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We propose a censored quantile regression estimator motivated by unbiased estimating equations. Under the
usual conditional independence assumption of the survival time and the censoring time given the covariates,
we show that the proposed estimator is consistent and asymptotically normal. We develop an efficient
computational algorithm which uses existing quantile regression code. As a result, bootstrap-type inference
can be efficiently implemented. We illustrate the finite-sample performance of the proposed method by
simulation studies and analysis of a survival data set.
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1. Introduction

Censored data arise frequently in biomedical, psychological, social studies and many other ap-
plied fields (Kalbfleisch and Prentice [7]). Analysis of such data is complicated by censoring,
where an object’s time-to-death or other end-point of interest is known to occur only in a certain
period of time.

Denote T as the survival time and C ≤ T0 as the censoring time, where T0 is the largest follow-
up study time. The typical censored data set consists of independent observations (Yi, δi,Zi), i =
1, . . . , n, where Yi = min(Ti,Ci) is the observed failure time; δi = I (Ti ≤ Ci) is the censoring
indicator; and Zi is a p-dimensional covariate vector including an intercept. The accelerated
failure time model (AFT), specified as Ti = βT Zi +εi with εi, i = 1, . . . , n, following a common
distribution independently, was studied in a number of papers (Jin et al. [5]; Zeng and Lin [26]).
However, the assumption made for the AFT model precludes error heteroscedasiticity and will
yield biased results when it is inappropriate.

Quantile regression introduced by Koenker and Bassett [10] has become an increasingly im-
portant tool in statistical analysis. Contrary to the usual model for the conditional mean, it pro-
vides distributional information on the dependence of T on Z. A comprehensive review can be
found in Koenker [8]. The usefulness of quantile regression in survival analysis was discussed
by Koenker and Geiling [11]. The τ th conditional quantile function of the dependent variable T

given covariates Z, QT (τ |Z), is defined as QT (τ |Z) = inf{v: F0(v|Z) ≥ τ }, where F0 is the cu-
mulative conditional distribution function of T given Z. Correspondingly, a quantile regression
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model for QT (τ |Z) with τ ∈ (0,1) can be denoted as

QT (τ |Z) = β ′
τZ. (1)

Note that the AFT model is a special case of this model when β1, the coefficient corresponding to
the intercept, is quantile dependent, but the other coefficients in β are quantile independent. An-
other example is the location-scale model Ti = αT

1 Zi + (αT
2 Zi)εi in which β = α1 + α2F

−1
ε (τ )

when εi is independent of Zi , and Fε is the distribution function of εi .
When data are subject to censoring, statistical estimation and inference for quantile regression

is more involved. Indeed, a naive procedure which completely ignores censoring may give highly
biased estimates (Koenker [8]). The situation is more complicated if censoring time depends on
the covariates. In Section 5, we present the Colorado Plateau uranium miners cohort data (Lubin
et al. [14], Langholz and Goldstein [12]), where the major interest of this study is to assess the
effect of smoking and radon exposure on the rate of median death time of lung cancer. It is found
that the censoring time is highly correlated with the covariates. Ignoring this dependence may
yield biased estimates; see the Numerical Study section for examples.

Powell [19,20] first studied censored quantile regression with fixed censoring. For random
censoring, Ying, Jung and Wei [25] (YJW) proposed a semiparametric median regression model.
Despite the simplicity of the method in YJW, this procedure requires the unconditional indepen-
dence of the survival time and censoring time. This assumption is often restrictive as conditional
independence, given the covariates, is more natural (Kalbfleisch and Prentice [7]). In addition, the
estimating equation approach proposed in YJW involves solving non-monotone discrete equa-
tions, creating difficulty for optimization. As a consequence, inferential procedures such as the
resampling approach in Jin, Ying and Wei [6], or the bootstrap method, can be prohibitive com-
putationally. See also Leon, Cai and Wei [13] for a generalization of this method to partly linear
models.

Relaxing the independence condition to conditional independence, Portnoy [17] and Neo-
cleous, Vanden Brandan and Portnoy [15] developed a novel estimating approach motivated by
the classical Kaplan–Meier estimator in the one sample analysis. Using the martingale represen-
tation, Peng and Huang [16] studied another censored quantile regression estimator motivated by
the Nelson–Aalen estimator. However, a major shortcoming of Portnoy and Peng and Huang’s
methods is that a global linear assumption has to be made, even for estimating the quantile coef-
ficient at a single quantile. To relax this assumption, Wang and Wang [22] recently proposed an
innovative redistribution of mass idea, which employs local weighting.

Motivated by the unbiased estimating equation for the quantile regression (Ying et al. [25]), we
propose a new quantile regression estimator. Under the usual conditional independence assump-
tion of T and C given Z, we show that the proposed estimator is consistent and asymptotically
normal. We develop an efficient algorithm which utilizes existing quantile regression code for
estimation. The efficient code enables us to use the bootstrap procedure for statistical inference.
Our method provides an alternative to Wang and Wang’s locally weighted censored quantile re-
gression. However, the framework proposed by Ying et al., and used by us, may be conceptually
simpler.

The rest of the paper is organized as follows. Section 2 discusses the new estimator and the
fast computing algorithm. Section 3 provides the theoretical results of the new estimator. Some
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numerical studies are presented in Section 4. A data analysis is provided in Section 5. Some
concluding remarks are given in Section 6. All the proofs are relegated to the Appendix. When
no confusion arises, the dependence of β on τ is suppressed.

2. Censored quantile regression

To estimate βτ in (1) for the τ th quantile, we propose to solve the following estimating equation:

Mn(β) =
n∑

i=1

Zi

[
I (Yi − β ′Zi ≥ 0)

Ĝ(β ′Zi |Zi)
− (1 − τ)

]
≈ 0, (2)

where I (·) is the indicator function, and Ĝ is the Kaplan–Meier estimate for G0(·|Zi), the condi-
tional survival function of the censoring variable C given the covariates. The estimating equation
in (2) is motivated by the fact that E[I (Yi −β ′Zi ≥ 0)|Zi] = (1 − τ)G0(β

′Zi |Zi) using the con-
ditional independence of Ti and Ci given Zi . YJW assumes that G0(β

′Zi |Zi) = G0(β
′Zi), and

our formulation is an extension of YJW’s median regression to quantile regression by allowing
G0 to depend on Z. To solve (2), we need to find its root. Ying et al. [25] proposed to min-
imize ‖Mn(β)‖, a discrete and non-monotone function. Computational complication naturally
arises. Ying et al. proposed to use the simulated annealing algorithm, or simply the bisection
algorithm, to solve the estimating equation, which is computationally demanding. Another com-
plication arises in statistical inference. Since the sampling distribution of the solution involves
the unknown density functions of the data, resampling-based approaches are effective tools for
conducting statistical inference (Jin, Lin, Wei and Ying [5]). However, inference procedures via
these methods would be computationally even more intensive than point estimation, due to the
lack of an efficient algorithm.

We start by proposing a new algorithm to solve (2). First note that we can write the estimating
equation in (2) as

Mn(β) =
n∑

i=1

Zi

Gi

[I (Yi − β ′Zi ≥ 0) − (1 − τ)] − (1 − τ)

n∑
i=1

Zi

Gi

(Gi − 1),

where we write Ĝ(β ′Zi |Zi) for a preliminary estimate of β as Gi for brevity. In practice, we set
I (Yi − βT Zi ≥ 0)/Gi = 0 if Gi = 0 as recommended by Ying et al. [25]. The solution to this
function is the minimizer of the following linear programming problem:

Sn(β) =
n∑

i=1

G−1
i

{
ρτ (Yi − βT Zi) + ρτ

(
Y ∗

i − βT Zi(Gi − 1)
)}

, (3)

where ρτ (s) = s[I (s ≥ 0) − (1 − τ)] is the check loss function used in quantile regression, and
Y ∗

i is a small constant less than −|βT Zi(Gi −1)| for all β’s in a compact space. In this paper, we
set Y ∗

i = Y ∗ = min{Yi} − A with A = 200. This new formulation suggests that the fast quantile
regression code (Portnoy and Koenker [18], Koenker [8]) can be directly used to solve the cen-
sored quantile regression defined by (2). We note that Yin and Cai [23] used the Nelder–Mead
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simplex algorithm when T and C are independent. The simplex algorithm is generally much
slower than the interior point algorithm specially developed for quantile regression (Portnoy and
Koenker [18]).

For estimating the weighting function G0(β
′Zi |Zi), we propose to use the local Kaplan–Meier

estimator Ĝ(β ′Zi |Zi). To be specific, G0(·|Zi) is estimated by

Ĝ(t |z) =
n∏

j=1

[
1 − Bnj (z)∑n

k=1 I (Yk ≥ Yj )Bnk(z)

]I (Yj ≤t,δj =0)

, (4)

where Bnj (z) is a sequence of non-negative weights adding up to 1. When Bnj (z) = 1/n for
all j , Ĝ0(t |z) reduces to the classical Kaplan–Meier estimator of the survival function in the
one-sample case. Following the idea of Wang and Wang [22], we use

Bnj (z) = K

(
z − zj

hn

)[
n∑

k=1

K

(
z − zk

hn

)]−1

, (5)

where K(·) is a density function, and hn > 0 is the bandwidth. This is the familiar kernel es-
timator for the survival function discussed, for example, in Gonzalez-Manteiga and Cadarso-
Suarez [4]. When Z is multi-dimensional, we can use the product kernel. For example, in the
bivariate case, we can use K(z1, z2) = K1(z1)K2(z2) where K1(·) and K2(·) are both uni-
variate kernel functions. In this article, we use the bi-quadratic kernel, defined as K(s) =
15
16 (1 − s2)2I (|s| ≤ 1), which is also used by Wang and Wang [22]. Alternatively, we may use
a multivariate density function, for example, from the multivariate normal distribution (Fan and
Gijbels [3]).

Since Ĝ(β ′Zi |Zi) depends on the unknown parameter β , we propose the following iterative
algorithm between solving for β̂ and Ĝ(β ′Zi |Zi), while the other one is fixed:

1. Given an initial estimate of β denoted as β(0), set k = 0.
2. Estimate G0(Z

′
iβ

(k)|Zi) as Gi using the local Kaplan–Meier estimator. Minimize Sn(β) in
(3) to obtain β(k+1).

3. Set k ← k + 1. Go to Step 2 until a convergence criterion is met.

For the initial estimate, we use a similar method as in (Yin and Cai [23]) to solve the following
monotone estimating function:

n∑
i=1

δi

Ĝ(Yi |Zi)
Zi[I (Yi − βT Zi ≥ 0) − (1 − τ)],

where Ĝ(Yi |Zi) is the local Kaplan–Meier estimator. This estimator can be seen as the inverse
probability weighted quantile regression function (Bang and Tsiatis [1]). Similarly to (Yin and
Cai [23]), consistency of β(0) can be shown, and convergence of the solution series {β(k)} fol-
lows by the method of induction. Note that, although the initial estimate is also reasonable, its
efficiency is adversely affected by the fact that only non-censored observations are used.
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Remark 1. We note that our estimator requires estimating G0(β
′Zi |Zi). In comparison, Wang

and Wang [22] estimated the conditional cumulative distribution function of the survival time Ti ,
evaluated at Ci , given the covariate Zi . Both estimators use local Kaplan–Meier estimation. Since
both methods are estimation equation based approaches, which one is more efficient is likely
dependent on the particular problem under analysis. We observe empirically that the proposed
method performs satisfactorily even if the censoring rate is reasonably low. Of course, if the
censoring rate is very low, the proposed method ultimately suffers due to the low sample size
used for the local Kaplan–Meier estimate.

We briefly discuss the computation issue before presenting the asymptotic results. The esti-
mation problem in (3) is essentially weighted quantile regression after the weights G0(Z

′
iβ|Zi)

are estimated using the local Kaplan–Meier method. This method can be easily implemented
by extending the Kaplan–Meier estimate for the survival function of C. In particular, we aug-
ment observations (Y ∗

i ,Zi(Gi − 1)) with weights 1/Gi to the existing data set (Yi,Zi) with
weight 1/Gi . We then apply function rq in R library quantreg on the augmented data set using
the weights to fit a regular quantile regression model. This process has to be iterated since β in
G0(Z

′
iβ|Zi) is unknown. The iteration is initialized by using the inverse probability estimator.

For the examples in the simulation part and the data analysis, this iteration is very fast. Conver-
gence is achieved usually in a few iterations for a reasonable convergence criterion. Note that we
need to estimate G0(Z

′
iβ|Zi) at each iteration, while no iteration is needed for Wang and Wang’s

algorithm.

3. Asymptotic theory

We establish the consistency and the asymptotic normality of the estimator in this section. To
derive the asymptotic properties of the proposed estimator, we require the following regularity
assumptions. For convenience, we write the true value of β as β0. The regularity conditions are
listed as follows:

C1. T and C are conditionally independent given the covariate Z.
C2. The true value β0 of β is in the interior of a bounded convex region B. The support Z of

Z is bounded.
C3. infZ∈Z P(Y ≥ T |Z) ≥ η0 > 0, where T = T0 ∨ supZ∈Z ,β∈B Z′β .
C4. The conditional density functions f0(t |z) and g0(t |z) of the failure time T and C, re-

spectively, are uniformly bounded away from infinity and have bounded (uniformly in t )
second order partial derivatives with respect to z.

C5. The bandwidth hn satisfies hn = O(n−v) with 0 < v < 1/2.
C6. The kernel function K(·) ≥ 0 is compactly supported and satisfies the Lipschitz condition

of order 1,
∫

K(u) = 1,
∫

uK(u)du = 0,
∫

K2(u)du < ∞ and
∫ ‖u‖2K(u)du < ∞.

C7. For β in a neighborhood of β0, E[ZZ′f0(Z
′β|Z)] is positive definite.

Assumptions C1–C4 are standard in survival analysis. Assumption C5 is needed to ensure the
consistency of the local Kaplan–Meier estimator. Assumption C6 is routinely made in nonpara-
metric smoothing, and assumption C7 ensures a unique solution for the limiting estimating equa-
tion in the neighborhood of β0 and is used to derive the asymptotic properties of the estimator.
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Intuitively, if Ĝ(β ′Zi |Zi) is a reasonable estimator of G(β ′Zi |Zi), the consistency of β̂ follows
from the unbiasedness of the estimating equation (2). Formally, we have the following results for
the consistency of the estimator.

Theorem 1 (Consistency). Under conditions C1–C7, we have that β̂n → β0 in probability as
n → ∞.

The proof of this theorem uses the uniform consistency of Ĝ as an estimator of G and is similar
to that in Ying et al. [25]. Since the criterion function is not smooth, we make use of the general
theorem developed by Chen, Linton and Van Keilegom [2] to show the asymptotic normality of
the resulting estimator.

Theorem 2 (Asymptotic normality). Under conditions C1–C7, if 1/4 < v < 1/3, then we have
that

n1/2(β̂n − β0)
d→ N(0,	−1

1 V 	−1
1 ),

where 	1 = EZZ′f0(Z
′β0|Z) and V = cov(Vi) with Vi defined in Lemma A.3 in the Appendix.

Note that this theorem is only for problems with a single covariate. As in Wang and Wang [22],
we observe that the results are not very sensitive to hn. In practice, we can use K-folds cross
validation to choose the bandwidth. This approach works by dividing the data set in K parts,
which are about equally sized. For the kth part, we use the rest K − 1 parts of the data to fit the
model, and then evaluate the quantile loss from predicting the τ th conditional quantile of T on
the uncensored data that are left out. Averaging over k = 1, . . . ,K , we choose the h that gives
the minimum average quantile loss.

The matrices 	1 and V in the limiting covariance matrix depend on the unknown conditional
density function f0(·|z) and g0(·|z). For censored data, they may not be estimated well nonpara-
metrically with finite sample. Thus we use the bootstrap resampling procedure for inference. The
validity of this procedure can be shown following Jin et al. [5]. We note that for the bootstrap or
other resampling methods to be feasible computationally, efficient algorithms are instrumental
because a large number of bootstrap replications are needed.

4. Numerical study

For simulation study, we compare the estimator of Ying et al. (YJW), the proposed estima-
tor (CQR), the locally weighted censored quantile regression estimator (Lcrq) in Wang and
Wang [22], the estimator in Portnoy [17], abbreviated as Port, and the estimator by Peng and
Huang [16], abbreviated as PH. We use Wang and Wang’s code, available on their websites, for
Lcrq and function crq in R library quantreg for Portnoy’s and Peng and Huang’s method. YJW is
implemented via the iterative method in this paper by replacing Ĝ(β ′Zi |Zi) in (2) by Ĝ(β ′Zi),
which is the Kaplan–Meier estimate for the survival function of C. We follow Yin and Cai [23]
and Zhou [27] to obtain the initial value of β by using weights Ĝ(Yi) in (2). A justification
of this algorithm can be found in Yin and Cai [23]. Note that the local Kaplan–Meier estimate
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Ĝ(β ′Zi |Zi) can be obtained by simply modifying Wang and Wang’s R function for their local
Kaplan–Meier estimation.

We compare the mean bias (MB), the median absolute error (MAE) and the root mean square
errors (RMSE) of these procedures (Koenker [9]). We fix h = 0.05 for all the simulations as
suggested by Wang and Wang [22]. Other choices of the bandwidth were also tried. The results
are similar and are omitted to save space. We investigate the performance at the median τ =
0.5 for two sample sizes n = 100 and 200. For Examples 1 and 2, we have also examined the
performance at τ = 0.7, and the results are similar. For each setup, the simulation is repeated 500
times. And we use 400 bootstrap replications for inference.

Example 1. We take the first example from Wang and Wang [22] to generate failure time from
the following i.i.d. error model

Ti = b0 + b1zi + εi, i = 1, . . . , n,

where b0 = 3, b1 = 5,Z ∼ U(0,1) and εi = ηi − 
−1(τ ) with {ηi}ni=1 being i.i.d. standard nor-
mal random variables. The censoring variable is either generated from U(0,14) or U(0,36) such
that about 40% or 15% of the observations are censored at the median, when τ = 0.5 is used for
generating ε.

Example 2. This example is again taken from Wang and Wang [22]. The data are generated from

Ti = b0 + b1zi + (
0.2 + a(zi − 0.5)2)εi, i = 1, . . . , n,

where b0 = 2, b1 = 1, zi ∼ N(0,1) and εi = ηi − 
−1(τ ) with {ηi}ni=1 being i.i.d. standard
normal random variables. Here a takes the value 0, 0.5 and 2 to indicate no, median and strong
deviation from the global linearity assumption. The censoring variable Ci is generated from
U(0,7) or U(0,18) to give 40% and 15% censoring at the median for a = 2.

Example 3. The model to generate Ti is the same as Example 2 with b0 = 1 and a = 2. The
censoring variable Ci is generated from a mixture of distributions. Specifically, if zi < 1, Ci is
generated from U(0,4); otherwise, Ci is generated from U(0,8). This scheme gives about 30%
censoring at the median.

Example 4. This model is similar to Example 2 with a = 2. However, the censoring time Ci

is generated from the following model Ci = A + bzi + ηi, i = 1, . . . , n, where b = 0,0.5,1
indicates a different level of dependence of the censoring time on the covariates. The random
variable ηi follows the standard normal distribution, and A is either 1.35 or 2.6, such that when
b = 1, about 40% or 15% observations are censored.

For Examples 1 and 2, the censoring time and the survival time are independent. In Example 1,
all the conditional quantiles are linear functions of the covariates. Example 2 gives a model
with only the τ th quantile being a linear function when a �= 0. Note that Wang and Wang [22]
have shown that Portnoy’s approach gives biased estimates for the coefficients when a = 2. For
Examples 3 and 4, T and C are not independent, but they are conditionally independent given the



Censored quantile regression 351

covariates. Example 3 uses a mixture distribution to generate censoring time, while in Example 4,
a linear dependence of C on the covariates is used. Two different censoring rates are examined
for Examples 1, 2 and 4.

It is not difficult to see that the initial estimate β(0) is also
√

n-consistent. However, we observe
empirically that it is less efficient than the final estimate after iteration. For example, in Example 2
when n = 100, a = 2 and censoring rate is 40%, the RMSEs of β(0) are 0.438 and 0.697 when
censoring rate is 40%, and 0.246 and 0.450 when about 15% of the data are censored. A related
comparison was made in Yin, Zeng and Li [24]. The results for the other methods are summarized
in Tables 1 and 2 when τ = 0.5 and n = 100. The results for τ = 0.7 or n = 200 are qualitatively
similar and thus are omitted. We have the following observations. First, CQR outperforms YJW
in general, especially when the unconditional independence is violated. Second, when the global
linearity holds, Port and PH generally outperform CQR and Lcrq, although by a small margin.
When the global linearity is mildly violated, PH and Port both perform competitively with CQR
and Lcrq. This demonstrates the robustness of PH and Port. However, when this assumption is
severely violated, CQR and Lcrq perform better in general, especially in terms of RMSE. How-
ever, how much improvement can be expected is likely dependent on a number of factors, such
as the censoring mechanism and rates. Third, CQR and Lcrq have similar performance across
all the simulations. The difference between these two approaches is usually negligible. Fourth,
when the censoring is low (15%), CQR performs competitively compared to Lcrq, indicating its
robustness with respect to the required sample size for estimating the local Kaplan–Meier curve.
We conclude that when the global linearity is violated, and C is not unconditionally independent
of T , the proposed method is preferred over YJW, Port and PH.

We assess the performance of the bootstrap inference procedure by comparing it to the boot-
strap percentile inference procedure developed in Wang and Wang [22]. For brevity, we only
report the result for Example 2 when a = 2, and the censoring rate is 40%, and for Example 3.
We record the empirical coverage probability (ECP) and the empirical mean length (EML) of the
resulting confidence intervals in Table 3. The nominal level used is 0.95. For these two exam-
ples, both CQR and Lcrq give coverage probabilities close to the nominal level with comparable
average empirical lengths.

Since CQR relies on the local Kaplan–Meier estimate, it is of great interest to see how it
performs when Z is multi-dimensional. To this end, we use the same model in Example 1, but add
independent standard uniform covariates z(2), . . . , z(d) to z. Thus, the coefficients associated with
these additional covariates are zero. We use bandwidth 0.05, 0.1, 0.2, 0.3, 0.4, respectively, when
d = 1,2, . . . ,5. In Table 4, we see that with n = 200, CQR seems to give unbiased estimates
when d = 1,2 and 3 with low censoring 15%. However, it can only be applied up to d = 2 if
censoring rate is as high as 40%.

5. Data analysis

As an example, we apply the proposed method to the Colorado Plateau uranium miners cohort
data (Lubin et al. [14], Langholz and Goldstein [12]). The major interest of this study is to
assess the effect of smoking on the rate of median lung cancer. This data set consists of 3347
Caucasian male miners who worked underground for at least one month in the uranium mines of
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Table 1. Simulation results for Examples 1 and 2

Bias MAE RMSE

Ex. c% a β0 β1 β0 β1 β0 β1

1 40% YJW 0.010 −0.015 0.228 0.431 0.341 0.644
CQR −0.007 −0.092 0.211 0.392 0.305 0.583
Lcqr −0.009 −0.018 0.196 0.375 0.299 0.554
Port −0.042 −0.003 0.198 0.381 0.299 0.548
PH 0.019 0.005 0.203 0.380 0.299 0.558

15% YJW −0.016 0.023 0.191 0.330 0.293 0.508
CQR −0.012 −0.012 0.186 0.317 0.280 0.481
Lcqr −0.013 0.005 0.186 0.311 0.281 0.485
Port −0.059 0.007 0.179 0.298 0.279 0.469
PH 0.001 0.007 0.186 0.305 0.277 0.477

2 40% 2 YJW 0.007 −0.009 0.159 0.326 0.249 0.537
CQR −0.060 −0.030 0.139 0.267 0.211 0.393
Lcqr −0.053 0.008 0.144 0.272 0.215 0.406
Port −0.021 −0.010 0.164 0.308 0.224 0.443
PH 0.058 −0.119 0.166 0.304 0.235 0.460

0.5 YJW −0.001 0.012 0.058 0.125 0.089 0.188
CQR −0.044 −0.016 0.064 0.106 0.095 0.154
Lcqr −0.021 0.009 0.058 0.106 0.088 0.164
Port −0.020 0.012 0.058 0.109 0.089 0.168
PH 0.013 −0.014 0.057 0.106 0.087 0.169

0 YJW 0.003 0.008 0.022 0.025 0.033 0.040
CQR −0.022 −0.012 0.028 0.024 0.041 0.037
Lcqr −0.004 −0.002 0.021 0.022 0.031 0.034
Port −0.010 0.001 0.021 0.021 0.032 0.033
PH 0.003 0.001 0.021 0.021 0.031 0.033

15% 2 YJW −0.006 0.012 0.146 0.292 0.212 0.425
CQR −0.024 −0.004 0.134 0.267 0.202 0.393
Lcqr −0.023 0.013 0.138 0.271 0.202 0.396
Port −0.051 0.039 0.141 0.277 0.214 0.410
PH 0.021 −0.038 0.143 0.288 0.208 0.406

0.5 YJW 0.001 0.000 0.055 0.100 0.082 0.150
CQR −0.011 −0.008 0.055 0.092 0.082 0.141
Lcqr −0.005 0.000 0.052 0.092 0.081 0.144
Port −0.025 0.014 0.056 0.091 0.085 0.144
PH 0.008 −0.008 0.054 0.094 0.081 0.144

0 YJW 0.001 0.003 0.018 0.019 0.027 0.029
CQR −0.007 −0.003 0.020 0.019 0.028 0.028
Lcqr −0.001 −0.000 0.019 0.018 0.027 0.027
Port −0.011 −0.000 0.020 0.018 0.029 0.027
PH 0.001 0.000 0.018 0.018 0.026 0.027
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Table 2. Simulation results for Examples 3 and 4

Bias MAE RMSE

Ex. c% a β0 β1 β0 β1 β0 β1

3 30% YJW 0.035 0.544 0.124 0.482 0.206 0.810
CQR 0.005 −0.023 0.115 0.223 0.164 0.325
Lcrq 0.011 0.005 0.109 0.234 0.164 0.333
Port 0.020 0.017 0.124 0.257 0.190 0.367
PH 0.088 −0.058 0.128 0.261 0.229 0.388

4 30% 1 YJW −0.115 0.421 0.121 0.411 0.159 0.473
CQR −0.077 0.081 0.095 0.137 0.137 0.217
Lcqr −0.080 0.083 0.095 0.138 0.139 0.218
Port −0.029 0.024 0.086 0.140 0.131 0.226
PH 0.017 −0.020 0.085 0.148 0.130 0.222

0.5 YJW −0.063 0.227 0.0944 0.228 0.137 0.331
CQR −0.055 −0.011 0.090 0.155 0.131 0.217
Lcqr −0.051 −0.010 0.090 0.153 0.129 0.222
Port −0.018 −0.022 0.093 0.178 0.136 0.251
PH 0.035 −0.089 0.090 0.189 0.141 0.267

0 YJW 0.000 −0.020 0.096 0.207 0.143 0.311
CQR −0.042 −0.081 0.088 0.191 0.127 0.264
Lcqr −0.040 −0.056 0.086 0.199 0.129 0.279
Port −0.020 −0.037 0.088 0.207 0.135 0.306
PH 0.030 −0.111 0.092 0.234 0.135 0.319

15% 1 YJW −0.020 0.226 0.079 0.226 0.117 0.323
CQR −0.014 0.023 0.078 0.148 0.114 0.215
Lcqr −0.015 0.021 0.076 0.146 0.114 0.213
Port −0.038 0.029 0.084 0.155 0.125 0.227
PH 0.007 −0.007 0.078 0.152 0.118 0.223

0.5 YJW −0.017 0.157 0.081 0.187 0.123 0.290
CQR −0.004 −0.015 0.078 0.141 0.119 0.218
Lcqr −0.002 −0.021 0.077 0.144 0.119 0.216
Port −0.034 0.008 0.088 0.145 0.130 0.225
PH 0.014 −0.036 0.081 0.143 0.124 0.226

0 YJW 0.000 −0.001 0.083 0.167 0.123 0.260
CQR −0.000 −0.052 0.080 0.156 0.119 0.235
Lcqr 0.000 −0.058 0.079 0.160 0.119 0.237
Port −0.031 −0.021 0.085 0.157 0.126 0.237
PH 0.017 −0.077 0.079 0.166 0.123 0.248

the Colorado Plateau area. In total, there are 258 miners who died of lung cancer. Apart from the
failure time, information of the age, the cumulative radon exposure and cumulative smoking in
number of packs is available. In our study, we randomly choose 258 miners who are censored and
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Table 3. Performance of the inference procedure. For Example 2, only the result for a = 2 and 40% cen-
soring is presented

CQR Lcrq

ECP EML ECP EML

Ex. n τ β0 β1 β0 β1 β0 β1 β0 β1

2 100 0.5 0.948 0.930 0.800 1.541 0.938 0.950 0.806 1.564
0.7 0.938 0.944 0.862 1.678 0.956 0.954 0.883 1.740

200 0.5 0.928 0.934 0.533 1.031 0.946 0.938 0.586 1.147
0.7 0.930 0.932 0.567 1.102 0.934 0.948 0.596 1.174

3 100 0.5 0.910 0.930 0.612 1.195 0.942 0.924 0.596 1.196
0.7 0.916 0.928 1.037 2.086 0.928 0.936 0.956 1.966

200 0.5 0.916 0.916 0.423 0.839 0.954 0.950 0.424 0.872
0.7 0.934 0.928 0.772 1.490 0.946 0.944 0.715 1.445

Table 4. Multi-dimensional covariates when n = 200. The standard errors (SE) are reported in parentheses.
Note that the SEs of MAE and RMSE are computed via bootstrapping 1000 replications

Bias MAE RMSE

d c% β0 β1 β0 β1 β0 β1

1 40% −0.010 −0.034 0.152 0.277 0.220 0.413
(0.220) (0.412) (0.006) (0.009) (0.005) (0.009)

15% 0.001 −0.010 0.127 0.227 0.191 0.342
(0.191) (0.342) (0.006) (0.010) (0.005) (0.008)

2 40% −0.070 −0.260 0.199 0.338 0.294 0.493
(0.286) (0.419) (0.009) (0.012) (0.007) (0.010)

15% −0.027 −0.063 0.177 0.245 0.258 0.350
(0.256) (0.344) (0.006) (0.007) (0.006) (0.008)

3 40% −0.100 −0.339 0.247 0.378 0.369 0.535
(0.355) (0.414) (0.009) (0.010) (0.008) (0.011)

15% −0.032 −0.096 0.211 0.236 0.315 0.353
(0.314) (0.341) (0.008) (0.007) (0.007) (0.007)

4 40% −0.087 −0.414 0.285 0.452 0.438 0.602
(0.430) (0.438) (0.011) (0.016) (0.011) (0.013)

15% −0.029 −0.130 0.238 0.229 0.355 0.359
(0.354) (0.334) (0.011) (0.009) (0.007) (0.010)

5 40% −0.089 −0.441 0.364 0.465 0.493 0.616
(0.485) (0.430) (0.013) (0.019) (0.011) (0.014)

15% −0.048 −0.125 0.254 0.245 0.387 0.367
(0.384) (0.345) (0.009) (0.009) (0.008) (0.009)
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all the miners who experience the lung cancer. We use this scheme to yield a median censoring
scenario, suggested by the simulation studies. This data analysis means to illustrate the difference
between different approaches. The scatter plots of the log survival time are presented at the top
row of Figure 1. Let Z1 be the logarithm of the cumulative radon exposure in 100 working
level months, Z2 be the cumulative smoking in 1000 packs and Z3 be the age at entry to the
study. To explore the dependence of the log survival time against these covariates, we fit three
separate marginal models using polynomial B-splines to approximate the effects of radon, age
and smoking, respectively. In Figure 1, we plot the estimated log survival time against the three
covariates at quantiles τ = 0.01,0.05,0.1,0.3,0.5. Strong non-linearity is present, especially for
lower quantiles. When τ = 0.5, the log survival time is approximately linear. These facts suggest
that the global linearity assumption may not hold. To further examine whether unconditional
independence of the survival time and censoring time is appropriate, we fit the Cox model to
the censoring time with respect to the covariates. The two covariates radon and age are both
found significant from zero with p-values less than 10−3. This indicates that the unconditional
independent assumption needed for YJW may be inappropriate for this data. Graphically, the
dependence of the censoring time on the covariates can be seen from Figure 1, where Kaplan–
Meier estimates of the survival functions, dichotomized by the median of these covariates, are
plotted. From the figure, an observation is more likely to be censored at an earlier time if radon
is high, age is young or the subject smoked less. Formal log-rank tests by dichotomizing the
covariates also indicate that radon (p-value < 10−3) and smoking (p-value 0.03) are highly
correlated with the censoring time, while age (p-value 0.08) is not significant. Note that these
log-rank tests only investigate these covariates marginally.

Since we have three continuous covariates, we use the three-dimensional kernel after stan-
dardizing the covariates, which is the product of three bi-quadratic kernels for radon, smoking
and age. We investigate the median log survival time on the three covariates. For Lcrq and CQR,
we use the same bandwidth for the three univariate kernels and apply 10-fold cross validation
to choose the optimal bandwidth. The results are summarized in Table 5. It is seen that Ying
et al. estimate age as the only significant variable, while CQR and Lcrq both estimate age and
radon as significant variables. The result of Ying et al.’s approach in this example is problematic
due to the dependence of the censoring time on the covariates. The 95% confidence intervals are
obtained by using the bootstrap percentile approach (Wang and Wang [22]) using 1000 bootstrap
repetitions. The fact that we only use a random sample for the censored data suggests that the
results, especially the numerical ones, should be interpreted with certain caution.

6. Conclusion

We have proposed a novel extension of Ying, Jung and Wei’s median regression to quantile re-
gression. Our model is more flexible in that only conditional independence of the survival time
and censoring time are assumed. Moreover, we have proposed a new and fast fitting algorithm,
applicable to Ying et al.’s median regression model, making use of the efficient quantile re-
gression code developed by Koenker. Therefore, resampling based inference procedure can be
efficiently implemented. We have compared our estimator to the approaches developed in Port-
noy [17], Peng and Huang [16] and Wang and Wang [22]. The simulation results show that the
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Figure 1. Colorado miners cohort data. Top row: The scatter plots of the log survival time versus the covariates. The marginally fitted log survival
times against each covariate at quantiles 0.01, 0.05, 0.1, 0.3, 0.5 (the solid lines from the bottom to the top) are also plotted. Bottom row: The fitted
Kaplan–Meier survival curves for the censoring time when covariates are dichotomized.
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Table 5. The fitted coefficients of the censored quantile regression at the median and the 95% confidence
intervals for the Colorado Plateau uranium miners cohort data

CQR YJW Lcrq

Radon (×10−2) −13.05(−28.85,−9.84) −2.95(−12.4,3.23) −25.60(−34.45,−13.55)

Smoking (×10−3) −0.38(−3.73,3.30) 0.04(−5.19,3.58) 0.65(−4.91,2.86)

Age −1.60(−2.27,−1.28) −2.01(−2.61,−1.44) −2.12(−2.76,−1.39)

new method is useful and may have certain advantages over the other methods, especially when
the global linearity is violated or the unconditional independence of C and T does not hold.

Identifiability remains a serious issue in censored quantile regression, particularly so when τ

is close to 1 or 0 (Peng and Huang [16], Wang and Wang [22]). In practice, we recommend
to choose τ in the inference range of interest. Another limitation of the current method is the
requirement of estimating G0(·|Z), which inevitably suffers from the curse of dimensionality
if Z is multi-dimensional. In this case, it may be more attractive to handle G0(·|Z) by using, for
example, the Cox model or the single-index model. This line of research merits further investi-
gation. Furthermore, the Kaplan–Meier estimates, even for a global one, may be unstable at the
right tails. The technique in Zhou [27] may be used to improve the stability of these estimates.

Appendix

For convenience, we write ‖β‖ as the Euclidean norm of a finite dimensional vector β and
‖G(·)‖∞ as the supreme of the absolute value of a function G(·). First, we cite Theorem 2.1 in
Gonzalez and Cadarso [4].

Lemma A.1. Assume that conditions C4–C6 hold, then

‖Ĝ − G0‖∞ = sup
t

sup
z

∣∣Ĝ(t |z) − G0(t |z)
∣∣ = Op

(
(logn)1/2n−1/2+v/2 + n−2v

)
.

A.1. Proof of Theorem 1

Let M̃n(β) = ∑n
i=1(τ − F0(Z

′
iβ|Zi))Zi. It follows from the similar arguments as in Ying et

al. [25] and Lemma A.1 that

sup
β∈B

n−1|Mn(β) − M̃n(β)| = o(1) a.s. (A.1)

From assumption C7, An(β) = 1
n

∂M̃n(β)
∂β

= − 1
n

∑n
i=1 ZiZ

′
if0(Z

′
iβ|Zi) is negative definite

with probability one for β in a small neighborhood of β0. In addition, M̃n(β0) = 0. Therefore,
n−1M̃n(β) is bounded away from zero. This argument, together with (A.1), yields that β̂n → β0
in probability as n → ∞.
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A.2. Proof of Theorem 2

To prove Theorem 2, we exploit Theorem 2 in Chen et al. [2] by verifying their conditions (2.1)–
(2.4), (2.5′) and (2.6′). For convenience, write Mn(β,G) = 1

n

∑n
i=1 mi(β,G), where mi(β,G) =

Zi{ I (Yi≥Z′
iβ)

G(Z′
iβ|Zi)

− (1 − τ)} and the function class G that involves the true G0 as the set of G, such

that G has a density function g, infz∈Z G(T |z) ≥ η0 and g(·|z) is bounded away from infinity

uniformly in t and z ∈ Z . Then M(β,G) = Emi(β,G) = EZi{ (1−F0(Z
′
iβ|Zi))G0(Z

′
iβ|Zi)

G(Z′
iβ|Zi)

− (1 −
τ)}, where the expectation operator is taken with respect to the marginal distribution function of
Zi and thus M(β0,G0) = 0.

Lemma A.2. For any positive value ξn = o(1), we have that

sup
‖β−β0‖≤ξn,‖G−G0‖∞≤ξn

‖Mn(β,G) − M(β,G) − Mn(β0,G0)‖ = op(n−1/2).

Proof. Let η1 = supz∈Z ‖z‖2 ∨ 1 and η2 = supG∈G,z∈Z ,t≤T (f0(t |z) + g(t |z)) < ∞ from as-
sumption C4. For any (β,G) ∈ B × G and (β∗,G∗) ∈ B × G , we have that ‖m(β,G) −
m(β∗,G∗)‖2 ≤ 2(U1 + U2 + U3) where

U1 = ∥∥ZG(Z′β|Z)−1(I (Y ≥ Z′β) − I (Y ≥ Z′β∗)
)∥∥2

≤ η3|I (Y ≥ Z′β) − I (Y ≥ Z′β∗)|,
(A.2)

U2 = ∥∥ZI (Y ≥ Z′β∗)
(
G(Z′β|Z)−1 − G∗(Z′β|Z)−1)∥∥2 ≤ η4‖G − G∗‖2∞,

U3 = ∥∥ZI (Y ≥ Z′β∗)
(
G∗(Z′β|Z)−1 − G∗(Z′β∗|Z)−1)∥∥2 ≤ η5‖β − β∗‖2,

where η3, η4, η5 are some positive constants, only depending on ηk (k = 0,1,2). It follows
from (A.2) that E(sup‖β−β∗‖≤ξn

U1) ≤ η1η2η3ξn and that

sup
‖β−β0‖≤ξn,‖G−G0‖∞≤ξn

‖M(β,G) − M(β∗,G∗)‖2 ≤ η6ξn (A.3)

for some constant η6 ≥ 0 as n is sufficiently large.
Therefore, condition (3.2) of Chen et al. [2] holds with r = 2 and sj = 1/2. Similarly to

the arguments used in (A.2), condition (3.1) in Chen et al. [2] can be also verified. Now we
verify their condition (3.3). Let N(η, G,‖ · ‖∞) be the covering numbers (van der Vaart and
Wellner [21], page 83) for the function class G under the metrics ‖ · ‖∞. An application of
Theorem 2.7.1 in van der Vaart and Wellner [21] from assumptions C4 and C2 gives that the
logarithm of the covering number of G is bounded by Kη−1/2 for η ≤ 1, where K is some
constant, not depending on n. When η ≥ 1, it follows from the definition of covering numbers
that logN(η, G,‖ · ‖∞) = 0, which yields that∫ ∞

0
{logN(η2, G,‖ · ‖∞)}1/2 dη ≤

∫ 1

0
K1/2η−1/2 dη < ∞.
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It then follows easily from Theorem 3 of Chen et al. [2] that Lemma A.2 holds. �

To apply Theorem 2 in Chen et al. [2], we define 	1(β0,G0) as the first derivative function
of M(β,G0) with respect to β evaluated at β = β0. For all β ∈ B, we define the functional
derivative of M(β,G) at G0 in the direction [G − G0] as

	2(β,G0)[G − G0] = lim
η→0

1

η

[
M

(
β,G0 + η(G − G0)

) − M(β,G0)
]
.

Lemma A.3. Assume that the conditions in Theorem 2 hold, then

n1/2(Mn(β0,G0) + 	2(β0,G0)[Ĝ − G0]
) d→ N(0,V ),

where V = cov(Vi) with Vi = mi(β0,G0) − (1 − τ)ZifZ(Zi)ψ(Yi, δi ,Z
′
iβ0,Zi), and

ψ(Yi, δi, t, z) =
∫ Yi∧t

0

−g0(s|z)ds

{G0(s|z)}2{1 − F0(s|z)} + (1 − δi)I (Yi ≤ t)

G0(Yi |z){1 − F0(Yi |z)} .

Proof. By the definition of 	2, a direct calculation gives that

	2(β0,G0)[G − G0] = −(1 − τ)EZ{G(Z′β0|Z) − G0(Z
′β0|Z)}/G0(Z

′β0|Z). (A.4)

From Theorem 2.3 of Gonzalez-Manteiga and Cadarso-Suarez [4] and the proof of Theorem 2
in Wang and Wang [22], using assumptions C3–C7, we have that

Ĝ(t |z) − G0(t |z) = 1

nhn

n∑
i=1

K

(
z − Zi

hn

)
G0(t |z)ψ(Yi, δi , t, z)

(A.5)

+ Op

((
logn

nhn

)3/4

+ h2
n

)
.

Plugging (A.5) into (A.4), using standard change of variables and Taylor expansion argu-
ments, we obtain that 	2(β0,G0)[Ĝ − G0] = −(1 − τ) 1

n

∑n
i=1 ZifZ(Zi)ψ(Yi, δi ,Z

′
iβ0,Zi) +

op(n−1/2). Therefore, we have n1/2(Mn(β0,G0) + 	2(β0,G0)[Ĝ − G0]) = n−1/2 ∑n
i=1 Vi +

op(1). An application of the central limit theorem gives that

n1/2(Mn(β0,G0) + 	2(β0,G0)[Ĝ − G0]
) d→ N(0,V ).

This proves the lemma. �

Proof of Theorem 2. We verify the conditions in Theorem 2 in Chen et al. [2]. Their condi-
tion (2.1) can be easily verified by the subgradient condition of quantile regression (Koenker [8]).
Their conditions (2.4), (2.5′) and (2.6) follow directly from Lemma A.1, A.2 and A.3, respec-
tively. From the definition of 	1, we obtain that

	1 = 	1(β0,G0) = ∂M(β,G0)

∂β

∣∣∣∣
β=β0

= −EZZ′f0(Z
′β0|Z),
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which is negative definite by assumption C7. Thus condition (2.2) in Chen et al. [2] holds. By the
routine Taylor expansion, we can verify condition (2.3) in Chen et al. [2]. Therefore, we obtain

that n1/2(β̂n − β0)
d→ N(0,	1(β0,G0)

−1V 	1(β0,G0)
−1). The proof is complete. �
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