of these tests are shown in Table 5. The comparison of the CMF with the

CRF shows that the CMF forecasts are dominated by the CRF forecasts under the �rst

weighting scheme, if either the Mean or the Trimmed Mean combining method is used,

and under the third weighting scheme, if the Median combining method is used. On the

other hand, the CMF forecasts are dominated by the QFS forecasts under both the �rst

and the second weighting schemes for all combining methods considered. Moreover, it is

interesting to note that the CMF forecasts do not prove more accurate than any of the

proposed forecasting approaches based on quantile regression. Finally, the comparison of

the two robust forecasting approaches with each other shows that the QFS forecasts are

superior to the CRF forecasts for the Mean and Median combination methods under the

third time-varying weighting scheme.

[TABLE 5 AROUND HERE]

6.2.4. Multiple Encompassing Tests and an Amalgam Forecast

We now consider an amalgamation of the approaches considered so far, namely the

CMF, CRF and QFS approaches.13 First, we employ the multiple forecast encompassing

tests of Harvey and Newbold (2000) in order to check whether potential bene�ts can

arise from combining the three approaches. Next we form equally weighted composite

forecasts based on the three approaches and test their statistical signi�cance.

Harvey and Newbold (2000) extend the pairwise encompassing tests developed by

Harvey et al. (1998) to compare three or more forecasts. Consider forming a com-

posite forecast, r̂c;t+1; as a combination of the forecasts of the predictive mean regres-

sions (CMF), the combination of robust point forecasts (CRF) and the robust point

forecasts deduced from the combined quantile (QFS) in an optimal way so that r̂c;t+1

= �CMF r̂CMF;t+1 + �CRF r̂CRF;t+1 + �QFS r̂QFS;t+1; where �CMF + �CRF + �QFS = 1: If

�CMF = 1; and �CRF = �QFS = 0; the CMF forecasts encompass the CRF and QFS

ones, as the CRF and QFS forecasts do not contain information useful for forecasting

the equity premium other than that already employed in the linear model. In a similar

13The term �amalgamation� is employed by Rapach and Strauss (2012) when considering combining
three di¤erent econometric approaches to forecast US state employment growth.
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manner, we can test whether the CRF model encompasses QFS and CMF and whether

the QFS model encompasses the CMF and the CRF model. Harvey and Newbold de-

velop two test statistics, namely the F-test statistic and the MS� statistic, to test the

null hypothesis of multiple forecast encompassing.14 The authors show that the F-test ex-

hibits signi�cant size distortions in small and moderate samples with non-normal errors,

while the MS� test exhibits good size and power properties in moderately large samples.

In order to gain a more thorough understanding on the relationship between the rival

models, we must employ each one of the models as the reference model and conduct

the test as many times as the models considered. Failure to reject the null hypothesis

does not necessarily imply that the reference model is strictly dominant to the competing

forecasts. Rather, the forecasts may be highly correlated, in which case a combination

of nearly identical or similar forecasts cannot improve upon any individual forecast. On

the other hand, rejection of the null hypothesis in the encompassing test suggests that

the reference model�s forecasts can be improved by combining them with the forecasts of

the rival model.

Given the abundance of the models we considered so far, we only report multiple

forecast encompassing tests for the models employed in the pairwise encompassing tests

(Table 5). Table 6 (columns 2-4) reports the respectiveMS� test statistics. Overall, non-

rejections of the null dominate our �ndings pointing to similarities in forecasting ability

of our competing models and possibly non gains from considering forming composite

forecasts. More in detail, the only case that the MS� test rejects the null of multiple

encompassing is when the Mean combining scheme is employed and the robust point

forecasts are generated by the TVW3 scheme. Forming composite forecasts of the three

approaches considered can help us gain more insight on the nature of our forecasts. Given

that our experiment should be real time, we do not estimate the weights in forming our

composite forecasts, rather we attach a weight of 1/3 on each of our competing models.

Table 6 (column 5) reports the MSFE ratio of our amalgam forecasts along with the

related encompassing tests (columns 6-7). Overall, the MSFE ratio ranges from 0.964

14To save space, we do not report the explicit formulae of the tests.
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for the amalgam forecast formed on the basis of Mean combining schemes and TVW1

robust forecasts to 0.983 for the forecasts formed based on the Median combining schemes

and TVW3. More importantly, all amalgam forecasts dominate the benchmark forecasts

of the historical average as indicated by the encompassing tests. However, no amalgam

forecast proves more accurate than the QFS and/or CRF forecasts lending support to

the superiority of our proposed approaches. Even in the case that the MS� test pointed

to bene�ts in combining, namely the Mean combining scheme with the robust point

forecasts generated by TVW3, the amalgam forecast is superior to the CMF forecasts

but not superior to the CRF or QFS ones.15

[TABLE 6 AROUND HERE]

In what follows, we evaluate the economic signi�cance of our proposed speci�cations

against the benchmark historical average.

7. Economic evaluation

As Campbell and Thompson (2008) and Rapach et al. (2010) suggest, even small

statistical gains in predictability can give an economically meaningful degree of return

predictability that could result in increased portfolio returns for a mean-variance investor

that maximizes expected utility. Within this stylized asset allocation framework, this

utility-based approach, initiated by West et al. (1993), has been extensively employed in

the literature as a measure for ranking the performance of competing models in a way

that captures the trade-o¤ between risk and return (Fleming et al., 2001; Marquering

and Verbeek, 2004; Della Corte et al., 2009, 2010; Wachter and Warusawitharana, 2009).

7.1. The framework for measuring economic value

Consider a risk-averse investor who constructs a dynamically rebalanced portfolio

consisting of the risk-free asset and one risky asset. Her portfolio choice problem is how

to allocate wealth between the safe (risk-free Treasury Bill) and the risky asset (stock

market), while the only source of risk stems from the uncertainty over the future path of

15This is probably due to the equal weighting scheme in forming the amalgam forecast. Having
estimated weights might have proven bene�cial in this case.
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the stock market. Since only one risky asset is involved, this approach could be thought

of as a standard exercise of market timing in the stock market. In a mean-variance

framework, the solution to the maximization problem of the investor yields the following

weight (wt) on the risky asset

wt =
Et(rt+1)


V art(rt+1)
=

bri;t+1

V art(rt+1)

;

where Et and V art denote the conditional expectation and variance operators, rt+1 is

the equity premium and 
 is the Relative Risk Aversion (RRA) coe¢cient that controls

the investor�s appetite for risk (Campbell and Viceira, 2002; Campbell and Thompson,

2008; Rapach et al., 2010). The conditional expectation Et(rt+1) of each model is given

by the optimal forecast from the speci�c model, bri;t+1; and the variance, V art(rt+1) is

calculated using a ten-year rolling window of quarterly returns.16 In this way, the optimal

weights vary with the degree the conditional mean varies, i.e. the forecast each model/

speci�cation gives.17 In this setting the optimally constructed portfolio gross return over

the out-of-sample period, Rp;t+1; is equal to

Rp;t+1 = wt � rt+1 +Rf;t;

where Rf;t = 1 + rf;t denotes the gross return on the risk-free asset from period t to

t+1:18 Over the forecast evaluation period the investor with initial wealth of Wo realizes

an average utility of

U =
Wo

(P � P0)

"
P�P0�1X

t=0

(Rp;t+1)�



2

P�P0�1X

t=0

(Rp;t+1 �Rp)
2

#
; (5)

16Under the assumption of constant return volatility, the variance of stock returns can be estimated
using the sample variance computed from a recursive window of historical returns. To allow for a time-
varying variance one may use a rolling window of historical returns or a rolling window of a GARCH
type model (Campbell and Thomson, 2008; Rapach et al., 2010; Rapach and Zhou, 2012).
17Alternatively, one could make use of information about the entire distribution provided by the

quantile regression predictive models.
18We constrain the portfolio weight on the risky asset to lie between 0% and 150% each month, i.e.

0 � wt � 1:5:
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where Rp;t+1 is the gross return on her portfolio at time t+ 1: At any point in time, the

investor prefers the predictive model that yields the highest average realized utility.19

Given that a better model requires less wealth to attain a given level of U than an

alternative model, a risk-averse investor will be willing to pay to have access to this

superior model which would be subject to management fees as opposed to the simple

PM model. In the event that the superior model is one of our proposed i speci�cations,

the investor would pay a performance fee to switch from the portfolio constructed based

on the historical average to the i speci�cation. This performance fee, denoted by �, is

the fraction of the wealth which, when subtracted from the i proposed portfolio returns,

equates the average utilities of the competing models. In our set-up, the performance fee

is calculated as the di¤erence between the realized utilities as follows

� = �U = U i � UPM ; (6)

where U i is the average realized utility over the out-of-sample period of any of our com-

peting models/ speci�cations (i) and UPM is the respective value for the prevailing mean

(PM) model. If our proposed model does not contain any economic value, the per-

formance fee is negative (� � 0); while positive values of the performance fee suggest

superior predictive ability against the PM benchmark.

As a complement to the performance fee measure, we also employ the manipulation-

proof performance measure proposed by Goetzmann et al. (2007). This measure can

be interpreted as a portfolio�s premium return after adjusting for risk and it remedies

potential caveats associated with the popular Sharpe ratio, such as the e¤ect of non

normality (Jondeau and Rockinger, 2006), the underestimation of the performance of

dynamic strategies (Marquering and Verbeek, 2004; Han, 2006) and the choice of utility

function (Della Corte et al., 2012). This measure is de�ned as

M(Rp) =
1

1� 

ln

(
1

(P � P0)

P�P0�1X

t=0

�
Rp;t+1
Rf;t

�1�
)
:

19We standardize the investor problem by assuming Wo = 1:
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Intuitively the portfolio has the same score (ranking) as does a risk free asset whose

continuously compounded return exceeds the interest rate by M(Rp). The di¤erence, �;

between the M(Rp)s of competing models, calculated as follows, is employed to assess

the most valuable model

� =M(Rp)
i �M(Rp)

PM : (7)

Both � and � are reported in annualized basis points.

7.2. Empirical evidence on the economic value of predictive regressions

We assume that the investor dynamically rebalances her portfolio (updates the weights)

quarterly over the out-of-sample period employing the respective recursive forecasts for

all the models/speci�cations under consideration. The forecasts� precision normally in-

creases as more information (data) becomes available. Similarly to Section 6, the out-of-

sample period of evaluation is 1965:1-2010:4 and the benchmark strategy against which

we evaluate our forecasts is the PM model. For every model/speci�cation we calculate

the performance fee associated with each strategy calculated from Equation (6) and the

manipulation-proof performance measure (Equation 7). Following Campbell and Thomp-

son (2008) and Rapach et al. (2010) we set RRA (
) equal to 3.

We begin our analysis with the economic evaluation of the CMF approach. Table

7 (Panel A) reports the respective �gures. Our results suggest that, irrespective of the

method employed, an investor enjoys utility gains ranging from 145 (Median) to 321

(DMSFE(0.9)). Quite interestingly, while the Principal Components method is not sta-

tistically superior to the benchmark model, its employment can generate pro�ts to an

investor amounting to 236 bps. The combining methods with the highest ability to time

the market are the DMSFE ones followed by the Mean and Trimmed Mean. The ranking

of our combining methods remains almost unchanged when we employ the manipulation-

proof performance measure (�).

[TABLE 7 AROUND HERE]

Next, we turn our attention to the economic performance of the �xed weighting CRF

approach. Our results, reported in Table 7 (Panel B), may be summarized as follows.
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First, the economic performance of our CRF approach is nearly as good as the perfor-

mance of the CMF approach. Overall, similarly to the mean forecasts, our results suggest

that an investor that employs the CRF approach will always generate positive abnormal

returns. The lowest utility gains are observed in the Median method ranging from 18

bps to 108 bps while the highest utility gains are attained by the Principal Components,

Cluster 2 and DMSFE(0.9). Second, a comparison of the four weighting schemes reveals

that FW4 which aggregates information of quantiles over a �ner grid, provides the in-

vestor with more utility gains and the highest performance fee of 275 bps is achieved

when the investor employs FW4 with DMSFE(0.9). Finally, comparison of the di¤erent

methods using � is consistent with the results obtained from the performance fees.

Turning to our time-varying CRF approach (Table 7, Panel C), we observe high

positive risk-adjusted abnormal returns employing either � or �: More in detail, our

�ndings indicate that the time-varying CRF approach outperforms both the CMF and

the �xed weighting CRF approaches. The utility gains range from 159 bps (TVW2

Median) to 395 bps (TVW3 Mean), which is the highest value of the utility gain attained

so far. Similarly, the highest value of the manipulation-proof performance measure is

found for the same model (TVW3 Mean).

Finally, Table 8 addresses the issue of the economic evaluation of both the �xed

weighted and time-varying weighted QFS approach along with the amalgam forecasts.

The overall picture that emerges con�rms the robustness of our proposed methodology.

More in detail, the performance fee that an investor would be willing to pay to utilize

our proposed models (with the exception of the FW-Median combining method) ranges

from 158 bps for the Trimmed Mean QFS-FW1 to 425 bps for QFS-TVW1 and the Mean

combining method. When considering the �xed weighting schemes (Table 8, Panel A),

the best performance is achieved by AL Lasso (QFS-FW1), AL Cluster 3 (QFS-FW2),

AL Ridge (QFS-FW3 and QFS-FW4). Turning to the risk-adjusted abnormal return �,

our �ndings remain broadly unchanged with a few exceptions such as the negative � of

-1.8 bps for the Median QFS-FW2. More importantly, when an investor employs any of

the QFS-TVW models, she can enjoy bene�ts ranging from 243 bps to 425 bps (Table
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8, Panel B). Superior performance is achieved by the QFS-TVW1 scheme, irrespective of

the combining method employed. Comparing our QFS to CRF time-varying approaches,

we �nd that when employing either TVW1 or TVW2, QFS is to be preferred, while the

opposite holds for TVW3. It is interesting to note that the amalgam forecasts attain a

satisfactory performance ranging from a fee of 236 bps to 375 bps, with the exception of

TVW3 and the Median combining scheme (Table 8, Panel C). Similar �ndings pertain

when considering the manipulation proof performance measure, which is in the range of

98 bps to 458 bps.

[TABLE 8 AROUND HERE]

8. Conclusions

In this study we investigate whether there is evidence of out-of-sample predictive abil-

ity of various economic variables for the equity premium. We develop a novel forecasting

approach based on predictive quantile regression models which produces robust and ac-

curate point forecasts of the equity premium from a set of quantile forecasts, by using

�xed and time-varying weighting schemes. To take into account the �ndings of recent

academic studies which suggest that forecast combinations improve the out-of-sample

equity premium prediction, we propose utilizing a variety of combination methods based

on quantile forecasts. Thus, in our analysis, the crucial issue under consideration is to

examine whether the framework that considers two di¤erent sources of information, i.e.

distributional information and predictor information, is able to deliver more accurate

out-of-sample forecasts of the equity premium.

The usefulness of the proposed forecasting approach stems from the highly complex

and dynamic nature of equity returns. Our approach is able to capture the non-linear

relationship of returns with predictors and to identify potential di¤erences in the ability

of predictors to forecast various quantiles of returns. For example, our analysis sug-

gests that predictors with superior predictive ability for lower or/and upper quantiles

of returns exist. Thus, the quantile regression approach is able to uncover interesting

distributional information and, from an economic perspective, to incorporate meaningful
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business conditions information.

Our study contributes to the growing empirical literature on equity premium pre-

dictability by putting forward the following novel forecasting approach. First, we recom-

mend combining individual forecasts from di¤erent single predictor quantile regressions,

thus incorporating information from various economic variables in order to produce ac-

curate quantile predictions. Then, we propose constructing robust point forecasts of the

equity premium by adopting a time-varying weighting scheme which combines these quan-

tile predictions, thus incorporating information from the entire distribution of returns.

Our �ndings suggest that the predictive ability of the proposed approach has substantial

statistical and economic value over the standard predictive modeling approaches.
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   Table 1. Conditional Quantile Predictive Ability 

Panel A: Individual predictive models 

Predictor Q5 Q10 Q15 Q20 Q25 Q30 Q35 Q40 Q45 Q50 Q55 Q60 Q65 Q70 Q75 Q80 Q85 Q90 Q95 

D/P                    

D/Y                    

E/P                    

D/E                    

SVAR                    

B/M                    

NTIS                    

TBL                    

LTY                    

LTR                    

TMS                    

DFY                    

DFR                    

INFL                    

I/K                    

Panel B: Combining Methods 

Mean                    

Median                    

Trimmed Mean                    

DALFE(1)                    

DALFE(0.9)                    

AL Cluster 2                    

AL Cluster 3                    

AL Principal Components                    

AL Lasso                    

AL Ridge                    

Notes: Q5- Q95 denote the 5% to 95% quantiles of the return distribution. Grey cells denote superior predictive ability, i.e. lower out-of-sample values of the expected 

asymmetric loss,    
t

tt rr
)(

11
ˆ  ,  associated with the quantile forecasts of  each model specification or combining method (shown in the first column of the table), than  

the value associated with the forecasts of the prevailing quantile (PQ) model.



 

Table 2. Out-of-sample performance of individual predictive mean regression models and Combining Mean Forecasts (CMF) approach  

     

Predictor MSFE 

Ratio 
A  B

 CMF approach MSFE 

Ratio 
A  B

 

D/P 0.9928 0.580** 0.420 Mean  0.9703 2.597*** -1.597 

D/Y 0.9900 0.590** 0.410 Median 0.9781 3.209*** -2.209 

E/P 1.0109 0.287 0.713 Trimmed Mean 0.9715 2.943*** -1.943 

D/E 1.0160 0.177 0.824* DMSFE(1) 0.9704 2.463*** -1.463 

SVAR 1.0665 0.110 0.890 DMSFE(0.9) 0.9702 2.444*** -1.444 

B/M 1.0180 0.089 0.911** Cluster 2 0.9766 1.244** -0.244 

NTIS 1.0210 -0.192 1.192** Cluster 3 0.9878 0.766* 0.234 

TBL 1.0243 0.406** 0.594** Principal Components 1.0169 0.347 0.653* 

LTY 1.0259 0.360 0.640**     

LTR 1.0115 0.261 0.739*     

TMS 1.0265 0.373* 0.627***     

DFY 1.0271 -0.398 1.398**     

DFR 0.9909 0.627 0.373     

INFL 1.0076 0.340 0.660     

I/K 0.9768 0.693*** 0.307  
   

Notes: The table reports the MSFE ratios of the individual predictive mean regression models and of the Combining Mean Forecasts (CMF) approach with respect to the 

prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. The MSFE of the PM model is equal to 0.0071. Values of the MSFE ratio below unity 

indicate superior forecasting performance of the predictive models with respect to the historical average forecast. Statistical significance of the out-of-sample forecasts is 

assessed by pairs of encompassing tests: (i) one for testing if the PM model forecasts encompass the forecasts of the individual predictive models or the CMF approach 

(associated with the parameter A ), and (ii) a second one for testing if the individual predictive models’ or the CMF approach’s forecasts encompass the PM model forecasts 

(associated with the parameter B ). *, **, *** indicate significance at the 10%, 5% and 1% confidence levels, respectively. 

 



Table 3. Out-of-sample performance of robust point forecasts and Combining Robust Forecasts (CRF) approach 

Panel A: Individual Predictive Models – Fixed weighting (FW) schemes 

 FW1 FW2 FW3 FW4 

 
MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 

D/P 0.9841 0.901* 0.099 0.9839 0.940* 0.060 0.9842 0.841** 0.159 0.9899 0.656** 0.344 

D/Y 0.9786 0.939** 0.061 0.9753 1.045** -0.045 0.9789 0.860** 0.140 0.9837 0.703** 0.297 

E/P 1.0165 0.070 0.930* 1.0190 -0.007 1.007* 1.0143 0.114 0.886 1.0156 0.127 0.873 

D/E 1.0013 0.477 0.523 1.0048 0.408 0.592 1.0062 0.385 0.615 1.0131 0.245 0.755* 

SVAR 1.0996 0.061 0.940* 1.1044 0.042 0.958* 1.0927 0.077 0.923* 1.0904 0.051 0.949* 

B/M 1.0370 -0.021 1.021** 1.0411 -0.063 1.063***

*** 

1.0310 0.030 0.970** 1.0231 0.059 0.941** 

NTIS 1.0476 -0.085 1.085** 1.0543 -0.063 1.063*** 1.0403 -0.111 1.111*** 1.0317 -0.156 1.156*** 

TBL 1.0131 0.444** 0.556** 1.0204 0.414* 0.586** 1.0131 0.446** 0.555** 1.0239 0.407** 0.593** 

LTY 1.0138 0.409 0.591** 1.0208 0.344 0.656** 1.0156 0.400 0.600** 1.0243 0.359 0.641** 

LTR 1.0523 0.145 0.855*** 1.0558 0.145 0.855*** 1.0426 0.166 0.834*** 1.0251 0.203 0.797** 

TMS 1.0642 0.278* 0.722*** 1.0638 0.293* 0.707*** 1.0576 0.293* 0.708*** 1.0433 0.327* 0.674*** 

DFY 1.0717 -0.389 1.389*** 1.0655 -0.236 1.236*** 1.0580 -0.454 1.454** 1.0344 -0.462 1.462** 

DFR 1.0057 0.404 0.596* 1.0026 0.444 0.556 1.0055 0.405 0.595 0.9958 0.578 0.422 

INFL 1.0067 0.301 0.699 1.0103 0.268 0.732 1.0071 0.298 0.702 1.0082 0.298 0.702 

I/K 0.9765 0.685*** 0.315 0.9763 0.647** 0.353* 0.9775 0.685 0.315 0.9742 0.724*** 0.276 

Panel B: Combining Robust Forecasts (CRF) approach – Fixed weighting (FW) schemes 

 CRF-FW1 CRF-FW2 CRF-FW3 CRF-FW4 

Mean  0.9761 2.050** 

 

 

 

 

 

 

 

-1.050 0.9768 1.861** 

2.144 

2.600 

2.757 

1.986 

1.842 

1.101 

0.317 

0.209 

0.705 

-0.861 0.9741 2.456*** -1.456 0.9720 3.144*** -2.144 

Median 0.9865 1.458* -0.458 0.9893 1.257* -0.257 0.9848 1.850** -0.850 0.9794 3.600*** -2.600 

Trimmed Mean 0.9778 2.255** -1.255 0.9786 2.057** -1.057 0.9761 2.751*** -1.751 0.9737 3.757*** -2.757 

DMSFE(1) 0.9755 2.081** -1.081 0.9763 1.878** -0.878 0.9737 2.441*** -1.441 0.9719 2.986*** -1.986 

DMSFE(0.9) 0.9747 2.022** -1.022 0.9760 1.814** -0.814 0.9731 2.343** -1.343 0.9716 2.842*** -1.842 

Cluster 2 0.9726 1.446** -0.446 0.9778 1.280** -0.280 0.9744 1.394** -0.394 0.9769 1.317** -0.317 

Cluster 3 1.0059 0.393 0.608 0.9992 0.517 0.484 1.0017 0.466 0.534 0.9861 0.791* 0.209 

Principal 

Components 
1.0289 0.317 0.683** 1.0256 0.332 0.668** 1.0284 0.318 0.682** 1.0287 0.295 0.705** 



Table 3. (continued)  

Panel C: Individual Predictive Models – Time-varying weighting (TVW) schemes 

 TVW1 TVW2 TVW3 

 
MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 

D/P 0.9879 0.742* 0.258 0.9853 0.884* 0.116 0.9905 0.680* 0.320 

D/Y 0.9876 0.729* 0.271 0.9786 0.938** 0.063 0.9882 0.694* 0.306 

E/P 1.0062 0.341 0.659 1.0075 0.237 0.764 1.0111 0.274 0.726 

D/E 1.0035 0.462 0.539 1.0027 0.467 0.533 1.0046 0.461 0.539* 

SVAR 1.0399 0.251* 0.749 1.0643 0.170* 0.830 1.0146 0.412** 0.588 

B/M 1.0065 0.357 0.643 1.0145 0.131 0.869* 1.0020 0.459 0.541 

NTIS 1.0044 0.396 0.605* 1.0168 0.211 0.789** 0.9927 0.660* 0.340 

TBL 1.0100 0.449* 0.551** 1.0158 0.423* 0.578** 1.0198 0.396* 0.604** 

LTY 1.0140 0.396 0.604* 1.0222 0.313 0.687** 1.0168 0.375 0.626* 

LTR 1.0230 0.338 0.663** 1.0256 0.315 0.685** 1.0140 0.396* 0.604** 

TMS 1.0198 0.420** 0.580*** 1.0314 0.382** 0.618*** 1.0085 0.464** 0.536** 

DFY 1.0261 -0.227 1.227** 1.0252 -0.099 1.099* 1.0148 0.169 0.831* 

DFR 0.9820 0.783** 0.218 0.9761 1.080* -0.080 0.9865 0.650* 0.350 

INFL 0.9960 0.571 0.429 1.0083 0.393 0.607 0.9997 0.503 0.497 

I/K 0.9821 0.616** 0.384* 0.9827 0.592*** 0.408** 0.9865 0.585** 0.415* 

Panel D: Combining Robust Forecasts (CRF) approach – Time-varying schemes 

 CRF-TVW1 CRF-TVW2 CRF-TVW3 

Mean  0.9635 2.829*** 

0.817 

0.660 

0.730 

-1.829 0.9654 2.907*** -1.907 0.9633 1.817*** -0.817 

Median 0.9718 3.756*** -2.756 0.9760 5.199*** -4.199 0.9669 1.660*** -0.660 

Trimmed Mean 0.9650 3.037*** -2.037 0.9677 3.314*** -2.314 0.9667 1.730*** -0.730 

Notes: The table reports the MSFE ratios of the robust point forecasts and of the Combining Robust Forecasts (CRF) approach, under fixed weighting (FW) and time-

varying weighting (TVW) schemes, with respect to the prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. Values of the MSFE ratio below 

unity indicate superior forecasting performance of the predictive models with respect to the historical average forecast. Statistical significance of the out-of-sample forecasts 

is assessed by pairs of encompassing tests: (i) one for testing if the PM model forecasts encompass the robust point forecasts or the forecasts of the CRF approach (associated 

with the parameter A ), and (ii) a second one for testing if the robust point forecasts or the CRF approach’s forecasts encompass the PM model forecasts (associated with the 

parameter B ). *, **, *** indicate significance at the 10%, 5% and 1% confidence levels, respectively. 



Table 4. Out-of-sample performance of Quantile Forecasts Synthesis (QFS) approach 

Panel A: Fixed weighting (FW) schemes 

 QFS -FW1 QFS -FW2 QFS -FW3 QFS -FW4 

 
MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 

Mean  0.9761 2.050** -1.050 0.9768 1.861** -0.861 0.9741 2.456*** -1.456 0.9720 3.144*** -2.144 

Median 0.9886 1.354* -0.354 0.9903 1.208 -0.208 0.9866 1.768** -0.768 0.9830 3.498*** -2.498 

Trimmed Mean 0.9785 2.214** -1.214 0.9791 2.044** -1.044 0.9768 2.727*** -1.727 0.9746 3.808*** -2.808 

DALFE(1) 0.9758 2.047** -1.047 0.9766 1.846** -0.846 0.9738 2.430*** -1.430 0.9719 3.043*** -2.043 

DALFE(0.9) 0.9752 2.011** -1.011 0.9760 1.825** -0.825 0.9731 2.419*** -1.419 0.9711 3.092*** -2.092 

AL Cluster 2 0.9768 1.331** -0.331 0.9809 1.115** -0.115 0.9754 1.489** -0.489 0.9733 1.864** -0.864 

AL Cluster 3 0.9798 0.965* 0.035 0.9753 1.084** -0.084 0.9787 1.051** -0.051 0.9785 1.237** -0.237 

AL Principal  

Components 
1.0079 0.448* 0.552* 1.0160 0.417* 0.583** 1.0062 0.456* 0.544* 1.0181 0.383** 0.617** 

AL Lasso 0.9777 0.747** 0.253 0.9899 0.592** 0.408 0.9782 0.755** 0.245 0.9866 0.657** 0.343 

AL Ridge 0.9696 1.157** -0.157 0.9719 1.022** -0.022 0.9680 1.234** -0.234 0.9705 1.215** -0.215 

Panel B: Time-varying weighting (TVW) schemes 

 QFS -TVW1 QFS -TVW2 QFS -TVW3    

Mean  0.9594 2.138*** -1.138 0.9619 2.553*** -1.553 0.9677 1.387** -0.387    

Median 0.9669 2.748*** -1.748 0.9717 3.736*** -2.736 0.9746 1.495** -0.495    

Trimmed Mean 0.9619 2.216*** -1.216 0.9648 2.799*** -1.799 0.9702 1.382** -0.382    

Notes: The table reports the MSFE ratios of the Quantile Forecasts Synthesis (QFS) approach, under fixed weighting (FW) and time-varying weighting (TVW) schemes, 

with respect to the prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. Values of the MSFE ratio below unity indicate superior forecasting 

performance of the predictive models with respect to the historical average forecast. Statistical significance of the out-of-sample forecasts is assessed by pairs of 

encompassing tests: (i) one for testing if the PM model forecasts encompass the QFS forecasts (associated with the parameter A ), and (ii) a second one for testing if the QFS 

forecasts encompass the PM model forecasts (associated with the parameter B ). *, **, *** indicate significance at the 10%, 5% and 1% confidence levels, respectively. 

 

 



Table 5. Encompassing tests for pairs of forecasts from the CMF, CRF and QFS approaches 

 

 
Mean Combination 

Method
 

Median Combination 

Method 

Trimmed Mean 

Combination Method 

 
A  B

 

A  B
 

A  B
 

CMF, CRF-TVW1 6.262** -5.262 3.069 -2.069 5.492* -4.492 

CMF, CRF-TVW2 2.373 -1.373 1.291 -0.291 1.964 -0.964 

CMF, CRF-TVW3 1.704 -0.704 1.194* -0.194 1.174 -0.174 

CMF, QFS-TVW1 3.625** -2.625 3.647** -2.647 3.179* -2.179 

CMF, QFS-TVW2 4.552** -3.552 3.280* -2.280 3.520* -2.520 

CMF, QFS-TVW3 0.723 0.277 0.771 0.229 0.606 0.394 

CRF-TVW1, QFS-TVW1 1.827 -0.827 2.509 -1.509 1.672 -0.672 

CRF-TVW2, QFS-TVW2 2.250 -1.250 2.611 -1.611 2.102 -1.102 

CRF-TVW3, QFS-TVW3 -3.394 4.394* -1.573 2.573* -3.023 4.023 

Notes: The table reports results on the encompassing tests for all pairs of forecasts obtained by the 

Combining Mean Forecasts (CMF) approach, the Combining Robust Forecasts (CRF) approach and the 

Quantile Forecasts Synthesis (QFS) approach, under the three time-varying weighting schemes (TVW1-

TVW3). For each pair of approaches, shown in the first column of the table, statistical significance of the out-

of-sample forecasts is assessed by pairs of encompassing tests: (i) one for testing if the forecasts produced by 

the first approach encompass the forecasts produced by the second (associated with parameter A ), and (ii) a 

second one for testing if the forecasts produced by the second approach encompass the forecasts produced by 

the first (associated with parameter B ). *, **, *** indicate significance at the 10%, 5% and 1% confidence 

levels, respectively. 

 

 



 

Table 6. Multiple encompassing tests and amalgam forecasts 

 

 MS*  

CMF 

MS*  

CRF-TVW 

MS*  

QFS-TVW 

MSFE 

Ratio 
A  B

 

Panel A: Mean Combination Methods  

CMF, CRF-TVW1, QFS-TVW1 1.981 1.644 1.310 0.9640 2.577**

* 

-1.577 

CMF, CRF-TVW2, QFS-TVW2 1.418 1.174 0.875 0.9655 2.807**

* 

-1.807 

CMF, CRF-TVW3, QFS-TVW3 3.549** 3.381** 3.669** 0.9661 1.907**

* 

-0.907 

Panel B: Median Combination Methods  

CMF, CRF-TVW1, QFS-TVW1 1.642 1.293 0.880 0.9676 3.176**

* 

-2.176 

CMF, CRF-TVW2, QFS-TVW2 0.999 0.744 0.489 0.9683 1.940**

* 

-0.940 

CMF, CRF-TVW3, QFS-TVW3 1.486 0.522 1.329 0.9827 2.529** -1.529 

Panel C: Trimmed Mean Combination Methods  

CMF, CRF-TVW1, QFS-TVW1 1.553 1.194 0.944 0.9746 3.172**

* 

-2.172 

CMF, CRF-TVW2, QFS-TVW2 0.955 0.729 0.495 0.9737 3.508**

* 

-2.508 

CMF, CRF-TVW3, QFS-TVW3 1.209 0.920 1.229 0.9728 3.760**

* 

-2.760 

Notes: The table reports results on multiple encompassing tests employed to compare the forecasts obtained 

by the Combining Mean Forecasts (CMF) approach, the Combining Robust Forecasts (CRF) approach and the 

Quantile Forecasts Synthesis (QFS) approach, under the three time-varying weighting schemes (TVW1-

TVW3). Columns (2) - (4) report the MS* statistics to test the null of multiple forecast encompassing. The test 

is conducted three times for every triad by employing the model in the first row as the reference model.    

Columns (5) - (7) report the MSFE ratios of an amalgam forecast constructed by averaging the forecasts of the 

three approaches, shown in the first column. Statistical significance of the out-of-sample forecasts is assessed 

by pairs of encompassing tests: (i) one for testing if the amalgam forecasts encompass the PM forecasts 

(associated with the parameter A ), and (ii) a second one for testing if the PM forecasts encompass the 

amalgam forecasts (associated with the parameter B ). *, **, *** indicate significance at the 10%, 5% and 

1% confidence levels, respectively. 



Table 7. Economic evaluation of Combining Mean Forecasts (CMF) approach and Combining 

Robust Forecasts (CRF) approach 

 

Panel A: Combining Mean Forecasts 

 Φ Θ       

Mean  297.41 371.86       

Median 145.30 194.80       

Trimmed Mean 270.86 343.78       

DMSFE(1) 304.75 379.79       

DMSFE(0.9) 320.79 396.46       

Cluster 2 248.87 286.90       

Cluster 3 242.84 269.37       

Principal Components 235.71 246.97       

Panel B: Combining Robust Forecasts - Fixed weighting schemes 

 CRF-FW1 CRF-FW2 CRF-FW3 CRF-FW4 

 Φ Θ Φ Θ Φ Θ Φ Θ 

Mean  186.79 220.43 190.6 221.98 207.32 250.62 236.59 294.95 

Median 59.01 67.84 18.42 8.10 76.89 92.33 108.40 137.98 

Trimmed Mean 159.17 191.64 162.38 195.73 178.16 219.10 216.80 274.95 

DMSFE(1) 204.59 241.21 206.26 239.85 223.17 268.92 249.46 309.62 

DMSFE(0.9) 245.70 284.84 242.50 278.06 258.98 307.33 275.16 337.48 

Cluster 2 252.01 266.45 229.06 245.53 236.64 252.93 217.11 240.74 

Cluster 3 175.07 196.52 224.49 247.22 216.39 239.84 263.24 290.35 

Principal Components 250.88 257.87 255.38 261.98 252.54 259.64 238.68 243.91 

Panel C: Combining Robust Forecasts – Time-varying weighting schemes 

 CRF-TVW1 CRF-TVW2 CRF-TVW3   

 Φ Θ Φ Θ Φ Θ   

Mean  371.49 448.74 338.90 407.92 394.85 480.13   

Median 231.73 296.58 158.60 212.87 327.55 412.53   

Trimmed Mean 352.71 429.44 306.40 375.15 373.76 459.03   

Notes: The performance fee, , is the difference between the realized utilities of competing models, 

,
PM

i
UUU    where 

PMi
UU , denote the average mean-variance utility of an investor with risk 

aversion coefficient of three over the forecast evaluation period from using the ith model/specification and the 

historical average benchmark model (PM), respectively.  The weight on stocks in the investor’s portfolio is 
restricted to lie between zero and 1.5. The mean-variance utility for the ith model/specification is given by: 
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where 0PP   is the number of out-of-sample forecasts, oW  is the initial wealth of the investor and  γ denotes 
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Table 8. Economic evaluation of Quantile Forecasts Synthesis (QFS) approach and amalgam 

forecasts 

Panel A: Quantile Forecasts Synthesis - Fixed weighting schemes 

 QFS - FW1 QFS – FW2 QFS – FW3 QFS – FW4 

 Φ Θ Φ Θ Φ Θ Φ Θ 

Mean  186.79 220.43 190.60 221.98 207.32 250.62 236.59 294.95 

Median 28.75 23.30 14.76 -1.80 45.79 48.79 83.49 107.68 

Trimmed Mean 157.37 190.92 161.32 194.91 176.63 218.84 211.95 270.90 

DALFE(1) 195.92 231.15 197.97 230.42 215.21 259.83 242.23 301.36 

DALFE(0.9) 220.51 258.57 223.47 258.96 240.17 287.89 263.13 324.45 

AL Cluster 2 250.28 261.19 243.45 256.26 248.28 261.21 261.00 293.72 

AL Cluster 3 276.53 292.82 338.32 360.18 270.11 289.06 257.20 279.87 

AL Principal  

Components 

262.00 269.61 289.17 297.40 217.64 220.09 173.78 195.27 

AL Lasso 328.87 328.74 317.67 339.1 292.53 285.12 226.94 224.99 

AL Ridge 316.86 336.58 310.97 321.94 314.81 343.52 295.4 337.64 

Panel B: Quantile Forecasts Synthesis – Time-varying weighting schemes 

 QFS - TVW1 QFS - TVW2 QFS - TVW3   

 Φ Θ Φ Θ Φ Θ   

Mean  424.97 511.01 383.53 463.91 358.33 444.58   

Median 314.28 394.97 242.92 317.86 294.50 378.65   

Trimmed Mean 405.73 490.10 356.23 436.45 342.67 427.31   

Panel C: Amalgam Forecasts 

 

Mean 

Combination 

Method 

Median 

Combination 

Method 

Trimmed Mean 

Combination 

Method  

  

 Φ Θ Φ Θ Φ Θ   

CMF, CRF-TVW1, 

QFS-TVW1 

372.38 452.66 316.12 391.60 198.58 248.85 

  

CMF, CRF-TVW2, 

QFS-TVW2 
346.79 422.88 352.95 435.21 214.42 270.29 

  

CMF, CRF-TVW3, 

QFS-TVW3 
374.93 457.80 79.06 98.46 235.60 299.62 

  

 Notes: The performance fee, , is the difference between the realized utilities of competing models, 

,
PM

i
UUU    where 

PMi
UU , denote the average mean-variance utility of an investor with risk 

aversion coefficient of three over the forecast evaluation period from using the ith model/specification and the 

historical average benchmark model (PM), respectively.  The weight on stocks in the investor’s portfolio is 
restricted to lie between zero and 1.5. The mean-variance utility for the ith model/specification is given by: 
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where 0PP   is the number of out-of-sample forecasts, oW  is the initial wealth of the investor and  γ denotes 

the coefficient of relative risk aversion.  is the difference between the manipulation-proof performance 

measure of the two competing models, ,)()( PM
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