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Abstract 
 

The introduction of affordable infrastructure on 

demand, specifically Amazon’s Elastic Compute Cloud 

(EC2), has had a significant impact in the business IT 

community and provides reasonable and attractive 

alternatives to locally-owned infrastructure.  For 

scientific computation however, the viability of EC2 

has come into question due to its use of virtualization 

and network shaping and the performance impacts of 

both.  Several works have shown that EC2 cannot 

compete with a dedicated HPC cluster utilizing high-

performance interconnects, but how does EC2 

compare with smaller departmental and lab-sized 

commodity clusters that are often the primary 

computational resource for scientists?  To answer that 

question, MPI and memory bandwidth benchmarks are 

executed on EC2 clusters with each of the 64-bit 

instance types to compare the performance of a 16 

node cluster of each to a dedicated locally-owned 

commodity cluster based on Gigabit Ethernet.  The 

analysis of results shows that while EC2 does 

experience reduced performance, it is still viable for 

smaller-scale applications.   

 

1. Introduction 
 The introduction of virtualized remote on-demand 
computing resources, Amazon’s Elastic Compute 
Cloud (EC2) in particular, at reasonable prices has 
made many people question how computing should be 
delivered in the future.  Will it be cheaper to simply 
lease time on remote resources rather than purchasing 
and maintaining your own?  The emerging 
infrastructure-provider segment has been generally 
focused on business users and hosting web applications 
and services, but some researchers have begun to look 
at the cloud as a viable solution for scientific 
computing as well [1][2][7][8][10][11]. 
 Utilizing cloud services for scientific computing 
opens up a new capability for many scientists: on-
demand clusters with no queuing front-end and a 

nearly-zero cost of entry.  This allows scientists to 
satisfy their high-performance computing needs 
without resorting to entering their job in a queue with 
an hour or day long wait and the debugging headaches 
associated with queue-based systems.  While this is 
certainly an exciting prospect, it must be recognized 
that cloud resources are not equivalent in processing 
power and network capability to custom-built high-
performance systems such as the large clusters at the 
nation’s supercomputing centers.  For example, Walker 
has shown that EC2 simply cannot compete in terms of 
raw network performance with a dedicated high-
performance cluster at NCSA called abe[2].  
 But, to date, there is an open issue that centers on the 
thousands of researchers who currently rely on their 
own small clusters: How does EC2’s performance 

compare against their existing (smaller, less cutting-

edge, and much less expensive) cluster?  These 
scientists typically do not use national-scale 
supercomputers for a number of reasons, most notably 
potentially idiosyncratic operating environments (e.g., 
installed libraries), security issues, an unfamiliar 
queuing system, a generally daunting list of queued 
jobs, and a general belief that these shared clusters 
exist for “large jobs only”. Even those scientist that use  
national-scale supercomputers for “production jobs” 
tend to do primary development, testing, and 
debugging on smaller clusters before switching to these 
shared supercomputers.  EC2 resources are particularly 
attractive for this purpose because of the pay-as-you-go 
model and complete flexibility in the software stack.  
Thus, the question remains: Ignoring the potential 
benefits of not having to run, upgrade, and generally 
maintain a local cluster, does EC2 provide good 
enough performance to compete with local clusters 
owned by individual researchers? It is arguably 
“intuitive” to believe that EC2 does not, given its well-
known use of virtualization and network shaping, but it 

this actually true? The answer to this question could 
have profound impact on the broad research 
community. 
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 To answer these questions we have quantitatively 
evaluated EC2’s performance for the most common 
type of scientific application: the MPI program.  We 
have run benchmarks of the memory systems and 
networks to compare Amazon’s performance to that of 
representative local departmental clusters.  The 
purpose of the benchmarks is to evaluate EC2’s 
specific performance capabilities relevant to a 
commodity cluster.  Our results show that EC2 
competes surprisingly well with a commodity, Gigabit 
Ethernet-based, cluster in terms of memory 
performance and MPI performance.  While we agree 
that the network performance of EC2 is not equivalent 
to that of a high-performance dedicated cluster with 
Myrinet or Infiniband interconnects, in terms of latency 
in particular, it does provide enough performance to be 
useful to a large class of scientific users which use the 
small to mid-sized departmental and lab commodity 
clusters often found in academia. 
 The rest of this paper will be organized as follows: 
the Related Work section will discuss other evaluations 
of the performance of EC2 and virtualized 
environments in general; the Evaluation Setup section 
will describe how the EC2 cluster was setup and 
configured as well as the configuration of the 
commodity clusters used as baselines; the Evaluation 
section will present our results from the various 
performance benchmarks; the Discussion section will 
address some observations made during this work as 
wells problems encountered and possible future work; 
finally, we give our conclusions on using EC2 clusters 
for MPI-based HPC computation. 
 

2. Related Work 
 Edward Walker’s work [2] examines the feasibility 
of using EC2 for HPC, but compares it to high-end 
compute clusters at NCSA.  This comparison pits EC2 
against high-end clusters utilizing Infiniband 
interconnects.  His work focuses on network latency 
and bandwidth in particular and unsurprisingly finds 
that the NCSA cluster has network latency that is more 
than an order of magnitude lower than that seen at EC2.  
We are focusing our evaluation on comparing EC2-
based clusters to commodity clusters utilizing Gigabit 
Ethernet interconnects as would more likely be found 
in departmental and research-lab sized systems. 
 C. Evangelinos and C. Hill performed an evaluation 
of running couple ocean-atmosphere simulations on 
EC2 [1].  Their work focuses on 32-bit applications 
and as such they only examine two out of the five EC2 
instance types.  We have focused primarily on 64-bit 
platforms as this used for the majority of scientific 
computing.  We also compare the performance of the 

various EC2 instance types against each other to get a 
larger picture of EC2’s offerings. 
 Others have evaluated EC2 and its associated blob-
storage, the Simple Storage Service (S3) [7], for 
applicability in data intensive eScience workloads 
[8][9].  We do not consider the I/O component in our 
evaluation and instead focus on CPU and network 
bound workloads based on message passing.  We also 
do not primarily consider the question of cost-
effectiveness of cloud-based clusters over locally-
owned clusters.  While we do feel that a performance-
per-dollar comparison is valuable when deciding how 
to implement infrastructure, we leave that for future 
work as it can be very application specific. 
 General evaluations of the performance of virtualized 
systems such as Xen[10] have been studied extensively 
and Xen has been shown to impose negligible 
overheads in both micro an macro benchmarks 
[11][12].  However, these were evaluations of Xen 
itself in a controlled cluster environment whereas we 
are evaluating Amazon’s specific implementation and 
customizations of Xen and their overall product 
offering including networking.  Amazon’s multiplexing 
of physical resources and networks introduces sources 
of performance limiters not found in these previous 
works. 
 

3. Evaluation Setup 
 Our experimental setup included clusters composed 
of each EC2 64-bit instance type as well as our local 
32-bit cluster.  For creating and managing our EC2 
clusters we utilized an existing project which provided 
Python scripts to handle most operations. We describe 
that project and the specifics of the EC2 instance types 
below.  We also describe the configuration of our local 
resources that we used to compare the EC2 results 
against. 
  

3.1. EC2 Overview 
 Amazon’s EC2 service has become the standard-
bearer for Infrastructure-as-a-Service (IaaS) providers.  
It is the most popular and provides many different 
service levels.  Machine instances are available in the 
following configurations: 

Instance 
Type 

CPU Mem 
(GB) 

Disk 
(GB) 

I/O 
Perf. 

Cost 
/Inst-
hr.** 

M1.Small 
32bit,1 core 

1* 
ECU 

1.7 160  Mod
. 

$0.10 

M1.Large 
64bit,2 cores 

2* 
ECU 

7.5 850  High $0.40 

M1.XLarge 
64bit,4 cores 

2* 
ECU 

15 1690  High $0.80 
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C1.Medium 
32bit,2 cores 

2.5*
ECU 

1.7 350  Mod
. 

$0.20 

C1.XLarge 
64bit,8 cores 

2.5* 
ECU 

7  1690  High $0.80 

Table 1.  Amazon EC2 Instance Types 
*1 ECU (EC2 Compute Unit) is equivalent to 1.0-1.2 GHz 
2007 Opteron or 2007 Xeon processor capacity [6].  ** 
Indicates Linux pricing only, Windows Server prices are 
higher. 

 
 Amazon utilizes a customized version of Xen to host 
the AMIs.  Instance operating systems available are: 
Windows Server 2003, Red Hat Linux, Fedora Core, 
openSUSE, Gentoo, Oracle Enterprise Linux, Ubuntu, 
and Debian Linux.  While each instance has storage 
associated with it, the local instance storage is not 
persistent across instance termination, so other 
solutions, such as Amazons Simple Storage Service 
(S3) or Elastic Block Store (EBS) are required.  
However, for this work we did not to utilize either of 
those services since we are only evaluating the network 
and processing capabilities of EC2 rather than the 
storage capabilities. 
 In terms of service agreement terms, EC2’s service 
agreement states an availability level of 99.95% and 
Amazon will credit your account if it falls below that 
during a 365 day period.  They also claim an internal 
network bandwidth of 250 Mbps regardless of instance 
type, although this is not included in the official 
instance type specification. 
 After working to build our own Amazon Machine 
Images (AMIs) we found a project called ElasticWulf 
[3], which in addition to providing a pair of AMIs that 
have multiple MPI libraries (MPICH2, LAM, and 
OpenMPI) and OpenMP already installed, also 
included scripts to start, stop, and monitor a cluster of 
EC2 machines.  ElasticWulf requires only the 
installation of the Amazon command line tools and API 
libraries.  It includes the basics to get a cluster up and 
running that has a shared NFS directory as well as the 
MPI runtime, various Python MPI libraries and tools, 
and Ganglia for monitoring the cluster via the web.  
The specific AMI’s that it uses are based on Fedora 
Core 6 and are 64-bit.  The AMI numbers are: ami-
e813f681 and ami-eb13f682 for the master node and 
the worker nodes respectively.  ElasticWulf also works 
with any AMI, not just the supplied ones.  There are 
also alternative 32-bit images provided although they 
do not include the NFS share and Ganglia.  Our 
specific configuration was using MPICH2, mpicc 
version 1.0.6 specifically, on top of Fedora Core 6 and 
using gcc 4.1.2. for the x86_64 architecture. 
 For our MPI tests we constructed a cluster of each of 
the instance types which are 64-bit.  We feel that while 

the 32-bit instances may be more cost-effective 64-bit 
is the standard for scientific computations as well as 
providing substantially more memory, which is often a 
large performance enhancer for CPU-bound 
applications.  For the memory bandwidth tests we 
utilized a single node of each instance type. 

 

3.2. Local Resources 
 To give context and a baseline to the EC2 
performance numbers we ran the same benchmarks on 
our locally owned cluster.  The Sunfire cluster is 
composed of nodes with 32-bit Intel Xeon processors 
has the following specifications: 2 Physical CPUs Intel 
Xeon 2.80Ghz with HyperThreading (CPU Family 15, 
model 2, stepping 7);  512KB L2 cache, 3GB RAM 
SDRAM,  400Mhz FSB, and Gigabit Ethernet NIC.  
The mpicc version was 1.0.8p1 and gcc was version 
4.2.4.  The platform was x86 32-bit and the MPI 
library used was OpenMPI 1.3 [15]. 
 The other locally-owned resource we use for 
comparison is Camillus.  Camillus is a 64-bit dual-CPU 
Intel Xeon E5345 Quad-Core machine (8 cores total) 
with a 1333 Mhz FSB, 16GB DDR2 RAM, and a 
Gigabit Ethernet NIC.  We use this machine for 
comparison in the memory-bandwidth benchmarks 
since it represents current CPU designs better than the 
Sunfire cluster nodes do. 
  

4. Evaluation 
 To evaluate the performance of EC2 clusters against 
that of a small commodity cluster we created clusters of 
each EC2 instance type and benchmarked their 
performance using the STREAM memory bandwidth 
benchmark and then Intel’s MPI Benchmark version 
3.2[14].  We did not utilize a CPU ALU-op 
performance benchmark because Xen’s CPU 
performance has been studied extensively and in 
scientific applications which require a cluster the 
performance limiter is usually the interconnect or the 
memory bandwidth on each node since CPU 
performance has increase much more rapidly than 
either network or memory performance. 
 

4.1. Memory Bandwidth  
 Many scientific applications involve operations on 
large amounts of data stored in memory.  Thus, it is 
important to evaluate the memory-bandwidth of the 
EC2 instance types in order to see how they compare to 
non-virtualized resources.  In this case we did not 
directly compare an EC2 instance’s performance to the 
performance of the same CPU in a non-virtualized 
environment.  Others have examined the performance 
overhead of virtualization [11][12] on performance, 
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and part of the abstraction of EC2’s “Cloud” paradigm 
is that the underlying resources can change arbitrarily, 
so no single processor can be designated as the EC2 
standard. 
 The results of running STREAM with array length of 
10 million integers follow: 
 

Machine Spec 1 Thread Bandwidth in GB/s 

Copy Scale Add Triad 

M1.Large 2.058 1.777 1.868 1.725 

M1.XLarge 2.551 2.394 2.434 2.178 

C1.Medium 2.865 2.852 3.114 3.097 

C1.XLarge 2.849 2.840 3.126 3.120 

Camillus 2.834 2.830 3.171 3.160 

Sunfire 1.341 1.325 1.663 1.662 

Table 2.  Single Thread CPU Memory Bandwidth 

  
 The performance of the EC2 nodes is similar to 
Camillus, which is the most modern processor of the 
locally-owned machines.  We see a definite advantage 
in the newer DDR and DDR2 memory architectures 
found and higher front-side bus clock-rates in the EC2 
nodes as opposed to the older non-DDR systems of the 
Sunfire cluster and its 400Mhz FSB. 
 

Machine 
Spec 

N Threads Bandwidth in GB/s N 

Copy Scale Add Triad 

M1.Large 3.244 3.186 3.564 3.508 2 

M1.XLarge 3.748 3.936 3.717 3.714 4 

C1.Medium 4.241 4.494 4.840 4.796 2 

C1.XLarge 4.807 4.788 5.149 5.161 8 

Camillus 4.653 4.661 4.895 5.007 8 

Sunfire 1.441 1.458 1.626 1.622 2* 

Table 3.  N threads (cores) CPU Memory 

Bandwidth. *Sunfire is a Xeon processor with 

HyperThreading not 2 physical cores.  These results 

are only for comparison. 

 
It is worth noting here that I am running 64-bit 
programs, not 32-bit as Evangelinos and Hill did.  
Thus, there are some discrepancies in the bandwidth 
numbers. 
 However, we see that the EC2 nodes perform as well 
or better than both the Centurion and Generals nodes in 
most of the tests.  It is no surprise that they outperform 
the Centurion nodes due to their newer memory 
(DDR2), but they also hold their own against Camillus, 
which is a relatively new machine itself.  This shows 
that we can expect reasonable to good memory 

bandwidth performance even thought the machines are 
virtualized. 
 

4.2. Intel MPI Benchmarks v3.2 
 The most useful measure of the performance of a 
cluster is how well it performs on the specific code that 
it is being used for.  Since a large proportion of 
scientific applications utilize MPI for inter-process 
communication, we have tested the various EC2 
instance types using the Intel MPI Benchmarks (IMB) 
version 3.2[14].  We present here the results for the 
IMB-MPI1 suite of benchmarks which evaluate the 
MPI v1 specification.  We believe that the common 
operations in most applications are covered in this suite 
and that the extensions provided in the MPI 2 
specification while useful, would not paint a 
significantly different picture of the relative 
performance of EC2 instances compared to our local 
cluster.  Thus, we have omitted those results for both 
brevity and clarity. 
 Each of the benchmarks presented here measures the 
average latency for messages passed of a given size.  
Each data point is an average of multiple runs (1000 
for the smaller data points up to 32K and 10 for the 4 
MB messages).  These averages are reported by the 
IMB code itself.  We do not present the minimums and 
maximums for sake of clarity. 
 There are three classes of benchmark: Single 
Transfer, Parallel Transfer, and Collective.  The 
PingPong and PingPing benchmarks (Figures 1 - 4) 
compose the Single Transfer class while SendRecv and 
Exchange (Figures 5 - 8) compose the Parallel Transfer 
class with the remaining benchmarks (Figures 8 – 16)  
composing the Collective class.  More information 
about each benchmark including the specific 
communication patterns in each can be found on the 
Intel MPI Benchmarks website [14]. 
 Each of the benchmarks was run such that only a 
single MPI process was run on each node.  Thus, even 
though some EC2 instance types have multiple virtual 
cores we did not match the number of MPI processes to 
the number of cores on the virtual machine because we 
are focusing on the network performance and co-
location of MPI processes on nodes would not measure 
that accurately.  Also, we were interested to see if 
requesting larger node types might reduce the 
possibility of being co-located with another user’s 
instances and thus reduce or eliminate contention for 
the I/O system, including the network. 
 In the following figures we show the results of 
running each benchmark on a cluster of 16 nodes of 
each EC2 64-bit instance type as well as our local 
cluster.  The Single Transfer benchmarks (Figures 1 - 
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4) utilize only 2 nodes in each cluster for their 
measurements, but all other utilize the full 16 nodes.  
We conducted runs of the benchmarks using 4 and 8 
nodes of each cluster as well but found that the results 
were not significantly different than for those run with 
16 nodes. 
 

 
Figure 1. Average Latency of PingPong 

 

 
Figure 2.  Average Latency of PingPing 

 

 
Figure 3.  Bandwidth of PingPong 

 

 
Figure 4.  Bandwidth of PingPing 

 
 In the Single Transfer benchmarks (Figures 1 - 4) we 
see that the EC2 instance type is not a great determiner 
of performance.  The message latency of the EC2 
clusters, while not as low as that of the Sunfire cluster, 
is well below an order of magnitude lower and is 
generally below 2X higher than that of the Sunfire 
cluster.   
 

 
Figure 5.  Average Latency of SendRecv 

 

 
Figure 6.  Average Latency of Exchange 
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Figure 7.  Bandwidth of SendRecv 

 

 
Figure 8.  Bandwidth of Exchange 

  
 The Parallel Transfer benchmarks (Figures 3 & 4) 
show that again all EC2 clusters trail the local cluster, 
Sunfire, in terms of latency, but not by large margins.  
The spike seen in Figure 4 at the 2MB message size for 
the EC2 HighCPU XLarge instance-type cluster is 
interesting in that we do not expect to have I/O 
performance isolation issues in this instanct type due to 
the fact that it occupies 8 cores which would fill a dual-
CPU quad-core server.  Thus, this abnormality could 
be either due to network conention, most likely, or 
evidence that performance isolation between hosted 
VMs is still an issue even when utilizing 8 virtual 
cores.  Note that the results are averaged over 6 runs as 
opposed to the 20 that are normal used.  This indicates 
that the benchmark experienced difficulty completing 
all the repititions which most likely indicates network 
problems. 
 

 
Figure 9. Average Latency of AllReduce 

 

 
Figure 10.  Average Latency of Reduce 

 

 
Figure 11.  Average Latency of Reduce-scatter 

 

 
Figure 12.  Average Latency of AllGather 
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Figure 13.  Average Latency of AlltoAll 

 

 
Figure 14.  Average Latency of Scatter 

 

 
Figure 15.  Average Latency of Gather 

 

 
Figure 16.  Average Latency of Bcast 

 

 
Figure 17.  Average Latency of Barrier 

 
 The results for the Collective class of benchmarks 
generally show that the local Sunfire cluster still has a 
distinct advantage in network latency performance, and 
that while the EC2 “High-CPU X-Large” instance type 
usually has the highest performance of the EC2 clusters 
it is not a significantly better performer despite its 
virtual CPUs clock rate advantage.  Also of note in all 
the results is that the “XLarge” EC2 instance type was 
almost always the worst performer despite having the 
same virtual clock rate as the “Large” instance type and 
twice as many virtual cores.  While we did not expect 
the core count to directly impact the MPI results, 
because we didn’t schedule multiple processes on a 
single node, we did hope to see that requesting more 
cores would improve performance by reducing the 
possibility of a co-hosted instance from another user 
interfering with the I/O of our instances.  This did not 
appear to be the case, however. 
  

6. Discussion 
 There are several influences on performance which 
are of concern in virtualized environments such as 
EC2.  These include: cache behavior, buffer-copy 
costs, and I/O sharing between instances.  Cache 
behavior is critically important to the performance of 
programs, and good cache management can result in 
significant performance gains.  The difficulty in a 
virtualized environment is that it is not clear how the 
caches are shared and whether cache-pollution is 
possible from other VMs.  This is particularly the case 
for multi-core CPUs with shared L2 caches such as 
most Intel processors.  Since the caches are not 
explicitly controlled by software (either the application 
or the operating system) this cannot be controlled by 
the VMM.  Thus, in a pathological case where another 
VM instance is running on the same physical machine 
and is using a lot of the shared cache a user may see 
significantly slower performance than he would on a 
dedicated machine. 
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 One potential solution to this is to simply pay for a 
larger instance in EC2, although our results did not 
reinforce this idea.  The larger instances occupy more 
of the CPUs and cores than the smaller instances do.  
For example, the C1.XLarge instance type has 8 cores, 
which presumably is a single physical machine with 
two quad-core processors dedicated solely to that 
instance.  Thus, even if you don’t need more cores, by 
reserving them you may be able to stabilize 
performance since other VMs will not be hosted on the 
same physical machine.  However, this cannot be 
guaranteed in the future as physical machines will have 
more cores and thus co-hosting my again take place 
even for large instance types. 
 A similar problem exists with the I/O subsystem of a 
physical machine.  It necessarily must be multiplexed 
across the instances being hosted.  Thus, one VM’s I/O 
performance may affect that of another user.  It is not 
clear whether Amazon has addressed this in their 
version of the Xen hypervisor, but this would require 
controlling I/O request routing to the hardware in the 
host operating system.  The same solution as for the 
cache behavior may work for this case as well.  By 
reserving larger instances you limit the amount of 
external interference that your VM instance can 
receive. 
 

7. Conclusions 
 The emergence of EC2 and other cloud resource 
hosting platforms has enabled scientists to create 
clusters of machines on-demand and use them for small 
to medium scale computational science problems.  We 
showed that while EC2 clusters are not the highest 
performers, they do provide reasonable performance 
which when coupled with their low cost and ease of use 
may provide an attractive alternative to dedicated 
clusters. 
 EC2 is not the best platform for tightly-coupled 
synchronized programs with frequent but small 
communication between nodes.  The high latency kills 
performance.  However, the bandwidth available 
between nodes suggests that less frequent but quite 
large data exchanges are acceptable and thus redundant 
computation may be a way to extract extra 
performance. 
 In all, EC2 is not a high-performance system which 
will replace specialized clusters any time soon, but it 
does offer on-demand capabilities which are very 

useful for debugging and smaller scale computations.  
Using preexisting tools we were able to create and 
setup a cluster within minutes and using only three 
shell scripts.  This is the beauty of EC2, its 
configurability and ease of use.  We believe it would 
make a suitable small scale cluster for research groups, 
labs, and departments. 
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