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ABSTRACT
CPU-FPGA heterogeneous acceleration platforms have shown
great potential for continued performance and energy efficiency im-
provement for modern data centers, and have captured great atten-
tion from both academia and industry. However, it is nontrivial for
users to choose the right platform among various PCIe and QPI
based CPU-FPGA platforms from different vendors. This paper
aims to find out what microarchitectural characteristics affect the
performance, and how. We conduct our quantitative comparison
and in-depth analysis on two representative platforms: QPI-based
Intel-Altera HARP with coherent shared memory, and PCIe-based
Alpha Data board with private device memory. We provide multi-
ple insights for both application developers and platform designers.

1. INTRODUCTION
In today’s data center design, power and energy efficiency have

become two of the primary constraints. The increasing demand
for energy-efficient high-performance computing has stimulated a
growing number of heterogeneous architectures that feature hard-
ware accelerators or coprocessors, such as GPUs (Graphics Pro-
cessing Units), FPGAs (Field Programmable Gate Arrays), and
ASICs (Application Specific Integrated Circuits). Among various
heterogeneous acceleration platforms, the FPGA-based approach
is considered to be one of the most promising directions, since
FPGAs provide low power and high energy efficiency, and can be
reprogrammed to accelerate different applications. For example,
Microsoft has designed a customized FPGA board called Catapult
and deployed it in its data center [16], which improved the rank-
ing throughput of the Bing search engine by 2x. In other words, the
number of servers can be reduced by 2x with each new CPU-FPGA
server consuming only 10% more power.

Motivated by FPGAs’ high energy efficiency and reprogramma-
bility, industry vendors, such as Microsoft, Intel/Altera, Xilinx,
IBM and Convey, are providing various ways to integrate high-
performance FPGAs into data center servers. We have classified
modern CPU-FPGA acceleration platforms in Table 1 according
to their physical integration and memory models. Traditionally,
the most widely used integration is to connect an FPGA to a CPU
via PCIe, with both components equipped with private memory.
Many FPGA boards built on top of Xilinx or Altera FPGAs use
this way of integration because of its extensibility. The customized
Microsoft Catapult board integration is such an example. Another
example is the Alpha Data FPGA board [1] with Xilinx FPGA
fabric that can leverage the Xilinx SDAccel development environ-
ment [2] to support efficient accelerator design using high-level
programming languages, including C/C++ and OpenCL. More-
over, vendors like IBM tend to support a PCIe connection with
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Table 1: Classification of modern CPU-FPGA platforms
Separate Private Memory Coherent Shared Memory

PCIe Peripheral
Interconnect

Alpha Data board [2],
Microsoft Catapult [16] IBM CAPI [19]

Processor
Interconnect N/A Intel-Altera HARP (QPI) [13],

Convey HC-1 (FSB) [4]

a coherent shared memory for easier programming. For exam-
ple, IBM has been developing the Coherent Accelerator Processor
Interface (CAPI) on POWER8 [19] for such an integration, and
has used this platform in the IBM data engine for NoSQL [3].
More recently, closer integration becomes available using a new
class of processor interconnects such as Front-Side Bus (FSB) and
the newer QuickPath Interconnect (QPI), and provides a coherent
shared memory, such as the FSB-based Convey machine [4] and,
the latest Intel-Altera Heterogeneous Architecture Research Plat-
form (HARP) [13] that targets data centers.

The evolvement of various CPU-FPGA platforms brings up two
challenging questions: 1) which platform should we choose to gain
better performance and energy efficiency? and 2) how can we de-
sign an optimal accelerator on a given platform? There are nu-
merous factors that can affect the choice and optimization, such
as platform cost, programming models and efforts, logic resource
and frequency of FPGA fabric, CPU-FPGA communication latency
and bandwidth, to name just a few. While some of them are easy
to figure out, others are nontrivial, especially the communication
latency and bandwidth between CPU and FPGA under different
integration. One reason is that there are few publicly available doc-
uments for newly announced platforms like HARP1. More impor-
tantly, those architectural parameters in the datasheets are often ad-
vertised values, which are usually difficult to achieve in practice.
Actually, sometimes there could be a huge gap between the ad-
vertised numbers and practical numbers. For example, the adver-
tised bandwidth of the PCIe Gen3 x8 interface is 8GB/s; however,
our experimental results show that the PCIe-equipped Alpha Data
platform can only provide 1.6GB/s PCIe-DMA bandwidth using
OpenCL APIs implemented by Xilinx (see Section 3.2.1). Quan-
titative evaluation and in-depth analysis of such kinds of microar-
chitectural characteristics could aid CPU-FPGA platform users to
accurately predict (and optimize) the performance of a candidate
accelerator design on a platform, and make the right choice. Fur-
thermore, it could also benefit CPU-FPGA platform designers for
identifying performance bottlenecks and providing better hardware
and software support.

Motivated by those potential benefits to both platform users and
designers, this paper aims to discover what microarchitectural char-
acteristics affect the performance of modern CPU-FPGA platforms,
and evaluate how they will affect that performance. We conduct our
quantitative comparison on two representative modern CPU-FPGA
platforms to cover both integration dimensions, i.e., PCIe-based vs.
QPI-based, and private vs. shared memory model. One is the re-
cently announced QPI-based HARP with coherent shared memory,
and the other is the commonly used PCIe-based Alpha Data with
separate private memory. We quantify each platform’s CPU-FPGA
communication latency and bandwidth with in-depth analysis, and
1For simplicity, in the rest of this paper, we will use HARP for the
Intel-Altera HARP platform, and Alpha Data for the Alpha Data
board integrated with a Xeon CPU.



Bandwidth

La
te

n
cy

  L
ow

er
 la

te
nc

y

hi
gh

er
 b

an
dw

id
th

PCIe (160us, 1.6GB/s)

QPI (355ns, 7.0GB/s)

Device DRAM (542ns, 9.5GB/s)

Figure 1: Summary of CPU-FPGA communication bandwidth and
latency (not to scale) for PCIe-based and QPI-based platforms
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Figure 2: Decision tree to choose the right CPU-FPGA platform

derive insights for both platform users and designers. To demon-
strate how theses insights can be leveraged to optimize accelerator
designs, we further conduct two case studies in real applications
like matrix multiplication and high-throughput sequencing [18].

In summary, this paper makes the following contributions.
1. The first quantitative study on the microarchitectures of two rep-

resentative modern PCIe and QPI based CPU-FPGA accelera-
tion platforms, with results summarized in Fig. 1.

2. An in-depth analysis of the big gap between advertised and
practically achievable performance (Section 3), and five insights
for both application developers to improve accelerator designs
and platform designers to improve platform support (Section 4).

3. A decision tree (Fig. 2) for easy choice of the platforms: 1)
QPI-based HARP has lower latency, and is better for applica-
tions with fine-grained CPU-FPGA interaction; 2) nevertheless,
PCIe-based Alpha Data can catch up for coarse-grained inter-
action with additional code transformations to hide the latency;
3) furthermore, PCIe-based Alpha Data is better for bandwidth-
hungry applications with high FPGA_DRAM reuse ratio.

2. BACKGROUND
A high-performance interconnect between host processor and

FPGA is crucial to the overall performance of CPU-FPGA plat-
forms. In this section, we first summarize existing CPU-FPGA
architectures with typical PCIe and QPI interconnect. Then we
present the private and shared memory models of different plat-
forms. Finally we discuss related work.

2.1 Common CPU-FPGA Architectures
Typical PCIe-based CPU-FPGA platforms feature Direct Mem-

ory Access (DMA) and private device DRAM (Fig. 3(a)). To in-
terface with external network and memory, a memory controller IP
and a PCIe endpoint with a DMA IP are required to be implemented
on the FPGA, in addition to user-defined accelerator function units
(AFUs). Fortunately, vendors have provided hard IP solutions to
enable efficient data copy and faster development cycles. For ex-
ample, Xilinx releases device support for the Alpha Data card [1]
in the SDAccel development environment [2]. As a consequence,

users can focus on designing application-related AFUs and easily
swap them into the device support to build customized CPU-FPGA
acceleration platforms.

Intel HARP brings the FPGA one step closer to the processor
via QPI where an accelerator hardware module (AHM) occupies
the other processor socket in a 2-socket motherboard. By using
QPI interconnect, data coherency is maintained between the last-
level cache (LLC) in the processor and the FPGA cache. As shown
in Fig. 3(b), an Intel QPI IP that contains a 64KB cache is neces-
sary to handle coherent communication with the processor, and a
system protocol layer (SPL) is introduced to provide address trans-
lation and request reordering to user-defined AFUs with virtual ad-
dressing. Specifically, a page table of 1024 entries, each associated
with a 2MB page (2GB in total), is implemented in SPL, which is
loaded by the kernel driver. Though current addressable memory is
limited to 2GB and private high-density memory for FPGA is not
supported, this low-latency coherent interconnect has distinct im-
plications for programming models and overall processing models
of CPU-FPGA platforms.

2.2 CPU-FPGA Memory Models
Accelerators with physical addressing effectively adopt a sep-

arate private address space paradigm (Fig. 3(c)). Data shared
between the host and device must be allocated in both memo-
ries, and explicitly copied between them by the host program.
Although copying array-based data structures is straightforward,
moving pointer-based data structures such as linked-lists and trees
presents complications. Also, separate private address spaces cause
data replication, resulting in extra latency and overhead. In this pa-
per the evaluated Alpha Data platform falls into this category.

With tighter FPGA integration to the processor, the ideal case
would be to have a unified shared address space between the CPU
and FPGA. In this case (Fig. 3(c)), instead of allocating two copies
in both host and device memories, only a single allocation is neces-
sary. This has a variety of benefits, including the elimination of ex-
plicit data copies, pointer semantics and increased performance of
fine-grained memory accesses. HARP provides some of the conve-
nience of a unified shared address space. It enables zero-copy using
pinned host memory which allows a device to directly access and
process data on that memory location. However, developers must
rely on special APIs, rather than normal C or C++ allocation (e.g.,
malloc/new), to allocate pinned memory space. Also, pinned
memory is much more expensive to allocate and de-allocate, which
can lead to poor performance on small transfer sizes. In general,
full support for shared virtual address requires architecture and op-
erating system support for address translation on FPGAs, which
has yet to be fully explored on CPU-FPGA platforms.

2.3 Related Work
In this section we discuss three major categories of related work.
First, in addition to the commodity CPU-FPGA integrated plat-

forms in Table 1, there is also a large body of academic work that
focuses on how to efficiently integrate hardware accelerators into
general-purpose processors. Yesil et al. [21] surveyed existing
custom accelerators and integration techniques for accelerator-rich
systems in the context of data centers, but without a quantitative
study as we did. Chandramoorthy et al. [5] examined the perfor-
mance of different design points including tightly coupled acceler-
ators (TCAs) and loosely coupled accelerators (LCAs) customized
for computer vision applications. Cotat et al. [9] specifically ana-
lyzed the integration and interaction of TCAs and LCAs at differ-
ent levels in the memory hierarchy. CAMEL [7] featured recon-
figurable fabric to improve the utilization and longevity of on-chip
accelerators. All these studies were done using simulated environ-
ments instead of commodity CPU-FPGA platforms.

Second, a number of approaches have been proposed to make ac-
celerators more programmable by supporting virtual shared mem-
ory. NVIDIA introduced “unified virtual addressing” beginning
with the Fermi architecture [15]. The Heterogeneous System Ar-
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Figure 3: CPU-FPGA system architectures and memory models

chitecture Foundation announced heterogeneous Uniform Memory
Accesses (hUMA) that will implement the shared virtual address
paradigm in future heterogeneous processors [17]. Virtual shared
memory support for CPU-FPGA platforms has been explored in
[19, 13]. CAPI [19] enables the FPGA to participate as a cache
coherent peer to general-purpose cores. However, the underlying
PCIe bus favors bandwidth-oriented applications instead of appli-
cations with low-latency and fine-grained interactions. This paper
covers both the separate private memory model (Alpha Data) and
virtual shared memory model (HARP). In our future work, we will
further evaluate the CAPI platform as well.

Third, there is also numerous work that evaluates modern CPU
and GPU microarchitectures. For example, Fang et al. [10] eval-
uated the memory system microarchitectures on commodity mul-
ticore and many-core CPUs. Wong et al. [20] evaluated the mi-
croarchitectures on modern GPUs. This work is the first to eval-
uate the microarchitectures of modern CPU-FPGA platforms with
an in-depth analysis.

3. CHARACTERIZATION OF CPU-FPGA
MICROARCHITECTURES

This work aims to reveal how the underlying microarchitectures,
i.e., processor or peripheral interconnect, and shared or private
memory model, affect the performance of these CPU-FPGA plat-
forms. To achieve this goal, in this section, we quantitatively study
those microarchitectural characteristics, with a key focus on the ef-
fective bandwidth and latency of CPU-FPGA communication on
two representative platforms: HARP2 and Alpha Data.

3.1 Experimental Setup
To measure the CPU-FPGA communication bandwidth and la-

tency, we design and implement our own microbenchmarks, based
on the Xilinx SDAccel SDK 2015.1.5 [2] for Alpha Data and In-
tel AALSDK 4.1.7 [12] for HARP. Each microbenchmark consists
of two parts: a host program and a computational kernel. Follow-
ing each platform’s typical programming model, we use the C lan-
guage to write the host programs for both platforms, and describe
the kernel design using OpenCL for Alpha Data and Verilog HDL
for HARP.

The hardware configurations of Alpha Data and HARP in our
study are listed in Table 2.

Table 2: Configurations of Alpha Data and HARP
Platform Alpha Data HARP

Host CPU Xeon E5-2620v3@2.40GHz Xeon E5-2680v2@2.80GHz
Host Memory 64GB DDR3-1600 96GB DDR3-1600
FPGA Fabric Xilinx Virtex 7@200MHz Altera Stratix V@200MHz

CPU↔ FPGA PCIe Gen3 x8, 8GB/s Intel QPI, 8GT/s
Device Memory 16GB DDR3-1600 N/A

3.2 Effective Bandwidth
2Results in this publication were generated using pre-production
hardware or software, and may not reflect the performance of pro-
duction or future systems.
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Figure 4: Bandwidth of PCIe-DMA and device DRAM in Alpha
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3.2.1 Effective Bandwidth for Alpha Data
Alpha Data’s CPU-FPGA communication includes two pro-

cesses: PCIe-DMA transfer between host memory and device
(FPGA) memory, and device memory access. We measure the ef-
fective bandwidths with various payload sizes for both processes,
as shown in Fig. 4. Since the bandwidths for both directions of
PCIe-DMA transfer are almost identical (less than 4% difference),
we only present the unidirection PCIe-DMA bandwidth in Fig 4.

While Fig. 4 illustrates a relatively high private DRAM band-
width (9.5GB/s for read, 8.9GB/s for write3); the PCIe-DMA band-
width (1.6GB/s) reaches merely 20% of PCIe’s advertised band-
width (8GB/s). That is, the expectation of a high DMA bandwidth
with PCIe is far away from being fulfilled.

The first reason is that there is non-payload data overhead for the
useful payload transfer [11]. In a PCIe transfer, a payload is split
into small packages, each one equipped with a header. Along with
the payload packages, there are also a large number of packages for
control purposes transferred through PCIe.

Another important reason is that a PCIe-DMA transaction in-
volves not only PCIe transfer, but also host buffer allocation and
host memory copy [8]. The host memory stores user data in a
pageable (unpinned) space from which the FPGA cannot directly
retrieve data. A page-locked (pinned) memory buffer then serves
as a staging area for PCIe transfer. When a PCIe-DMA transac-
tion starts, a pinned buffer is first allocated in the host memory,
followed by a memory copy of pageable data to this pinned buffer.
The data is then transferred from the pinned buffer to device mem-
ory through PCIe. These three steps – buffer allocation, host mem-
ory copy and PCIe transfer – are sequentially processed in Alpha
Data, which significantly deceases the PCIe-DMA bandwidth.

Next, we quantitatively evaluate the huge PCIe-DMA bandwidth
gap step by step, with results shown in Fig. 5.
1. The non-payload data transfer lowers the theoretical PCIe band-

width to 6.8GB/s from the advertised 8GB/s [11].
2. Nevertheless, the highest achieved effective PCIe-DMA band-

width without buffer allocation and host memory copy is only
3.8GB/s. The possible reason is that the device-side DMA
FPGA IP which connects the device memory to the PCIe bus

3If not specifically indicated, the bandwidth appearing in the rest
of this paper refers to the maximum achievable bandwidth.
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might prevent the PCIe bandwidth from being fully exploited,
thus further decreasing the PCIe-DMA bandwidth in practice.

3. The host memory copy overhead further degrades the PCle-
DMA bandwidth to 2.7GB/s.

4. The buffer allocation overhead degrades the final effective
PCIe-DMA bandwidth to only 1.6GB/s.

3.2.2 Effective Bandwidth for HARP
HARP’s CPU-FPGA communication involves only one step:

host memory access through QPI; therefore, we just measure a
set of effective read and write bandwidths for different payload
sizes, as shown in Fig. 6. We can see that both the read and write
bandwidths of HARP (7.0GB/s, 4.9GB/s) are much higher than
the PCIe-DMA bandwidth of Alpha Data (1.6GB/s). Therefore,
the QPI-based platform does demonstrate a higher effective band-
width than the PCIe-based platform in terms of directly retrieving
a payload from the host memory to the FPGA. However, Alpha
Data’s private local memory read and write bandwidths (9.5GB/s,
8.9GB/s) are higher than those of HARP’s shared remote memory
access (7.0GB/s, 4.9GB/s). This phenomenon indicates an oppor-
tunity for a platform with separate private memory to outperform
another platform with coherent shared memory. In other words, if
an accelerator is able to smartly use the private memory as a short-
cut for accessing the host memory, it will probably obtain a similar
or even higher effective bandwidth in a separate private memory
platform than in a coherent shared memory platform (see insight 1
in Section 4).

We need to mention that HARP’s FPGA contains a 64KB cache
for coherency purposes [13]. Each CPU-FPGA communication
will first go through this cache and then go to the host memory if a
cache miss happens. Therefore, HARP’s CPU-FPGA communica-
tion follows the classic cache access pattern. Since the bandwidth
study mainly focuses on large payloads, our microbenchmarks sim-
ply flush the cache before accessing any payload to ensure all re-
quests go through the host memory. The bandwidths illustrated in
Fig. 6 are, more accurately, miss bandwidths. Section 3.3 discusses
the cache behaviors in detail.

3.3 Effective Latency
As described in Section 3.2.2, HARP’s CPU-FPGA communica-

tion falls into the classic cache access pattern. A cache transaction
is typically depicted by its hit time and miss penalty. This depic-
tion, however, does not take the payload size into account. In our
study, we first follow the traditional methodology for cache study
to quantify the hit time and the miss penalty of the cache. Table 3
lists the hit and miss latencies for cache read and write accesses. A
noteworthy phenomenon is the long hit time – 70ns (14 FPGA cy-
cles) for read hit and 60ns (12 FPGA cycles) for write hit – in this
64KB cache. We investigate this phenomenon by decomposing the
hit time into three parts — address translation, cache access and
transaction reordering — and measuring the elapsed time of each
step, as shown in Table 4. The data demonstrate a possibly exorbi-
tant price (up to 100% extra time) paid for address translation and
transaction reordering. Given this small but long-latency cache, it
is extremely hard, if not impossible, for an accelerator to harness

the caching functionality.
Then we compare the effective latencies among Alpha Data’s

DMA access (through PCIe), Alpha Data’s device memory ac-
cess and HARP’s host memory access (through QPI)4. As shown
in Fig. 7, for fine-grained data transfers (< 4KB), the QPI trans-
fer expresses two orders-of-magnitude lower latency compared to
the PCIe transfer. Also, when a payload is smaller than 4KB, the
QPI latency will be even smaller than that of Alpha Data’s private
DRAM access. This phenomenon implies that a QPI-based plat-
form is preferable for applications with fine-grained CPU-FPGA
interaction.

In addition, we can see that the PCIe-DMA latency is almost con-
stant (160µs) when the payload size is small; it increases linearly
when the payload size grows above a certain threshold (around
64KB). This indicates that a PCIe-DMA transaction has a setup
overhead of approximately 160µs, which dominates the overall la-
tency for small payload transfers.

Table 3: CPU-FPGA access latency in HARP
Access Type Latency (ns)

Read Hit 70
Write Hit 60
Read Miss avg: 355
Write Miss avg: 360

Table 4: Hit latency breakdown in HARP
Access Step Read Latency (ns) Write Latency (ns)

Address Translation 20 20
Cache Access 35 35

Transaction Reordering 15 5

4. ANALYSIS AND INSIGHTS
Based on our quantitative studies, we now analyze how these mi-

croarchitectural characteristics can affect the performance of CPU-
FPGA platforms, and propose five insights for both platform users
to optimize their accelerator designs, as well as platform designers
to improve the hardware and software support in future CPU-FPGA
platform development.

4.1 Insights for Platform Users
Insight 1: In terms of effective bandwidth, PCIe Gen3 x8
(1.6GB/s) < QPI-based shared (remote) memory (7GB/s) < FPGA
private device memory (9.5GB/s). Bounded by the low PCIe band-
width, a PCIe-based platform generally reaches lower CPU-to-
FPGA effective bandwidth than a QPI-based one. The higher pri-
vate memory bandwidth, however, does provide opportunities for a
PCIe-based platform in some cases. For example, given 1GB input
data sent to the device memory through PCIe, if the FPGA acceler-
ator iteratively reads the data for a large number of times, then the
low PCIe bandwidth will be amortized by the high private mem-
ory bandwidth, and the effective CPU-to-FPGA bandwidth will be
nearly equal to the private memory bandwidth which is higher than
the QPI-based remote memory access bandwidth. Therefore, the
4For simplicity, we mainly discuss the CPU-to-FPGA read case,
the observation is similar for the FPGA-to-CPU write case.



data reuse of FPGA’s private DRAM determines the effective CPU-
to-FPGA bandwidth of a PCIe-based platform (Alpha Data), and
whether it can achieve higher effective bandwidth than a QPI-based
platform (HARP).

Quantitatively, we define the FPGA_DRAM reuse ratio, r, as:

r =
FPGA_DRAM data access size

PCIe transfer data size
Then, the effective CPU-to-FPGA bandwidth for a PCIe-based

platform can be defined as:

BW_CPU_FPGA =
1

1

r ∗BWPCIe
+

1

BWFPGA_DRAM

According to the above formula, the higher r is, the better
the CPU-to-FPGA bandwidth is, and the better the performance
is. This could serve as an guideline to optimize the accelerator
design in a PCIe-based platform. It is worth noting that since
FPGA_BRAM reuse is typically important for FPGA design op-
timizations, the above finding suggests that accelerator designers
using a PCIe-based platform need to consider both FPGA BRAM
reuse and DRAM reuse. Moreover, by comparing this effective
CPU-to-FPGA bandwidth of a PCIe-based platform to the DRAM
bandwidth of a QPI-based platform, we can get a threshold of
FPGA_DRAM reuse ratio, r_threshold (7.8 in our case). If the ratio
is larger than r_threshold, a PCIe-based platform achieves higher
bandwidth; otherwise a QPI-based platform wins. This could serve
as an initial guideline for accelerator designers to choose a more
suitable platform when accelerating bandwidth hungry applica-
tions. We will demonstrate the impact of the FPGA_DRAM reuse
ratio in the matrix multiplication case study in Section 5.1.
Insight 2: In terms of effective latency, PCIe Gen3 x8 > FPGA
private device memory > QPI-based shared (remote) memory for
fine-grained (< 4KB) data access. Particularly, QPI-based memory
access is two orders-of-magnitude faster than PCIe-based access
due to the cumbersome PCIe-DMA setup overhead (160µs).

Therefore, a QPI-based platform is preferred for latency-
sensitive applications, especially those that require frequent (ran-
dom) fine-grained CPU-FPGA communication. Some examples
like high-frequency trading (HFT), online transaction processing
(OLTP), or autonomous driving might benefit from HARP’s low
communication latency. We will conduct a case study in Sec-
tion 5.1 to demonstrate this benefit even if in the not-so latency-
sensitive matrix multiplication application.
Insight 3: A PCIe-based platform can still catch up with a (much)
lower-latency QPI-based platform with careful designs in many
cases if not all cases. However, this requires additional code trans-
formations to hide the CPU-FPGA communication latency, provid-
ing that the communication can be hidden by computation. Two
techniques we study are double buffering and batch processing.

First, CPU-FPGA communication in a PCIe-based platform in-
cludes multiple steps: PCIe transfer, FPGA device DRAM access,
and BRAM access. A well-known technique to hide FPGA DRAM
access latency is double-buffer: while the FPGA kernel is pro-
cessing one BRAM buffer, DRAM is transferring data to another
BRAM buffer. We further extend this to hide the PCIe transfer
overhead as well. The performance improvement of these two
double-buffers together will be demonstrated in the matrix multi-
plication study in Section 5.1.

Second, we propose the batched processing technique to amor-
tize the significant PCIe-DMA setup overhead. For computational
kernels that run in very short time but are frequently invoked, the
significant PCIe-DMA setup overhead (160µs) can kill the total
benefit and even degrade the system performance. High-throughput
DNA sequencing is one example with this characteristic: its com-
putational kernels take less than 1ms to execute, but are invoked
billions of times. Therefore, we propose to batch a number of short
requests into one kernel to reduce the PCIe communication over-
head. Detailed results are shown in Section 5.2.

4.2 Insights for Platform Designers
Insight 4: There is still large room for improvement to bridge the
gap between the practically achieved PCIe bandwidth (1.6GB/s)
and the theoretical one (6.8GB/s).

On one hand, the host-side PCIe driver and the device-side DMA
IP might still have room to be improved (from 3.8GB/s to 6.8GB/s
or close). On the other hand, the OpenCL buffer allocation and host
memory copy processes also have room for improvement (from
1.6GB/s to 3.8GB/s). Next we discuss how to solve the latter one
in more detail.

One possible solution is to grant users fine-grained control to di-
rectly manipulate pinned memory space. For example, both HARP
SPL and unified virtual addressing (CUDA for GPU) provide effi-
cient and flexible API support to allow software developers to op-
erate on allocated pinned memory arrays or objects just like those
allocated by malloc/new [15].

Currently we are working closely with Xilinx to provide feed-
back for their SDAccel development environment improvement.
Insight 5: The long latency (70ns) and small size (64KB) of the
FPGA-side cache post a serious challenge for users to take advan-
tage of it. There is great opportunity for improvement of FPGA-
side cache in future HARP products.

Conventionally, people only use software-managed scratch-
pad/buffer (BRAM) in an FPGA to achieve fast access (1 FPGA
cycle or close). It is rewarding to see hardware-managed cache
support in HARP since caches have proven to be very useful in con-
ventional CPU and recent GPU architectures (like FPGAs, GPUs
used to have scratchpad only, but now have both), in the sense of
reducing programming efforts while achieving high performance.
However, current FPGA cache access latency is too long compared
to the 1-cycle scratchpad access. First, the virtual-to-physical ad-
dress translation introduces a 20ns overhead, which should be fur-
ther optimized. Second, even without this overhead, the pure cache
access latency is 7 FPGA cycles (35ns), which should be improved
to around 2 or 3 cycles. And these two could happen in parallel.

These optimizations have been done extensively in a conven-
tional CPU and the old wisdom should be leveraged in the new
HARP. Considering such a long cache access latency, this 64KB
cache size is too cumbersome and almost useless compared to the
MB-size BRAM with 1-cycle access. Currently we are working
closely with Intel to provide feedback for their future HARP prod-
uct improvements.

5. CASE STUDIES
To demonstrate the usefulness of our proposed insights, we

conduct two case studies that utilize those insights (for platform
users) to optimize the accelerator designs: one is the well-known
dense matrix multiplication kernel, and the other is a real-world
application—high-throughput DNA sequencing [18].

5.1 Dense Matrix Multiplication
We study a systolic-array-based dense matrix multiplication

(MM) [14] on both HARP and Alpha Data to demonstrate insights
1 to 3. To demonstrate the difference in CPU-FPGA communi-
cation, we make the computation kernel on two FPGAs the same:
both have 128 floating-point MM processing elements (PE), and
each PE handles tiled matrix of size 1282 and runs at 200MHz.

First, to demonstrate the impact of FPGA_DRAM reuse ratio
proposed in insight 1, we vary the matrix size as shown in the x-
axis (bottom) in Fig. 8. Since MM kernel decomposes the matrix
into sub-blocks of size 1282, matrix data is read more repeatedly
from DRAM as the size of the whole matrix becomes larger. The
PCIe transfer, on the other hand, only needs to be done once re-
gardless of the matrix size. Thus, larger matrix size leads to larger
FPGA_DRAM reuse ratio, shown in the x-axis (top) in Fig. 8. As
shown in Fig. 8, in the initial Alpha Data implementation (AD), the
performance (y-axis, measured as Giga FLoating-point OPerations
per Second, GFLOPS) increases with larger FPGA_DRAM reuse
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ratio (matrix size).
Second, as shown in Fig. 8, the HARP implementation has a

similar performance regardless of the matrix size, and most of the
cases it has better performance than the Alpha Data one (insight
2). The reason is that the data access latency is faster and almost
uniform in the QPI-based shared memory model. We should note
that even with FPGA_DRAM reuse ratio as high as 43, Alpha Data
almost achieves similar (but not better) performance to HARP. The
reason is that even under this ratio, the bandwidth requirement itself
is only about 1.6GB/s (i.e., not bandwidth hungry), which can be
satisfied by HARP as well.

Third, the gap between Alpha Data and HARP can be solved by
overlapping the PCIe transfer with the kernel execution (insight 3).
By allocating two sets of buffers for the matrix (double buffer), the
kernel may perform MM on one set of buffer, while OS transfers the
next matrix data through the PCIe to the other buffer. Fig. 8 shows
that the reference design with this optimization almost retains its
highest performance even with small FPGA_DRAM reuse ratio.
And the performance of this reference design is competitive with
the HARP implementation.

5.2 High-Throughput DNA Sequencing
To demonstrate the usefulness of insight 3, i.e., batching to hide

the FPGA kernel invocation overhead including OpenCL buffer
allocation and PCIe setup, we further conduct a case study on a
real-world application: high-throughput DNA sequencing. High-
throughput DNA sequencing is a typical application that has the
following two features: 1) the aggregate computational kernel exe-
cution time is extremely long; 2) the execution time of an individual
kernel is extremely short. From the perspective of computer sci-
ence, an instance of high-throughput DNA sequencing is to solve
billions of approximate string matching problems, where each takes
less than 1 millisecond on average, but tens of hours in total, on a
24-thread CPU. Apparently, if we naively design an accelerator to
solve one approximate string matching problem and invoke the ac-
celerator billions of times in Alpha Data (160µs setup overhead), it
takes over 40 hours to just invoke Alpha Data’s FPGA kernel.

As mentioned in insight 3, we can apply batch-processing, i.e.,
for each invocation, it processes not only one but many matching
problems. We port the FPGA design proposed in [6] into Alpha
Data and evaluate the average execution time of each computation
kernel for different batch sizes. As shown in Fig. 9, a larger batch
size does alleviate the invoked FPGA kernel overhead and signifi-

cantly shortens the execution time of each computation kernel. The
real computation kernel execution time should only be around 2.19
µs, when the batch size is around 1024. However, when there is
no batching, i.e., batch size is 1, the computation kernel time is
around 220 µs, where the overhead is far larger than the real FPGA
kernel execution time. This demonstrates that batch-processing can
greatly hide the latency of computation kernel invocation overhead.

6. CONCLUSION AND FUTURE WORK
To the best of our knowledge, this is the first paper to evaluate

and analyze the microarchitectural characteristics of state-of-the-
art PCIe and QPI based CPU-FPGA platforms in depth. We found
that a QPI-based platform expresses impressive advantage on fine-
grained (< 4KB) communication latency, and the FPGA_DRAM
reuse ratio determines which platform supplies larger effective
bandwidth. With a careful design, a PCIe-based platform can catch
up with a QPI-based platform in many cases. We also observed
that both platforms still have large room for improvement, and dis-
cussed possible solutions. We believe these insights can aid plat-
form users in designing better accelerators, and facilitate the matu-
rity of CPU-FPGA platforms. In our future work, we will conduct
a similar study on the PCIe-based CAPI platform with coherent
shared memory. To help the community measure other platforms,
we also plan to release our microbenchmarks in the near future at
http://vast.cs.ucla.edu/ubench-cpu-fpga.
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