
A Quantitative Analysis of Model-Driven Code

Generation through Software Experimentation

Paulo Eduardo Papotti1, Antonio Francisco do Prado1,
Wanderley Lopes de Souza1, Carlos Eduardo Cirilo1, and Lúıs Ferreira Pires2

1 Federal University of São Carlos, Computer Science Department,
Rodovia Washington Luis, km 235, PO Box 676,

Zip Code 13565-905, São Carlos, SP, Brazil
{paulo.papotti,prado,desouza,carlos_cirilo}@dc.ufscar.br

2 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science P.O. Box 217, 7500 AE Enschede, The Netherlands

l.ferreirapires@utwente.nl

Abstract. Recent research results have shown that Model-Driven De-
velopment (MDD) is a beneficial approach to develop software systems.
The reduction of development time enabled by code generation mecha-
nisms is often acknowledged as an important benefit to be further ex-
plored. This paper reports on an experiment in which an MDD-based
approach using code generation from models is compared with manual
coding based on the classic life-cycle. In this experiment, groups of se-
nior students from Computer Science and Computer Engineering under-
graduate academic programs implemented a web application using both
approaches, and we evaluated in quantitative terms the performance of
the groups. The results showed that the development time when code
generation was applied was consistently shorter than otherwise. The par-
ticipants also indicated that they found less difficulties when applying
code generation.

Keywords: Experimentation, Code Generation, Model-Driven Devel-
opment.

1 Introduction

Model-Driven Development (MDD) [1] has been quite popular in the academic
community in the last years, and different approaches based on MDD have been
proposed. Most recent studies related to MDD focus on the transformation of
domain models to different kinds of software applications. These studies show
that software development supported by code generation from abstract mod-
els provides several benefits, such as, e.g., increase of productivity, facilitated
maintenance and documentation, and portability [2–5].

Although the impact of MDD-based approaches has already been established
to some extent, there are still some questions that should be answered, like: What
is the average time development reduction that can be obtained with code genera-
tion frommodels compared to traditional development? How can code generation

C. Salinesi, M.C. Norrie, and O. Pastor (Eds.): CAiSE 2013, LNCS 7908, pp. 321–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

322 P.E. Papotti et al.

be applied to reduce the difficulties faced by developers? What are the practical
advantages of using code generation from models perceived by developers? This
paper aims at answering these questions by means of experimentation.

In this paper we report on the results of a quantitative study we performed
by applying a systematic experimental methodology [6]. This study evaluates
the impact of using model-driven code generation on the time spent by groups
of students to develop software systems. In this experiment, at a certain time,
the groups developed a web application following the disciplines of the classic
life-cycle [7] without using any form of code generation, and at another time, the
groups developed the same application by using code generation from models.
After that, we analysed the data on the time spent by the participating groups
that we collected during the experiment. The paper also reports on the results
of this analysis.

This paper is further organised as follows: Section 2 presents some concepts re-
lated to the principles of experimentation applied in this work, Section 3 discusses
our experiment in detail, Section 4 discusses some related work, and Section 5
gives our final conclusions, including some topics for possible future work.

2 Principles of Experimentation

Empirical validation should help establish Software Engineering as a science [8].
Experiments allow the validation in practice of theories developed in a scien-
tific process. Through experimentation, this validation can be performed in a
systematic, disciplined, controlled and computable way [9].

In Software Engineering, experimentation enables one to test hypotheses about
a particular object of study (e.g., a process, method, tool, feature, model or the-
ory) and observe the effects of adopting these objects in practical situations.
From measurements, collected data are analysed and hypotheses can be vali-
dated or refuted [6, 9]. Figure 1 shows the general structure of an experiment.

The null hypothesis (H0) is the main hypothesis of the experiment, and indi-
cates that there is no statistically significant relationship between the cause and
the effect being investigated. Generally, the goal of an experiment is to refute
this hypothesis in favour of one or more alternative hypotheses (H1, H2, H3, ...,
Hn).

In an experiment we can identify independent and dependent variables. Inde-
pendent variables, which are also called factors, refer to the elements that are
manipulated or maintained during the experiment, so that the causes that affect
the outcome of the experiment can be identified. In contrast, dependent vari-
ables refer to the elements that are tested when the experiment is performed.
The value assigned to a given factor is called a treatment. Therefore, treatments
should be applied on the objects of study and on the set of participants in order
to identify possible results.

A Quantitative Analysis of Model-Driven Code Generation 323

Fig. 1. General structure of an experiment [6]

3 Performed Experiment

Our experiment followed the phases described in Wohlin et al. [6], and was con-
ducted in the second half of 2011. The experiment aimed at performing a com-
parative analysis of the time spent implementing the CRUD (Create, Retrieve,
Update, Delete) functions of web systems from models of the application entity
classes described in UML class diagrams. Software development was performed
both manually (based on the classic life-cycle) and by using code generation
from models.

In the experiment, we used a part of the ProgradWeb1 system of the Fed-
eral University of São Carlos (UFSCar). ProgradWeb is an medium/large size
academic system in operation since 1998, which stores all information about
students, teachers, registration, certificates, diplomas and other issues related to
undergraduate courses at UFSCar.

3.1 Definition

The experiment was defined as follows:

Analyse the use of mechanisms for code generation from models in the con-
struction of web applications;

For the purpose of evaluation;
With respect to efficiency in terms of time;
From the point of view of software developers;
In the context of Computer Science and Computer Engineering undergradu-

ate students.

1 ProgradWeb - https://progradweb.ufscar.br/progradweb/

324 P.E. Papotti et al.

The experiment was conducted in a university environment with the collabo-
ration of undergraduate students of the Computer Science and Computer Engi-
neering programs at UFSCar. The context of our study corresponds to multi-test
within object study [6]. Thus, the experiment consisted of various experimental
tests, in which different groups of subjects implemented a single application in
different ways.

3.2 Planning

After the definition, the experiment was planned according to the steps discussed
below.

Context Selection. The experiment was conducted in a university environ-
ment, in a teaching laboratory of the Computer Department of UFSCar, within
the “Topics in Computer Science 2011” course. The experiment involved the
participation of students of the third and fourth academic years in Computer
Science and Computer Engineering at UFSCar.

Hypothesis Formulation. In order to determine the effect of the development
approach (with and without code generation) in the results, three hypotheses
were formulated for the experiment. The following metrics were considered when
formulating hypotheses:

τ Total time spent by the groups to develop the Web application with CRUD
functionalities.

μτ Average time spent by the groups to develop the Web application with CRUD
functionalities

The hypotheses formulated for the experiment are:

Null Hypothesis (H0). In general, there is no difference in efficiency (ε) be-
tween the groups when they apply code generation from models, and when
they apply manual coding based on the classic life-cycle to build web appli-
cations (Equation 1).

H0 : εCodeGeneration = εClassic ⇒ μτCodeGeneration = μτClassic (1)

Alternative Hypothesis (H1). When groups apply code generation from
models to build web applications they are generally more efficient than when
they apply manual coding based on the classic life-cycle (Equation 2).

H1 : εCodeGeneration > εClassic ⇒ μτCodeGeneration < μτClassic (2)

Alternative Hypothesis (H2). When groups apply manual coding based on
the classic life-cycle to build web applications they are generally more effi-
cient than when they apply code generation from models (Equation 3).

H2 : εCodeGeneration < εClassic ⇒ μτCodeGeneration > μτClassic (3)

A Quantitative Analysis of Model-Driven Code Generation 325

Variables Selection. In this step we chose the variables that allowed us to
analyse the efficiency of the groups when using different development approaches.
The variables were chosen as follows:

Independent Variables. We selected the following independent variables in
this experiment: developed application, the development approach used to
implement the application, the development environment, and the technolo-
gies used for development. Since the purpose of the experiment is to in-
vestigate the impact of the development approach on group efficiency, vari-
able “development approach” was chosen as the factor that receives different
treatments. The other independent variables remained constant during the
execution of experiment, and have been set as follows:

Application. CRUD of part of ProgradWeb system.
Development Environment. Eclipse IDE and MySQL database.
Development Technologies. Java, Hibernate, Java Persistence API

(JPA), Java Server Faces (JSF) and XHTML.

Dependent Variable. In accordance with the hypotheses, we chose group ef-
ficiency as dependent variable in this experiment.

Selection of Subjects. Subjects were selected according to convenience sam-
pling [6]. In this non-probabilistic technique, the selected participants were the
closest and most convenient to conduct the experiment. Voluntarily, 29 students
from the third and fourth years of Computer Science and Computer Engineering
undergraduate academic programs of UFSCar participated in the experiment, in
the scope of their attendance to the “Topics in Computer Science 2011” course.

Experiment Design. The experiment followed the general design principle of
grouping the participants in homogeneous blocks [6], avoiding a direct impact of
the experience level of the participants in the treatment outcomes of the devel-
opment approach factor, increasing in this way the accuracy of the experiment.

The participants were divided into 9 homogeneous groups (blocks), where
7 groups contained 3 participants and 2 groups contained 4 participants. The
groups were divided so that the average experience level of the groups was as
similar as possible.

To determine the experience level of each participant, we used a Participant
Characterization Form. The participants answered multiple-choice (closed) ques-
tions to assess their knowledge regarding the topics covered by the experiment
(e.g., Java, Hibernate, JSF, UML), allowing the experience level of each partici-
pant according to the technologies used in experiment to be quantified. Figure 2
displays the individual experience levels of each participant Pi and the average
experience level of each group Gj , according to the information given by the stu-
dents in their characterization forms. These levels were obtained by calculating
the average of knowledge degree in a 5-point scale for each question of the form
answered by the participants.

326 P.E. Papotti et al.

Fig. 2. Distribution of participants in the experiment

With respect to the design type, the experiment consisted of a paired com-
parison [6] of one factor (development approach) with two treatments (code
generation and manual coding). In this design type, each subject (or a group of
subjects) uses both treatments on the same object of study. The order in which
the participants apply the treatments is set at random. Therefore, in our ex-
periment, the application was developed by all participating groups using both
code generation and manual coding. Table 1 shows the randomly selected order
in which the treatments have been assigned to the groups, where ‘1’ and ‘2’
indicate which treatment was applied first and second, respectively.

Instrumentation. All thematerial required to support the participants through-
out the experiment was made available beforehand, including the preparation of

Table 1. Assignment of treatments to groups

A Quantitative Analysis of Model-Driven Code Generation 327

objects, instruments and guidelines for data collection used during the execution
of the experiment.

3.3 Experiment Execution

Once the experiment was defined and planned, we executed the experiment ac-
cording to the following steps: preparation, operation and validation of the col-
lected data.

Preparation. At this stage, the students got committed and involved with the
experiment and were made aware of its purpose and research objectives. During
the preparation of the experiment, all participants were informed and accepted
the terms regarding the confidentiality of the provided data, which would be
only used for academic purposes, and their freedom to withdraw, by signing a
Consent Form.

At this stage, the following objects were produced to be used in the experi-
ment:

Participant’s Characterization Form. Questionnaire in which the partici-
pants assess their knowledge on the technologies and concepts used in the
experiment.

Consent Form. Document signed by the participants, stating the objectives
and confidentiality of the experiment, and their freedom to withdraw.

Task Description. Document describing the task to be performed in the ex-
periment.

Support Material. Roadmap describing the steps to be used in the develop-
ment of applications.

Data Collection Form. Document containing empty spaces to be filled in by
the participants to record the start time and end time of each activity per-
formed during the experiment.

Evaluation Form. Questionnaire containing multiple-choice questions for the
participants to evaluate and compare the two development approaches used
in the experiment.

In order to avoid the interference of the time spent in learning the approaches to
code generation and manual coding, a training with a duration of two weeks was
planned and provided to all participants, so that everybody was able to develop
the kind of application proposed in the experiment.

The platform adopted for developing both applications consisted of Java as
implementation language, the JSF framework to support the MVC pattern im-
plementation, JPA and Hibernate to support persistence in a MySQL2 database
and the Eclipse IDE3 as development environment. This platform was installed
and configured beforehand in the computers where the experiment was con-
ducted.
2 MySQL - http://www.mysql.com/
3 Eclipse IDE - http://www.eclipse.org/

328 P.E. Papotti et al.

Operation. On the day in which the experiment was performed, the tools and
materials used in experiment were stored in a package that was made available
to the groups. This package contained the following elements:

– Eclipse IDE configured with the Papyrus UML4 plug-in.
– Library files (Hibernate, JSF and MySQL Connector).
– Folder with the Apache Tomcat Server to run the developed application.
– Class diagram of the developed application.
– All the documents described in experiment preparation step.

In addition, when following the code generation approach, the groups received a
code generator previously developed for the experiment. This generator consisted
of the M2C transformations to generate Java code from UML class diagrams.

The groups performed the experimental task as defined in the Task descrip-
tion. All groups implemented the proposed application with all required func-
tions. The applications resulting from using both approaches were equivalent,
and had the same quality and performance levels.

During the experiment, the groups recorded on the Data Collection Form the
start time and end time of each activity performed to implement the application.
Table 2 summarises the collected data, showing the time spent on the implemen-
tation activities. Table 3 gives a description of the acronyms used in Table 2.

Table 2 shows that the data divided into two blocks, for the manual coding
and code generation approaches. Table 2 also shows average and total values.

Data Validation. In general, we observed that the groups developed the pro-
posed tasks satisfactorily, and the collected data was within the expected limits.
This means that the treatments were executed correctly and in accordance with
the planning. Therefore, we can claim that the obtained data was valid to con-
duct the proposed evaluation.

3.4 Results Analysis and Interpretation

Table 2 shows that when using the manual coding approach, the groups spent an
average of 2 hours and 2 minutes to complete the proposed activities, whereas
when following the code generation approach this time dropped to an average of
11 minutes (reduction of 90.98%). Therefore, it is fair to conclude that the groups
completed the implementation task more quickly when following the code genera-
tion approach than when following the manual coding approach. This difference
is justified by the model-to-code (M2C) transformations, which automatically
generated a substantial amount of source code from a predefined model.

In the case of applications with more classes and attributes in each class in
their models than the application used in our experiment, the amount of time
and effort required to perform the implementation activities following the man-
ual coding approach, tends to be even longer. Although not all the necessary

4 Papyrus UML - http://www.eclipse.org/papyrus/

A Quantitative Analysis of Model-Driven Code Generation 329

Table 2. Time spent on the experiment activities

Table 3. Description of the acronyms used in Table 2

application code is automatically generated when using the code generation ap-
proach, this approach can already provide a significant productivity gain, which
justifies the effort and time spent on building generators based on model-to-code
transformations, as the one used in this experiment. This also means that any
application that uses the same platform and technologies as the ones for which
these generators are built can be developed with much less effort than if they
would be implemented using manual coding.

Descriptive Statistics. Descriptive statistics deals with the presentation
and processing of a numerical data set [6]. Once an experiment is performed,

330 P.E. Papotti et al.

Fig. 3. Dispersion of the total time spent by the groups

descriptive analysis allows the collected data to be analysed, grouped and graph-
ically presented, to view the results from different perspectives.

Figure 3 shows the dispersion of time spent by the groups that participated
in the proposed experiment in a boxplot chart. Figure 3 shows clearly that when
the groups used code generation they were faster than when they applied manual
coding.

Furthermore, the normality of the data set was verified using the Shapiro-
Wilk nonparametric test [10]. The test results confirmed that the sample sets
obtained with both approaches consisted of normally distributed sets, as shown
in Figure 4.

Fig. 4. Normality of the sample data sets

A Quantitative Analysis of Model-Driven Code Generation 331

Data Set Reduction. Before applying statistical methods, it is necessary to
check the quality of the input data [6]. The representation and correctness of
data have a direct impact on the conclusions that can be drawn from the results,
since if incorrect data is used in the statistical analysis, wrong conclusions will
probably be drawn. Incorrect data sets can be obtained due to systematic errors
or the presence of outliers, which are data values that are much higher or much
lower than expected when compared with the remaining data.

After a careful analysis of the forms filled by the participants, we have not
found any systematic errors (e.g., transcription errors by the participants) nor
outliers in the input data set. Therefore, there was no need to reduce the data
set, and the data were considered valid for applying statistical methods of data
analysis.

Hypothesis Testing. When analysing the data produced by the groups that
participated in the experiment, we noticed that when groups followed the code
generation approach they were more efficient than when they followed the manual
coding approach. In order to verify and quantify the actual efficiency gain from
the collected data, we applied the paired t-test [11] (Equation 4).

t0 =
d̄

Sd/(
√
n)

(4)

where:

n Number of paired samples.
d̄ Difference of averages of each samples set.
Sd Standard deviation of the differences of the samples (Equation 5).

Sd =

√∑n
i=1(di − d̄)2

n− 1
(5)

where:

di Difference between each pair of sample.

Assuming a two sided paired t-test, we can reject H0 if |t0| > tα/2,n−1. In this
case, tα,f is the upper α percentage point of the t-distribution with f degrees of
freedom.

Based on the samples,n = 9 and d = {113, 111,108, 111, 121, 114, 102, 110, 109}
(in minutes). The average values of each data set are μClassic = 122, 222 and
μGeneration = 11, 222. So, d̄ = 122.222 − 11.222 = 111, which implies that
Sd = 5.099 and t0 = 65.30667.

The number of degrees of freedom is f = n− 1 = 8. We take α = 6.8 · 10−12.
In the table of statistical probability of the Student’s t-distribution, we could
verify that t3.4·10−12,8 = 65.2154. Since |t0| > t3.4·10−12,8 the null hypothesis
H0 can be rejected with a significance level of 6.8 · 10−12%.

332 P.E. Papotti et al.

To perform the calculations mentioned above we used the software R5, with
RKWard6 as a graphical user interface.

3.5 Discussion of Results

After we performed hypothesis testing and we verified the possibility of reject-
ing the null hypothesis (H0), we could draw some conclusions regarding the
influence of independent variables on the dependent variable, the validity of the
experiment and the treatment of the validity threats (in Section 3.7).

Concerning the rejection of the null hypothesis, we can conclude that the
differences in development times have statistical significance, as evidenced by
the samples provided by the groups that followed the manual coding and code
generation approaches. This indicates that the difference in development time
spent by the groups was due to the development approach they used during the
experiment, and not by any accident or mistakes in the collection of samples.

Table 2 shows that when the groups used code generation, the average total
time was consistently lower than when they used manual coding (μτGeneration <
μτClassic). This is an evidence that hypothesis H1 can be validated instead of
hypothesis H2. Therefore, we can safely argue that groups that use code genera-
tion from models usually spend less time in software development. This result is
within our expectations for this experiment, since we expected that automated
code generators would speed up parts of the development task. This expectation
was confirmed in practice by our experiment.

Furthermore, the conclusions on the results of this study are limited to the
scope of CRUD web applications implemented by software developers in a uni-
versity environment, since the experiment was performed in vitro and under
controlled conditions. In our data set, only the time spent on implementation
activities was collected, which means that the time spent on other steps of soft-
ware development (e.g., modeling and testing) was not covered by the exper-
iment reported in this paper. To extend our results to a broader context, we
would have to perform new experiments with an increased number of subjects,
and performed in in vivo environments, in which we could compare the use of
code generation from models with other approaches for software development
beyond manual coding according to the classic life-cycle, as addressed in this
study.

Replication of our experiment in an industrial environment could increment
the validation of our work, as it would extend the results to new contexts, where
model-driven approaches could be compared with other development approaches
(e.g., software product lines and agile methods), also considering factors that do
not play a role in an academic environment. In addition, other effects related to
software development may be studied, such as, e.g., effectiveness with respect to
faults during development. In this case, empirical evaluations with users and in-
spection tests should be planned in order to collect relevant metrics for assessing

5 R - http://www.r-project.org/
6 RKWard - http://rkward.sourceforge.net/

A Quantitative Analysis of Model-Driven Code Generation 333

the degree to which the developed applications reach the goals of effectiveness,
efficiency and subjective satisfaction from the point of view of their end users.

A package containing the tools, materials and more details about the experi-
ment steps is available atwww.dc.ufscar.br/∼paulo.papotti/EXPERIMENT.zip

and can be used by researchers and practitioners to help them perform new exper-
iments related to our study.

3.6 Participants’ Opinion

We analysed the participant’s opinion in order to evaluate the impact of using
the approaches considered in the experiment. After the experiment operation,
all students received two evaluation forms with multiple-choice questions with
empty spaces for them to report on their perception of the manual coding and
code generation approaches.

After the participants filled in both questionnaires, the answers were analysed
and some interesting results were obtained. When asked if they encountered
difficulties in the development of the proposed tasks when they followed the
manual coding approach, 54% of the participants reported having difficulties,
32% mentioned partial difficulties and only 14% had no difficulties. In contrast,
when asked the same question with respect to the code generation approach,
71% reported not having any difficulty, 11% mentioned partial difficulties, and
only 18% of all participants had total difficulty in completing the tasks. Figure 5
shows charts that visualise the levels of difficulty faced by the participants.

Fig. 5. Perceived difficulty of participants for both approaches

Figure 5 shows a decrease in the perceived difficulty when the participants
used code generation. When following the manual coding approach, 86% of the
participants had some kind of difficulty (total or partial), while for the code
generation approach this value fell to 29%. Therefore, we believe that the mech-
anisms for code generation were essential to facilitate the task of the participants,

334 P.E. Papotti et al.

since there has been an increase of 57% in the percentage of participants who
developed the proposed task without any difficulties.

The most common difficulties pointed out by the participants when they fol-
lowed the manual coding approach are: (1) too much effort spent on coding; (2)
problems related to the language; and (3) mistakes they made due to lack of
attention. In contrast, the most common difficulties faced by participants when
using code generation are: (1) lack of practice with the use of generators; and
(2) poor integration between the generators and the IDE used for development.

Since all participants stated that the code generation approach assisted them
in performing the development task, they were also asked to mention the advan-
tages of this approach when compared with manual coding. Figure 6 summarises
the results of this enquiry, showing that 92.86% of the participants mentioned
the generation of part of the application code as the biggest advantage of the
code generation approach. Other advantages that have been mentioned are the
increased focus on modeling (71.43%), the ease to perform future maintenance
(53.56%) and others (7.14%).

Fig. 6. Advantages of code generation pointed out by participants

3.7 Validity Threats

Whenever an experiment is performed, the validity of its results should be as-
sessed. An experiment may have its results put at risk and invalidated for differ-
ent reasons depending on the way it was conducted. Therefore, the conditions
for validity should be considered since the initial stages of the experiment. The
main types of validity that should be considered are: conclusion validity, inter-
nal validity, construct validity and external validity. All these validities were
considered in our experiment.

A Quantitative Analysis of Model-Driven Code Generation 335

Conclusion Validity. Different precautions were taken to ensure the conclu-
sion validity of the experiment. We used a parametric statistical test (paired
t-test), which is suitable for evaluating the factor “development approach” with
treatments “code generation” and “manual coding”.

The normality of the collected data was confirmed before using the paired t-
test through the Shapiro-Wilk normality test (Figure 4) with a significance level
of at least 5%. However, to reinforce and ensure the validity of results, we applied
the Wilcoxon non-parametric test, an alternative test to the paired t-test, which
does not require that the collected data are normally distributed. In this case,
the results pointed to the same direction as the paired t-test, confirming the
rejection of the null hypothesis.

Furthermore, to increase the validity of the conclusion, the data collected by
participants (hour and minutes) do not dependent on human judgement and are
quite reliable, even though they were collected by the participants themselves.

Finally, the heterogeneity of the experience level of the participants was
treated by grouping them in blocks (groups) with similar average experience
level.

Internal Validity. The experiment was conducted by undergraduate students
of the Computer Science and Computer Engineering academic programs at the
final stage (third and fourth academic years) of their study, who are well ac-
quainted with software development. Therefore, we are confident that these stu-
dents are representative for the population of software developers.

Furthermore, a questionnaire was used to characterize the participants of the
experiment by capturing their profile and their average experience level. This
information was used to assign them to homogeneous groups of similar average
experience level.

Construct Validity. The goal of the proposed experiment was to compare two
different approaches to software development and their impact on the time spent
on the development task by groups of participants. The data on the time spent
by the groups were collected during the development of a sample application
using both approaches in order to perform this comparison.

In order to avoid any interference in the behaviour of the participants, the
metrics and calculations that were used on the collected data were not disclosed
to the participants, so that they would keep their focus on the development task
in the most spontaneous way as possible, instead of seeking opportunities to get
results that would favour or harm the experiment.

External Validity. Our experiment was conducted in a computerized labo-
ratory, equipped with the items necessary to perform the development task,
including the tools and technologies used in software development in industrial
environments, such as Java tools and the Eclipse IDE. The experiment was com-
pletely performed in a period of about 3 hours, so that the results have not been
affected by excessive fatigue or boredom of the participants.

336 P.E. Papotti et al.

4 Related Work

A study of the impact of MDD adoption in large scale projects is presented
in [12], in which different characteristics of a large industrial project were in-
vestigated in which MDD was applied in its pure form. The study focused on
the analysis of the size and complexity of models produced in the project, con-
sidering metrics related to quality and modeling efforts. Similarly, three case
studies related to the implementation of the MDE in a industrial environment
are presented in [13]. The study highlights the importance of social, technical
and organizational requirements for the successful adoption of model-driven soft-
ware development in practice. The authors used questionnaires, interviews and
observation to collect data from industrial professionals. Challenges and barriers
related to the adoption of MDD were discussed in [14], based on the authors’
experience in different industrial and academic projects. A quantitative analy-
sis with preliminary results from the adoption of a tool intended for software
maintenance in the MDD context is reported in [15].

Our work is closely related to the work on practical experiments with model-
driven software development mentioned above, and especially the ones related to
the use of code generation mechanisms. However, unlike most related work, our
study has a strong focus on quantitative statistical analysis of real data collected
by the participants of the experiment. Furthermore, the results of our work have
a more limited scope, and are specifically related to the use of code generation
from models, aiming at a deeper analysis within the proposed scenario.

5 Final Remarks

This paper presented the results of a quantitative analysis of an experiment in
which the use of mechanisms for code generation from models in software devel-
opment has been evaluated. The population of participants in the experiment was
composed of undergraduate students of the last years from UFSCar who devel-
oped an application based on ProgradWeb system, following both a development
approach based on manual coding, as with code generation from models. We col-
lected data about the time spent on the development task in both cases. From
the data collected, the analysis revealed an average of 90.98% reduction in devel-
opment time, considering the conditions of the experiment. In addition, the code
generation approach contributed to reduce the difficulties encountered by 57% of
the participants.

The results achieved in this paper reaffirm the benefits of approaches that
use model-driven code generation, especially for the development of CRUD web
applications. Productivity increase and difficulties reduction during development
were the main points we explored in our experiment. Our study directly evaluates
the benefits of MDD and quantifies the achieved gains. Although the study was
conducted in a university environment, the results are valid and may be used in
other research projects (respecting our adopted conditions) that aim at making
further progress in the related research areas.

A Quantitative Analysis of Model-Driven Code Generation 337

Finally, some topics for further work include: perform the experiment de-
scribed in this paper again in an industrial environment; perform other experi-
ments to compare code generation from models with other approaches that are
not model-based; and evaluate the effectiveness of development by analysing the
faults found by the groups during the experiment.

Acknowledgments. We thank the National Counsel of Technological and Sci-
entific Development (CNPq) for sponsoring our research in the context of the
INCT-MACC.

References

1. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering, FOSE 2007, pp. 37–54. IEEE
Computer Society, Washington, DC (2007)

2. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

3. van Deursen, A., Klint, P.: Little languages: little maintenance. Journal of Software
Maintenance 10, 75–92 (1998)

4. Bhanot, V., Paniscotti, D., Roman, A., Trask, B.: Using domain-specific modeling
to develop software defined radio components and applications. In: Proceedings of
the 5th OOPSLA Workshop on Domain-Specific Modeling, San Diego, CA, USA
(2005)

5. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37, 316–344 (2005)

6. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering: an introduction. Kluwer Academic Publishers,
Norwell (2000)

7. Pressman, R.: Software Engineering: A Practitioner’s Approach, 6th edn. McGraw-
Hill, Inc., New York (2005)

8. Conradi, R., Basili, V., Carver, J., Shull, F., Travassos, G.: A pragmatic documents
standard for an experience library: Roles, documen, contents and structure (2001)

9. Travassos, G., Gurov, D., Amaral, E.: Introdução à engenharia de software exper-
imental. UFRJ (2002)

10. Shapiro, S., Wilk, M.: An analysis of variance test for normality (complete sam-
ples). Biometrika 52(3/4), 591–611 (1965)

11. Montgomery, D.: Design and analysis of experiments. Wiley (2008)
12. Heijstek, W., Chaudron, M.: Empirical investigations of model size, complexity

and effort in a large scale, distributed model driven development process. In: 35th
Euromicro Conference on Software Engineering and Advanced Applications, SEAA
2009, pp. 113–120 (August 2009)

13. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices
in industry. In: Proceedings of the 33rd International Conference on Software En-
gineering (ICSE), pp. 633–642. ACM (2011)

14. Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M., Gilani, W.: MDE
adoption in industry: Challenges and success criteria. In: Chaudron, M.R.V. (ed.)
MODELS 2008. LNCS, vol. 5421, pp. 54–59. Springer, Heidelberg (2009)

15. Ricca, F., Leotta, M., Reggio, G., Tiso, A., Guerrini, G., Torchiano, M.: Using
unimod for maintenance tasks: An experimental assessment in the context of model
driven development. In: 2012 ICSE Workshop on Modeling in Software Engineering
(MISE), pp. 77–83 (June 2012)

	A Quantitative Analysis of Model-Driven CodeGeneration through Software Experimentation
	1 Introduction
	2 Principles of Experimentation
	3 Performed Experiment
	3.1 Definition
	3.2 Planning
	3.3 Experiment Execution
	3.4 Results Analysis and Interpretation
	3.5 Discussion of Results
	3.6 Participants’ Opinion
	3.7 Validity Threats

	4 Related Work
	5 FinalRemarks
	References

