
1

A Quantitative Analysis of High Performance Computing with Amazon’s

EC2 Infrastructure: The Death of the Local Cluster?

Zach Hill* and Marty Humphrey**
Department of Computer Science, University of Virginia, Charlottesville, VA 22904

 * zach.hill@email.virginia.edu

** humphrey@cs.virginia.edu

Abstract

The introduction of affordable infrastructure on

demand, specifically Amazon’s Elastic Compute Cloud

(EC2), has had a significant impact in the business IT

community and provides reasonable and attractive

alternatives to locally-owned infrastructure. For

scientific computation however, the viability of EC2

has come into question due to its use of virtualization

and network shaping and the performance impacts of

both. Several works have shown that EC2 cannot

compete with a dedicated HPC cluster utilizing high-

performance interconnects, but how does EC2

compare with smaller departmental and lab-sized

commodity clusters that are often the primary

computational resource for scientists? To answer that

question, MPI and memory bandwidth benchmarks are

executed on EC2 clusters with each of the 64-bit

instance types to compare the performance of a 16

node cluster of each to a dedicated locally-owned

commodity cluster based on Gigabit Ethernet. The

analysis of results shows that while EC2 does

experience reduced performance, it is still viable for

smaller-scale applications.

1. Introduction
 The introduction of virtualized remote on-demand
computing resources, Amazon’s Elastic Compute
Cloud (EC2) in particular, at reasonable prices has
made many people question how computing should be
delivered in the future. Will it be cheaper to simply
lease time on remote resources rather than purchasing
and maintaining your own? The emerging
infrastructure-provider segment has been generally
focused on business users and hosting web applications
and services, but some researchers have begun to look
at the cloud as a viable solution for scientific
computing as well [1][2][7][8][10][11].
 Utilizing cloud services for scientific computing
opens up a new capability for many scientists: on-
demand clusters with no queuing front-end and a

nearly-zero cost of entry. This allows scientists to
satisfy their high-performance computing needs
without resorting to entering their job in a queue with
an hour or day long wait and the debugging headaches
associated with queue-based systems. While this is
certainly an exciting prospect, it must be recognized
that cloud resources are not equivalent in processing
power and network capability to custom-built high-
performance systems such as the large clusters at the
nation’s supercomputing centers. For example, Walker
has shown that EC2 simply cannot compete in terms of
raw network performance with a dedicated high-
performance cluster at NCSA called abe[2].
 But, to date, there is an open issue that centers on the
thousands of researchers who currently rely on their
own small clusters: How does EC2’s performance

compare against their existing (smaller, less cutting-

edge, and much less expensive) cluster? These
scientists typically do not use national-scale
supercomputers for a number of reasons, most notably
potentially idiosyncratic operating environments (e.g.,
installed libraries), security issues, an unfamiliar
queuing system, a generally daunting list of queued
jobs, and a general belief that these shared clusters
exist for “large jobs only”. Even those scientist that use
national-scale supercomputers for “production jobs”
tend to do primary development, testing, and
debugging on smaller clusters before switching to these
shared supercomputers. EC2 resources are particularly
attractive for this purpose because of the pay-as-you-go
model and complete flexibility in the software stack.
Thus, the question remains: Ignoring the potential
benefits of not having to run, upgrade, and generally
maintain a local cluster, does EC2 provide good
enough performance to compete with local clusters
owned by individual researchers? It is arguably
“intuitive” to believe that EC2 does not, given its well-
known use of virtualization and network shaping, but it

this actually true? The answer to this question could
have profound impact on the broad research
community.

Preliminary version. Final version appears In Proceedings of the 10
th
 IEEE/ ACM

International Conference on Grid Computing (Grid 2009). Oct 13-15 2009. Banff,
Alberta, Canada.

2

 To answer these questions we have quantitatively
evaluated EC2’s performance for the most common
type of scientific application: the MPI program. We
have run benchmarks of the memory systems and
networks to compare Amazon’s performance to that of
representative local departmental clusters. The
purpose of the benchmarks is to evaluate EC2’s
specific performance capabilities relevant to a
commodity cluster. Our results show that EC2
competes surprisingly well with a commodity, Gigabit
Ethernet-based, cluster in terms of memory
performance and MPI performance. While we agree
that the network performance of EC2 is not equivalent
to that of a high-performance dedicated cluster with
Myrinet or Infiniband interconnects, in terms of latency
in particular, it does provide enough performance to be
useful to a large class of scientific users which use the
small to mid-sized departmental and lab commodity
clusters often found in academia.
 The rest of this paper will be organized as follows:
the Related Work section will discuss other evaluations
of the performance of EC2 and virtualized
environments in general; the Evaluation Setup section
will describe how the EC2 cluster was setup and
configured as well as the configuration of the
commodity clusters used as baselines; the Evaluation
section will present our results from the various
performance benchmarks; the Discussion section will
address some observations made during this work as
wells problems encountered and possible future work;
finally, we give our conclusions on using EC2 clusters
for MPI-based HPC computation.

2. Related Work
 Edward Walker’s work [2] examines the feasibility
of using EC2 for HPC, but compares it to high-end
compute clusters at NCSA. This comparison pits EC2
against high-end clusters utilizing Infiniband
interconnects. His work focuses on network latency
and bandwidth in particular and unsurprisingly finds
that the NCSA cluster has network latency that is more
than an order of magnitude lower than that seen at EC2.
We are focusing our evaluation on comparing EC2-
based clusters to commodity clusters utilizing Gigabit
Ethernet interconnects as would more likely be found
in departmental and research-lab sized systems.
 C. Evangelinos and C. Hill performed an evaluation
of running couple ocean-atmosphere simulations on
EC2 [1]. Their work focuses on 32-bit applications
and as such they only examine two out of the five EC2
instance types. We have focused primarily on 64-bit
platforms as this used for the majority of scientific
computing. We also compare the performance of the

various EC2 instance types against each other to get a
larger picture of EC2’s offerings.
 Others have evaluated EC2 and its associated blob-
storage, the Simple Storage Service (S3) [7], for
applicability in data intensive eScience workloads
[8][9]. We do not consider the I/O component in our
evaluation and instead focus on CPU and network
bound workloads based on message passing. We also
do not primarily consider the question of cost-
effectiveness of cloud-based clusters over locally-
owned clusters. While we do feel that a performance-
per-dollar comparison is valuable when deciding how
to implement infrastructure, we leave that for future
work as it can be very application specific.
 General evaluations of the performance of virtualized
systems such as Xen[10] have been studied extensively
and Xen has been shown to impose negligible
overheads in both micro an macro benchmarks
[11][12]. However, these were evaluations of Xen
itself in a controlled cluster environment whereas we
are evaluating Amazon’s specific implementation and
customizations of Xen and their overall product
offering including networking. Amazon’s multiplexing
of physical resources and networks introduces sources
of performance limiters not found in these previous
works.

3. Evaluation Setup
 Our experimental setup included clusters composed
of each EC2 64-bit instance type as well as our local
32-bit cluster. For creating and managing our EC2
clusters we utilized an existing project which provided
Python scripts to handle most operations. We describe
that project and the specifics of the EC2 instance types
below. We also describe the configuration of our local
resources that we used to compare the EC2 results
against.

3.1. EC2 Overview
 Amazon’s EC2 service has become the standard-
bearer for Infrastructure-as-a-Service (IaaS) providers.
It is the most popular and provides many different
service levels. Machine instances are available in the
following configurations:

Instance
Type

CPU Mem
(GB)

Disk
(GB)

I/O
Perf.

Cost
/Inst-
hr.**

M1.Small
32bit,1 core

1*
ECU

1.7 160 Mod
.

$0.10

M1.Large
64bit,2 cores

2*
ECU

7.5 850 High $0.40

M1.XLarge
64bit,4 cores

2*
ECU

15 1690 High $0.80

3

C1.Medium
32bit,2 cores

2.5*
ECU

1.7 350 Mod
.

$0.20

C1.XLarge
64bit,8 cores

2.5*
ECU

7 1690 High $0.80

Table 1. Amazon EC2 Instance Types
*1 ECU (EC2 Compute Unit) is equivalent to 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor capacity [6]. **
Indicates Linux pricing only, Windows Server prices are
higher.

 Amazon utilizes a customized version of Xen to host
the AMIs. Instance operating systems available are:
Windows Server 2003, Red Hat Linux, Fedora Core,
openSUSE, Gentoo, Oracle Enterprise Linux, Ubuntu,
and Debian Linux. While each instance has storage
associated with it, the local instance storage is not
persistent across instance termination, so other
solutions, such as Amazons Simple Storage Service
(S3) or Elastic Block Store (EBS) are required.
However, for this work we did not to utilize either of
those services since we are only evaluating the network
and processing capabilities of EC2 rather than the
storage capabilities.
 In terms of service agreement terms, EC2’s service
agreement states an availability level of 99.95% and
Amazon will credit your account if it falls below that
during a 365 day period. They also claim an internal
network bandwidth of 250 Mbps regardless of instance
type, although this is not included in the official
instance type specification.
 After working to build our own Amazon Machine
Images (AMIs) we found a project called ElasticWulf
[3], which in addition to providing a pair of AMIs that
have multiple MPI libraries (MPICH2, LAM, and
OpenMPI) and OpenMP already installed, also
included scripts to start, stop, and monitor a cluster of
EC2 machines. ElasticWulf requires only the
installation of the Amazon command line tools and API
libraries. It includes the basics to get a cluster up and
running that has a shared NFS directory as well as the
MPI runtime, various Python MPI libraries and tools,
and Ganglia for monitoring the cluster via the web.
The specific AMI’s that it uses are based on Fedora
Core 6 and are 64-bit. The AMI numbers are: ami-
e813f681 and ami-eb13f682 for the master node and
the worker nodes respectively. ElasticWulf also works
with any AMI, not just the supplied ones. There are
also alternative 32-bit images provided although they
do not include the NFS share and Ganglia. Our
specific configuration was using MPICH2, mpicc
version 1.0.6 specifically, on top of Fedora Core 6 and
using gcc 4.1.2. for the x86_64 architecture.
 For our MPI tests we constructed a cluster of each of
the instance types which are 64-bit. We feel that while

the 32-bit instances may be more cost-effective 64-bit
is the standard for scientific computations as well as
providing substantially more memory, which is often a
large performance enhancer for CPU-bound
applications. For the memory bandwidth tests we
utilized a single node of each instance type.

3.2. Local Resources
 To give context and a baseline to the EC2
performance numbers we ran the same benchmarks on
our locally owned cluster. The Sunfire cluster is
composed of nodes with 32-bit Intel Xeon processors
has the following specifications: 2 Physical CPUs Intel
Xeon 2.80Ghz with HyperThreading (CPU Family 15,
model 2, stepping 7); 512KB L2 cache, 3GB RAM
SDRAM, 400Mhz FSB, and Gigabit Ethernet NIC.
The mpicc version was 1.0.8p1 and gcc was version
4.2.4. The platform was x86 32-bit and the MPI
library used was OpenMPI 1.3 [15].
 The other locally-owned resource we use for
comparison is Camillus. Camillus is a 64-bit dual-CPU
Intel Xeon E5345 Quad-Core machine (8 cores total)
with a 1333 Mhz FSB, 16GB DDR2 RAM, and a
Gigabit Ethernet NIC. We use this machine for
comparison in the memory-bandwidth benchmarks
since it represents current CPU designs better than the
Sunfire cluster nodes do.

4. Evaluation
 To evaluate the performance of EC2 clusters against
that of a small commodity cluster we created clusters of
each EC2 instance type and benchmarked their
performance using the STREAM memory bandwidth
benchmark and then Intel’s MPI Benchmark version
3.2[14]. We did not utilize a CPU ALU-op
performance benchmark because Xen’s CPU
performance has been studied extensively and in
scientific applications which require a cluster the
performance limiter is usually the interconnect or the
memory bandwidth on each node since CPU
performance has increase much more rapidly than
either network or memory performance.

4.1. Memory Bandwidth
 Many scientific applications involve operations on
large amounts of data stored in memory. Thus, it is
important to evaluate the memory-bandwidth of the
EC2 instance types in order to see how they compare to
non-virtualized resources. In this case we did not
directly compare an EC2 instance’s performance to the
performance of the same CPU in a non-virtualized
environment. Others have examined the performance
overhead of virtualization [11][12] on performance,

4

and part of the abstraction of EC2’s “Cloud” paradigm
is that the underlying resources can change arbitrarily,
so no single processor can be designated as the EC2
standard.
 The results of running STREAM with array length of
10 million integers follow:

Machine Spec 1 Thread Bandwidth in GB/s

Copy Scale Add Triad

M1.Large 2.058 1.777 1.868 1.725

M1.XLarge 2.551 2.394 2.434 2.178

C1.Medium 2.865 2.852 3.114 3.097

C1.XLarge 2.849 2.840 3.126 3.120

Camillus 2.834 2.830 3.171 3.160

Sunfire 1.341 1.325 1.663 1.662

Table 2. Single Thread CPU Memory Bandwidth

 The performance of the EC2 nodes is similar to
Camillus, which is the most modern processor of the
locally-owned machines. We see a definite advantage
in the newer DDR and DDR2 memory architectures
found and higher front-side bus clock-rates in the EC2
nodes as opposed to the older non-DDR systems of the
Sunfire cluster and its 400Mhz FSB.

Machine
Spec

N Threads Bandwidth in GB/s N

Copy Scale Add Triad

M1.Large 3.244 3.186 3.564 3.508 2

M1.XLarge 3.748 3.936 3.717 3.714 4

C1.Medium 4.241 4.494 4.840 4.796 2

C1.XLarge 4.807 4.788 5.149 5.161 8

Camillus 4.653 4.661 4.895 5.007 8

Sunfire 1.441 1.458 1.626 1.622 2*

Table 3. N threads (cores) CPU Memory

Bandwidth. *Sunfire is a Xeon processor with

HyperThreading not 2 physical cores. These results

are only for comparison.

It is worth noting here that I am running 64-bit
programs, not 32-bit as Evangelinos and Hill did.
Thus, there are some discrepancies in the bandwidth
numbers.
 However, we see that the EC2 nodes perform as well
or better than both the Centurion and Generals nodes in
most of the tests. It is no surprise that they outperform
the Centurion nodes due to their newer memory
(DDR2), but they also hold their own against Camillus,
which is a relatively new machine itself. This shows
that we can expect reasonable to good memory

bandwidth performance even thought the machines are
virtualized.

4.2. Intel MPI Benchmarks v3.2
 The most useful measure of the performance of a
cluster is how well it performs on the specific code that
it is being used for. Since a large proportion of
scientific applications utilize MPI for inter-process
communication, we have tested the various EC2
instance types using the Intel MPI Benchmarks (IMB)
version 3.2[14]. We present here the results for the
IMB-MPI1 suite of benchmarks which evaluate the
MPI v1 specification. We believe that the common
operations in most applications are covered in this suite
and that the extensions provided in the MPI 2
specification while useful, would not paint a
significantly different picture of the relative
performance of EC2 instances compared to our local
cluster. Thus, we have omitted those results for both
brevity and clarity.
 Each of the benchmarks presented here measures the
average latency for messages passed of a given size.
Each data point is an average of multiple runs (1000
for the smaller data points up to 32K and 10 for the 4
MB messages). These averages are reported by the
IMB code itself. We do not present the minimums and
maximums for sake of clarity.
 There are three classes of benchmark: Single
Transfer, Parallel Transfer, and Collective. The
PingPong and PingPing benchmarks (Figures 1 - 4)
compose the Single Transfer class while SendRecv and
Exchange (Figures 5 - 8) compose the Parallel Transfer
class with the remaining benchmarks (Figures 8 – 16)
composing the Collective class. More information
about each benchmark including the specific
communication patterns in each can be found on the
Intel MPI Benchmarks website [14].
 Each of the benchmarks was run such that only a
single MPI process was run on each node. Thus, even
though some EC2 instance types have multiple virtual
cores we did not match the number of MPI processes to
the number of cores on the virtual machine because we
are focusing on the network performance and co-
location of MPI processes on nodes would not measure
that accurately. Also, we were interested to see if
requesting larger node types might reduce the
possibility of being co-located with another user’s
instances and thus reduce or eliminate contention for
the I/O system, including the network.
 In the following figures we show the results of
running each benchmark on a cluster of 16 nodes of
each EC2 64-bit instance type as well as our local
cluster. The Single Transfer benchmarks (Figures 1 -

5

4) utilize only 2 nodes in each cluster for their
measurements, but all other utilize the full 16 nodes.
We conducted runs of the benchmarks using 4 and 8
nodes of each cluster as well but found that the results
were not significantly different than for those run with
16 nodes.

Figure 1. Average Latency of PingPong

Figure 2. Average Latency of PingPing

Figure 3. Bandwidth of PingPong

Figure 4. Bandwidth of PingPing

 In the Single Transfer benchmarks (Figures 1 - 4) we
see that the EC2 instance type is not a great determiner
of performance. The message latency of the EC2
clusters, while not as low as that of the Sunfire cluster,
is well below an order of magnitude lower and is
generally below 2X higher than that of the Sunfire
cluster.

Figure 5. Average Latency of SendRecv

Figure 6. Average Latency of Exchange

6

Figure 7. Bandwidth of SendRecv

Figure 8. Bandwidth of Exchange

 The Parallel Transfer benchmarks (Figures 3 & 4)
show that again all EC2 clusters trail the local cluster,
Sunfire, in terms of latency, but not by large margins.
The spike seen in Figure 4 at the 2MB message size for
the EC2 HighCPU XLarge instance-type cluster is
interesting in that we do not expect to have I/O
performance isolation issues in this instanct type due to
the fact that it occupies 8 cores which would fill a dual-
CPU quad-core server. Thus, this abnormality could
be either due to network conention, most likely, or
evidence that performance isolation between hosted
VMs is still an issue even when utilizing 8 virtual
cores. Note that the results are averaged over 6 runs as
opposed to the 20 that are normal used. This indicates
that the benchmark experienced difficulty completing
all the repititions which most likely indicates network
problems.

Figure 9. Average Latency of AllReduce

Figure 10. Average Latency of Reduce

Figure 11. Average Latency of Reduce-scatter

Figure 12. Average Latency of AllGather

7

Figure 13. Average Latency of AlltoAll

Figure 14. Average Latency of Scatter

Figure 15. Average Latency of Gather

Figure 16. Average Latency of Bcast

Figure 17. Average Latency of Barrier

 The results for the Collective class of benchmarks
generally show that the local Sunfire cluster still has a
distinct advantage in network latency performance, and
that while the EC2 “High-CPU X-Large” instance type
usually has the highest performance of the EC2 clusters
it is not a significantly better performer despite its
virtual CPUs clock rate advantage. Also of note in all
the results is that the “XLarge” EC2 instance type was
almost always the worst performer despite having the
same virtual clock rate as the “Large” instance type and
twice as many virtual cores. While we did not expect
the core count to directly impact the MPI results,
because we didn’t schedule multiple processes on a
single node, we did hope to see that requesting more
cores would improve performance by reducing the
possibility of a co-hosted instance from another user
interfering with the I/O of our instances. This did not
appear to be the case, however.

6. Discussion
 There are several influences on performance which
are of concern in virtualized environments such as
EC2. These include: cache behavior, buffer-copy
costs, and I/O sharing between instances. Cache
behavior is critically important to the performance of
programs, and good cache management can result in
significant performance gains. The difficulty in a
virtualized environment is that it is not clear how the
caches are shared and whether cache-pollution is
possible from other VMs. This is particularly the case
for multi-core CPUs with shared L2 caches such as
most Intel processors. Since the caches are not
explicitly controlled by software (either the application
or the operating system) this cannot be controlled by
the VMM. Thus, in a pathological case where another
VM instance is running on the same physical machine
and is using a lot of the shared cache a user may see
significantly slower performance than he would on a
dedicated machine.

8

 One potential solution to this is to simply pay for a
larger instance in EC2, although our results did not
reinforce this idea. The larger instances occupy more
of the CPUs and cores than the smaller instances do.
For example, the C1.XLarge instance type has 8 cores,
which presumably is a single physical machine with
two quad-core processors dedicated solely to that
instance. Thus, even if you don’t need more cores, by
reserving them you may be able to stabilize
performance since other VMs will not be hosted on the
same physical machine. However, this cannot be
guaranteed in the future as physical machines will have
more cores and thus co-hosting my again take place
even for large instance types.
 A similar problem exists with the I/O subsystem of a
physical machine. It necessarily must be multiplexed
across the instances being hosted. Thus, one VM’s I/O
performance may affect that of another user. It is not
clear whether Amazon has addressed this in their
version of the Xen hypervisor, but this would require
controlling I/O request routing to the hardware in the
host operating system. The same solution as for the
cache behavior may work for this case as well. By
reserving larger instances you limit the amount of
external interference that your VM instance can
receive.

7. Conclusions
 The emergence of EC2 and other cloud resource
hosting platforms has enabled scientists to create
clusters of machines on-demand and use them for small
to medium scale computational science problems. We
showed that while EC2 clusters are not the highest
performers, they do provide reasonable performance
which when coupled with their low cost and ease of use
may provide an attractive alternative to dedicated
clusters.
 EC2 is not the best platform for tightly-coupled
synchronized programs with frequent but small
communication between nodes. The high latency kills
performance. However, the bandwidth available
between nodes suggests that less frequent but quite
large data exchanges are acceptable and thus redundant
computation may be a way to extract extra
performance.
 In all, EC2 is not a high-performance system which
will replace specialized clusters any time soon, but it
does offer on-demand capabilities which are very

useful for debugging and smaller scale computations.
Using preexisting tools we were able to create and
setup a cluster within minutes and using only three
shell scripts. This is the beauty of EC2, its
configurability and ease of use. We believe it would
make a suitable small scale cluster for research groups,
labs, and departments.

References
[1] Constantinos Evangelinos and Chris N. Hill,

“Cloud Computing for Parallel Scientific HPC
Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazon’s
EC2”, 2008, CCA-08.

[2] Edward Walker, “Benchmarking Amazon EC2 for
High-Performance Scientific Computing”, 2008,
Usenix Login, Vol. 33, No. 5.

[3] STREAM Project.
http://www.cs.virginia.edu/stream/

[4] Elasticwulf Project.
http://code.google.com/p/elasticwulf

[5] Amazon EC2. http://aws.amazon.com/ec2

[6] Amazon S3. http://aws.amazon.com/s3

[7] Hoffa, G., Guarang, M., Freeman, T., Deelman, E.,
Keahey, K., Berriman, B., Good, J. “On the Use
of Cloud Computing for Scientific Workflows”.

[8] Deelman, E., Singh, G., Livny, M., Berriman, B.,
Good, J. “The Cost of Doing Science on the
Cloud: The Montage Example”.

[9] Barham, P., Dragovic, B., Frasier, K., Hand, S.,
Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A. “Xen and the Art of Virtualization”.
2003, SOSP ’03. October 2003.

[10] Youseff, L., Wolski, R., Gorda, B., Krintz, C.
“Evaluating the Performance Impact of Xen on
MPI and Process Execution in HPC Systems”.
SuperComputing ’08.

[11] Youseff, L., Wolski, R., Gorda, B., Krintz, C.
“Paravirtualization for HPC Systems”.

[12] MPICH2.
http://www.mcs.anl.gov/research/projects/mpich2/

[13] LAM MPI. http://www.lam-mpi.org/
[14] Intel MPI Benchmarks v3.2.

http://www.intel.com/cd/software/products/asmo-
na/eng/219848.htm

[15] Open MPI v.1.3.
http://www.open-mpi.org/software/ompi/v1.3/

