
A Quantitative Approach to Reductions in
Secure Computation

Amos Beimel1 and Tal Malkin2

1 Department of Computer Science, Ben-Gurion University
beimel@cs.bgu.ac.il

2 Department of Computer Science, Columbia University
tal@cs.columbia.edu

Abstract. Secure computation is one of the most fundamental crypto-
graphic tasks. It is known that all functions can be computed securely
in the information theoretic setting, given access to a black box for some
complete function such as AND. However, without such a black box, not
all functions can be securely computed. This gives rise to two types of
functions, those that can be computed without a black box (“easy”) and
those that cannot (“hard”). However, no further distinction among the
hard functions is made.
In this paper, we take a quantitative approach, associating with each
function f the minimal number of calls to the black box that are required
for securely computing f . Such an approach was taken before, mostly
in an ad-hoc manner, for specific functions f of interest. We propose
a systematic study, towards a general characterization of the hierarchy
according to the number of black-box calls. This approach leads to a
better understanding of the inherent complexity for securely computing
a given function f . Furthermore, minimizing the number of calls to the
black box can lead to more efficient protocols when the calls to the black
box are replaced by a secure protocol.
We take a first step in this study, by considering the two-party, honest-
but-curious, information-theoretic case. For this setting, we provide a
complete characterization for deterministic protocols. We explore the hi-
erarchy for randomized protocols as well, giving upper and lower bounds,
and comparing it to the deterministic hierarchy. We show that for every
Boolean function the largest gap between randomized and deterministic
protocols is at most exponential, and there are functions which exhibit
such a gap.

1 Introduction

The ability to compute functions securely is one of the most fundamental cryp-
tographic tasks. Very roughly, two-party secure computation (on which we focus
in this paper) involves two parties, Alice and Bob, who want to perform some
computation on their inputs without leaking any additional information which
does not follow from the intended output.

It is known (c.f. [4,9,10,22]) that not all functions can be computed securely
in the information-theoretic setting. However, Goldreich and Vainish [16] and

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 238–257, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Quantitative Approach to Reductions in Secure Computation 239

Kilian [18] proved that every function can be computed securely in the informa-
tion theoretic setting, given a black box that computes some complete function,
such as Oblivious Transfer or the AND function. This type of a reduction is
useful, because the security of the protocol is automatically maintained (com-
putationally) when the black box is replaced by any computationally secure im-
plementation of the function (such implementations exist under computational
assumptions).1 Moreover, such reductions provide a qualitative separation be-
tween “easy” functions that can be securely computed without calling the black
box, and the “hard” functions which are the rest. Indeed, the notion of a re-
duction plays a central role at the heart of cryptographic foundations research
(similarly to its central role in complexity theory). For example, black-box re-
ductions between different cryptographic primitives were given in [6,11,12,19,7,
5,13,21].

A long line of research has focused on studying, in various settings, which
functions belong to the “easy” category above, and which are “hard”, as well
as studying which functions are complete (which in some cases turned out to
be the same as all hard functions). In particular, these questions have been
answered (with full characterization) for Boolean functions [10], in the two-party
model [22,1,3], and completeness results appear in [19,21,3,20]. However, these
works do not give rise to a hierarchy of different degrees of hardness, as they
do not distinguish among the different functions that can be computed with a
specific complete (say AND) black box.

Such a hierarchy exists (for the information-theoretic reduction setting), by a
result of Beaver [2], showing that for all k, there are functions that can be securely
computed with k executions of the AND black box but cannot be computed with
k − 1 executions of the black box. We explore the hierarchy in this work.
Our Goals. In this paper, we propose to take a quantitative approach, classify-
ing functions by how many calls to the black box are required to compute them
securely. Minimizing the number of calls to the black box is especially desired
as it can lead to more efficient protocols when the calls to the black box are
replaced by a secure protocol. This problem was previously investigated in an
ad-hoc manner, for specific functions of interest (e.g., different forms of OT). In
most cases, only upper bounds on the number of calls were given. Two exceptions
are Beaver [2] who proved that securely computing n outputs of

(2
1

)
OT with un-

related inputs requires at least n calls to
(2
1

)
OT, and Dodis and Micali [14] who

proved that securely computing
(
n
1

)
OT requires at least n − 1 calls to

(2
1

)
OT

(see also [24]).
We propose a systematic study of the quantitative approach to reductions

in secure computation, towards a deeper understanding of the inherent com-
plexity of securely computing functions. In particular, focusing for the sake of
presentation on the AND black box, we ask the following questions:

– Is there a well-defined rich hierarchy of functions based on how many ANDs
are required to securely compute them?

1 In this paper we consider the honest-but-curious model where modular composition
is fairly straightforward. In the malicious model modular composition holds as well.
See [8] for definitions and results on modular composition in the malicious model.

240 A. Beimel and T. Malkin

– Given a function, can we give upper bounds on how many ANDs suffice to
securely compute it? Can we give lower bounds?

– Can we give a combinatorial characterization of the functions with a certain
minimal number of ANDs?

These problems are interesting in several settings. For the first problem,
Beaver [2] provided a negative answer (the hierarchy collapses) in the compu-
tational setting, and a positive answer in the information theoretic setting, for
randomized protocols (and for randomized functions, as well). Recently, Ishai et
al. [17] proved that the hierarchy collapses in the random oracle model as well.

We note that by results of [16], lower bounds on the number of ANDs imply
circuit lower bounds, meaning that it would be very hard to prove super-linear
lower bounds in n for functions of the form f : {0, 1}n × {0, 1}n → {0, 1}.
However, it would be very interesting to prove such linear lower bounds and to
try to explore tighter connections with circuit complexity and communication
complexity2 of the functions.
Our Results. We start the investigation by studying the information-theoretic,
two-party, honest-but-curious setting, where the output of the AND black box is
received only by Alice. Unless otherwise noted, we also consider protocols with
perfect correctness and security. For this setting we prove the following results:
Deterministic Protocols. For deterministic protocols are we show:

– A complete combinatorial characterization of the minimal number of ANDs
required to securely compute f (the characterization is a recursive one, based
on the truth-table of f).

For finite functions one can find the optimal protocol using our characterization.
However, in general, our characterization does not lead to an efficient algorithm
that determines how many ANDs are required to compute a function securely.
This motivates the following results:

– A simple, explicit upper bound on the number of ANDs required for f . This
upper bound may be exponential in the size of the input.

– For Boolean functions f we prove that the above upper bound is tight by
showing a matching lower bound. This implies that for some functions, an
exponential number of ANDs is necessary.

Randomized Protocols. For randomized protocols are we show:

– An exponential gap using randomization: There are functions for which the
number of ANDs required in a randomized protocol is exponentially smaller
than the number of ANDs required in a deterministic protocol. We further
exhibit a tradeoff between the number of random bits used and the number
of ANDs required for one such example (Inner Product) where there is an
exponential gap.

2 Naor and Nissim [25] give some connections between the communication complexity
of a function and the communication complexity for securely computing the function.
However, translating them into our model, the number of ANDs is exponential in
the communication complexity.

A Quantitative Approach to Reductions in Secure Computation 241

– A lower bound: We prove a lower bound, depending on the function truth-
table, on the number of ANDs required by any secure randomized protocol.
Using this lower bound, we prove that for Boolean functions the gap cannot
be super exponential: For any randomized protocol with q ANDs, there is a
deterministic protocol for the same function with at most 2q ANDs.

– Gap already with 4 ANDS: There is a function that can be securely com-
puted by a randomized protocol with 4 ANDs, however, every deterministic
protocol securely computing it requires at least 6 ANDs.

– No gap with 1 AND: The functions that can be securely computed with one
call to the AND black box are the same as in the deterministic case with
one AND (for which an explicit characterization is given).

– Gap between perfect and non-perfect protocols: There are functions that
require at least a linear (in the input length) number of ANDs for any perfect
(randomized) protocol, but can be computed with k ANDs (for any k),
achieving a protocol with 1/2k probability of error and statistical distance.

– Lower bound for non-perfect protocols: We show that the one-way random-
ized communication complexity in the shared-randomness model is a lower
bound for the number of ANDs required by non-perfect protocols.

Extensions to Other Models and Complete Functions. As explained
earlier, we choose the simplest model of secure computation to consider our
quantitative approach. Some of our results carry over directly to other models,
and some questions still remain open in the other models. We hope that our paper
would be a starting point for further research which will clarify the situation in
more complex models as multi-party protocols, and the protocols that are secure
against malicious parties.

Specifically, only Alice gets the output of the function while Bob should
not learn any information on the input of Alice. This one-sided model is the
correct model when considering malicious two-party secure computation where
the first party to get the output can quit the protocol preventing the other party
from getting the output. In the honest-but-curious model, the one-sidedness of
the output is not the only possibility; we choose it since we want the simplest
model. Some results on the two-sided model, where Alice gets an output fAlice

and Bob gets an output fBob, appear in the full version of this paper.
Furthermore, we state all our results counting the number of ANDs needed.

However, every finite function (a function with a constant number of inputs) can
be computed securely using a constant number of ANDs, and the AND function
can be computed with one call to any complete function (this is implied by results
of [3]). So, the results of this paper carry to every finite complete function, up
to a constant factor. For example, the

(2
1

)
OT function can be computed securely

with two ANDs. Thus, all lower bounds on the number of ANDs translate into
the same lower bounds on the number of

(2
1

)
OT up-to a factor of 2.

Circuit Complexity vs. Number of ANDs in Secure Computation. As
explained above the circuit complexity of a function f : {0, 1}n×{0, 1}n → {0, 1}
provides an upper bound on the number of ANDs required for secure computa-
tion of f by a randomized protocol. It might seem tempting to think that the
circuit complexity characterizes the number of ANDs. However, this is not true.

242 A. Beimel and T. Malkin

There are functions with high circuit complexity which require few or no ANDs.
For example, f can be a function only of Alice’s input with high circuit com-
plexity which Alice can compute securely without any communication or calls to
the AND black box. Furthermore, our results show that circuit complexity does
not characterizes the number of ANDs required to securely compute a function
by a deterministic protocol (this number of ANDs can be larger or smaller than
the circuit complexity).

2 Preliminaries

In this section we define one-sided information-theoretic secure two-party com-
putation in the honest-but-curios model. In our definition we allow the parties
to execute a black box to a pre-defined function.

Protocols. We consider a two-party protocol with a pair of parties (Turing
Machines), Alice and Bob. They have an access to a black box BB which com-
putes some function BB : D1 × D2 → D3. Briefly, on inputs (x, y), where x
is a private input for Alice and y a private input for Bob, and random inputs
(rA, rB), where rA is a private random tape for Alice and rB is a private random
tape for Bob, protocol (Alice, Bob) computes its output in a sequence of rounds
of three types: Alice’s rounds, Bob’s rounds, and black-box rounds. In an Alice’s
round (respectively, Bob’s round) only Alice (respectively, only Bob) is active
and sends a message (i.e., a string) that will become an available input to Bob
(respectively, to Alice) in the next round. In a black-box round Alice puts a
value a ∈ D1 to a register and Bob puts a value b ∈ D2 to a register. In the end
of this round Alice gets the value BB(a, b) in a third register, and Bob gets no
information. A computation of Alice and Bob ends in a round in which Alice
computes a private output. In this paper we focus on an AND black box, where
AND: {0, 1} × {0, 1} → {0, 1} and AND(a, b) = a∧b.

Transcripts, Views, and Outputs. Letting E be an execution of protocol
(Alice, Bob) on inputs (x, y) and random inputs (rA, rB), we make the following
definitions:

– The transcript of E consists of the sequence of messages exchanged by Alice
and Bob, and is denoted by TRANS(x, rA, y, rB);

– The black-box outputs of E consists of the outputs of the black box during
the execution of the protocol, and is denoted by BLACK-BOX(x, rA, y, rB);

– The view of Alice consists of the quadruplet

(x, rA, TRANS(x, rA, y, rB), BLACK-BOX(x, rA, y, rB)),

and is denoted by VIEWAlice(x, rA, y, rB);
– The view of Bob consists of (y, rB , TRANS(x, rA, y, rB)), and is denoted by

VIEWBob(x, rA, y, rB).

We consider the random variables TRANS(x, ·, y, rB), TRANS(x, rA, y, ·),
and TRANS(x, ·, y, ·), respectively obtained by randomly selecting rA, rB , or

A Quantitative Approach to Reductions in Secure Computation 243

both, and then outputting TRANS(x, rA, y, rB). We also consider the similarly
defined random variables for VIEWAlice and VIEWBob.

In the model we consider, the two-party honest-but-curious model, each party
is curious, that is, it may try to deduce as much information possible from its
own view of an execution about the other’s private input. However, each party
is honest, that is, it scrupulously follows the instructions of the protocol. In such
conditions, it is easy to enforce the correctness condition (for securely computing
a function f), but not necessarily the privacy conditions. Note that, unlike secure
computation in the malicious model, in the honest-but-curious model we can
separate the security requirement into two separate requirements: correctness
and privacy.

In the following definition we consider partial functions f : A×B → C∪{∗},
where A, B and C are some finite sets and ∗ /∈ C. If f(x, y) = ∗ then we say
that f is undefined on x, y. The reason that we consider partial functions is
that in Section 3 we use them to characterize the number of ANDs required to
securely compute fully-defined functions. To define the privacy in a protocol we
consider the statistical distance between two distributions Y0, Y1 which is defined
by DIST(Y0, Y1) = 1

2

∑
y |Pr[Y0 = y]− Pr[Y1 = y]|.

Definition 1 (Secure Computation). Let f : A×B → C∪{∗} be a function,
and 0 ≤ ε, δ ≤ 1. A protocol (Alice, Bob) (ε, δ)-securely computes f , if the
following conditions hold:

Correctness. For every x ∈ A and every y ∈ B, if f(x, y) �= ∗, then the proba-
bility that the output of Alice with VIEWAlice(x, ·, y, ·) is f(x, y) is at least
1− ε, where the probability is taken over rA and rB.

Bob’s Privacy. ∀x ∈ A, ∀y0, y1 ∈ B, ∀rA, if f(x, y0) = f(x, y1) �= ∗ then

DIST(VIEWAlice(x, rA, y0, ·), VIEWAlice(x, rA, y1, ·)) ≤ δ.

Alice’s Privacy. ∀x0, x1 ∈ A, ∀y ∈ B, ∀rB, if f(x0, y) �= ∗ and f(x1, y) �= ∗,
then

DIST(VIEWBob(x0, ·, y, rB), VIEWBob(x1, ·, y, rB)) ≤ δ.

A protocol securely computes f if it (0, 0)-securely computes f . In this case,
we also say that the protocol computes f with perfect security. A protocol is
deterministic if Alice’s and Bob’s moves in the protocol do not depend on their
random inputs.

Notice that the requirements in Alice’s privacy and in Bob’s privacy are not
symmetric. We require that Alice’s privacy is protected for all inputs where f
is defined. As Alice learns the output of f , we require that Bob’s privacy is
protected only when f(x, y0) = f(x, y1) �= ∗.

The main measure we consider is the number of calls to the black box during
a protocol.

Definition 2 (Number of ANDs). The number of calls to the AND black box
in a protocol is the maximum over the inputs x and y and random inputs rA and
rB of the number of black-box rounds in the execution with x, y, rA, and rB.

244 A. Beimel and T. Malkin

Beimel, Micali, and Malkin [3], following Kushilevitz [22], characterize which
functions can be computed securely without any calls to the AND black box.
Their characterization uses the following notation and definitions. We represent
a function f : A×B → C ∪ {∗} by a matrix Mf whose rows are labeled by the
elements of A, columns are labeled by the elements of B, and Mf (x, y) = f(x, y).

Definition 3 (Insecure Minor). A matrix contains an insecure minor if there
are x0, x1, y0, y1 such that M(x0, y0) = M(x0, y1) �= ∗, M(x1, y0), M(x0, y1) �= ∗,
and M(x1, y0) �= M(x0, y1).

The following theorem of [3] states that a function can be computed securely
without ANDs iff it does not contain an insecure minor.

Theorem 1 ([3]). The function f can be computed by a perfectly-secure ran-
domized protocol with 0 ANDs if and only if the function f can be computed
by a deterministic protocol with 0 ANDs if and only if Mf does not contain an
insecure-minor.

The next definition is helpful for characterizing the number of required ANDs,
by defining a relation on the columns of the matrix Mf .

Definition 4 ([22]). The relation ∼C on the columns of a matrix M is defined
as follows: y, y′ ∈ B satisfy y ∼C y′ if there exists some x ∈ A such that
M(x, y) = M(x, y′) �= ∗. The equivalence relation ≡C on the columns of M
is defined as the transitive closure of the relation ∼C . That is, y ≡C y′, for
y, y′ ∈ B, if there are y1, . . . , y� such that y ∼C y1 ∼C y2 ∼C . . . ∼C y� ∼C y′.

In the rest of this section we prove various properties of secure protocols used
throughout the paper. We next relate the number of ANDs required to securely
compute a function, to the number of ANDs required to securely compute the
functions restricted to each equivalence class. The proof of the following lemma
appears in the full version of the paper.

Lemma 1. Let f : A×B → C∪{∗} be a function, let B1, . . . , Bk the equivalence
classes of the relation ≡C , and define fi : A × Bi → C ∪ {∗} as the restriction
of f to Bi The function f can be computed securely by a randomized protocol
(respectively, deterministic protocol) with q ANDs if and only if each function
fi can be computed securely by a randomized protocol (respectively, deterministic
protocol) with q ANDs.

For the results in this paper, we need the following standard result. In-
formally, the lemma asserts that if the columns of Mf are equivalent then in
perfectly-secure protocols no information is disclosed by the communication, and
all the information that Alice needs to compute the function is passed through
the outputs of the black box alone.

Lemma 2. Let f : A×B → C be a function s.t. all columns of Mf are equivalent
and let c be any communication transcript that can be exchanged between Alice
and Bob in a protocol with perfect privacy. Then for every x, x′ ∈ A and every
y, y′ ∈ B it holds that Pr[c = TRANS(x, ·, y, ·)] = Pr[c = TRANS(x′, ·, y′, ·)],
where the probability is taken over the random inputs of Alice and Bob.

A Quantitative Approach to Reductions in Secure Computation 245

The proof of Lemma 2 is omitted. Recall that in any deterministic protocol,
for every x, y there is one possible communication transcript. Thus, by Lemma 2,
if all the columns of Mf are equivalent, then the same transcript will be ex-
changed for every pair of inputs. Thus, in deterministic protocols Alice and Bob
can discard the communication and only execute the AND black boxes.

Lemma 3. Let f : A × B → C be a function s.t. all columns of Mf are equiv-
alentIn every deterministic secure protocol there is exactly one communication
transcript that is exchanged between Alice and Bob for all inputs x, y.

3 Deterministic Protocols

In this section we examine how many ANDs are needed to compute a function
securely by a deterministic protocol. We start by giving an exact characteriza-
tion of the functions that can be securely computed by deterministic protocols
with q ANDs. This characterization proves that there is a complete hierarchy
of functions according to the number of ANDs. In particular, we establish that
every function can be computed securely by a deterministic protocol provided
that enough ANDs are executed. This should be contrasted to the malicious
model where it is known that randomization is required [14].

For finite functions one can find the optimal protocol using our character-
ization. However, in general, our characterization does not lead to an efficient
algorithm that determines how many ANDs are required to compute a function
securely. Therefore, in Theorem 3 we give a simple and explicit upper bound
on the number of ANDs that are required. Finally, we show in Theorem 4 that
this upper bound is tight for Boolean functions. We note that our upper bound
seems to be impractical since the number of ANDs can be exponential in the
length of the input. However, at least for Boolean functions, our lower bound
proves that this is unavoidable if we consider deterministic protocols.

To characterize what can be done with q ANDs by a deterministic protocol,
we note that first Alice and Bob call the AND black box once, and then execute
a protocol with q−1 ANDs to compute a related function described in Figure 1.
For the first execution there are sets A1 ⊆ A and B1 ⊆ B such that Alice
gets output one from the AND black box if and only if x, y ∈ A1 × B1. We
have two requirements: (1) Alice does not learn any extra information from
the output of the first AND black box, and (2) Alice and Bob can compute
the following function fA1,B1 using q − 1 ANDs. Formally, given a function f :
A × B → C ∪ {∗} and two sets A1 ⊆ A and B1 ⊆ B we define a function
fA1,B1 : (A ∪ (A1 × {1}))×B → C ∪ {∗}, described in Figure 1, as follows:

1. fA1,B1(x, y) = f(x, y) for every x ∈ A \A1 and every y ∈ B.
2. fA1,B1(x, y) = f(x, y) for every x ∈ A1 and every y ∈ B \B1.
3. fA1,B1(x, y) = ∗ for every x ∈ A1 and every y ∈ B1.
4. fA1,B1(〈x, 1〉, y) = ∗ for every x ∈ A1 and every y ∈ B \B1.
5. fA1,B1(〈x, 1〉, y) = f(x, y) for every x ∈ A1 and every y ∈ B1.

246 A. Beimel and T. Malkin

B1

∗

∗

A1

A1 × {1}

B1

f fA1,B1

A1

(1)

(2) (3)

(4) (5)

Fig. 1. The matrices of the functions f and fA1,B1 . The numbers in the description
of fA1,B1 refer to the different cases in its definition.

Theorem 2. Let f : A×B → C∪{∗} be a function such that all columns of Mf

are equivalent according to ≡C . The function f can be computed securely with
q calls to the AND black box if and only if there are sets A1 ⊆ A and B1 ⊆ B
such that the following two requirements hold:

1. For every x ∈ A1, every y0 /∈ B1, and every y1 ∈ B1 such that
f(x, y0), f(x, y1) �= ∗ it holds that f(x, y0) �= f(x, y1), and

2. The function fA1,B1 can be computed securely with q − 1 calls to the AND
black box.

Proof. We first prove that the above conditions are sufficient. Assume the con-
ditions hold. The secure protocol for computing f proceeds as follows:

– Alice and Bob call the AND black box where Alice puts 1 iff x ∈ A1 and
Bob put 1 iff y ∈ B1.

– Alice and Bob execute the secure protocol for fA1,B1 with q − 1 calls to the
AND black box, where Bob’s input is y and Alice’s input is 〈x, 1〉 if the AND
output is 1 and x otherwise.

– Alice’s output is the output of the protocol for fA1,B1 .

We first argue that the protocol is correct. On one hand, if the output of
the AND black box is 1, then x ∈ A1 and y ∈ B1. Thus, by the definition of
fA1,B1 it holds that fA1,B1(〈x, 1〉, y) = f(x, y), and the output of the protocol is
correct. On the other hand, if the output of the AND black box is 0, then either
x /∈ A1 or y /∈ B1. Thus, fA1,B1(x, y) = f(x, y), and the output of the protocol
is correct. Note that the protocol never tries to evaluate fA1,B1 on inputs where
it is not defined.

To argue that the protocol is perfectly-secure, first note that Bob gets no
messages during the first step of the protocol, and he does not get any informa-
tion from the black box. This guarantees Alice’s Privacy. To argue about Bob’s
privacy, note that Alice learns information about y from the first call to the AND
black box only if x ∈ A1. In this case, by Condition 1, Alice learns if y ∈ B1
from the output of the function f itself. Thus, this step is secure, and Alice is
allowed to know the output of the black box and the output of fA1,B1 which as

A Quantitative Approach to Reductions in Secure Computation 247

argued is equal to the desired output of f . Finally, as the protocol for fA1,B1 is
secure, the entire protocol for f is secure.

We next prove that the conditions of the theorem are necessary. Assume that
f can be computed securely with q ANDs. By Lemma 3, we can assume w.l.o.g.
that Alice and Bob do not exchange any messages, and all information Alice
gets is through the outputs of the calls to the AND black boxes. Let A1 and B1
be the sets of inputs of Alice and Bob respectively for which they put 1 to the
first call to the AND black box. Condition 1 must hold or otherwise Alice learns
extra information from the answer of the first AND. As for Condition 2, we can
use the following protocol to compute fA1,B1 securely with q − 1 ANDs: Alice
and Bob execute the protocol for f with the following two changes: (1) If Alice’s
“real” input is 〈x, 1〉 for x ∈ A1 then she replaces it by the input x, and (2) the
first call to the AND black box is not executed. Instead, Alice simulates it by
considering its output as 1 if her input is 〈x, 1〉 and 0 otherwise. The rest of the
protocol is executed without any changes. As the protocol for f uses q ANDs,
and Alice and Bob do not use the first AND, the resulting protocol for fA1,B1

uses q − 1 ANDs as required. ��
Our next theorem gives a simple upper bound on the number of ANDs re-

quired to compute a function securely. The proof of this upper-bound gives a
simple secure protocol for computing the function.

Theorem 3. Let f : A × B → C ∪ {∗} be a function. The function f can be
computed securely by a deterministic protocol with |A| �log |C|� ANDs.

Proof. First assume that f is Boolean, i.e., C = {0, 1}. We next describe a
protocol which uses |A| ANDs. Assume the input of Alice is x and the input
of Bob is y. For every z ∈ A, Alice and Bob execute the AND black box,
where Alice puts 1 to the AND if x = z and 0 otherwise, and Bob puts f(z, y)
to the AND. Alice outputs the output of the AND corresponding to x, that is,
AND(1, f(x, y)) = f(x, y) as required. Bob does not gain any information during
this protocol (since there is no communication and only Alice gets the output of
the black box) and Alice only gains f(x, y).

If |C| > 2, then we consider the binary representation of f(x, y) (of length
exactly �log |C|�), and execute the above protocol for every bit of f(x, y). ��

The following theorem shows that the upper bound of Theorem 3 is tight for
every Boolean function. In the theorem we assume that there is some y0 such
that f(x, y0) = 0 for every x ∈ A. This assumption is without loss of generality
since Alice learns the output of the protocol and knows x, thus she can use any
renaming of the outputs in every row.

Theorem 4. Let f : A×B → {0, 1} be a Boolean function such that all the rows
of Mf are distinct and non-constant, there is some y0 ∈ B such that f(x, y0) = 0
for every x ∈ A, and all of its columns are equivalent according to ≡C . Then,
every deterministic protocol computing f securely must use at least |A| ANDs.

Proof. Fix any deterministic protocol that computes f securely. By Lemma 3, we
can assume, without loss of generality, that Alice and Bob do not exchange any

248 A. Beimel and T. Malkin

messages and the view of Alice includes her input and the outputs of the black
box. Consider any x ∈ A. Since f is Boolean there are exactly two views Alice
should see given x: one view for every y such that f(x, y) = 0 and another view for
every y such that f(x, y) = 1. For every x, consider the first black-box call where
Alice can get two different answers. As argued above one output corresponds to
the case where f(x, y) = 0 and the other output corresponds to the case where
f(x, y) = 1. Thus, Alice can deduce the output of the function f(x, y) from this
black-box answer and, therefore, we say that this is the significant call to the
AND black box for x.

Assume, towards contradiction, that for two different x0, x1 ∈ A the signifi-
cant call is the same. Recall that f(x0, y0) = f(x1, y0) = 0, and since the rows
corresponding to x0 and x1 are not the same, there is some y1 such that, w.l.o.g.,
f(x0, y1) = 0 while f(x1, y1) = 1. Bob has to put the same value to this signif-
icant call when he holds y0 and y1 or Alice would learn information when she
holds x0. This means that Alice cannot compute the correct value of f(x1, y0)
or f(x1, y1) since in both cases she gets the same information, contradiction.

To conclude, for every x ∈ A there is a unique significant call to the AND
black box, thus, there are at least |A| calls to the AND black box. ��

In the protocol implied by Theorem 3, Alice is non-adaptive as her inputs
to the AND black box depend only on her input and not on the outputs of
previous AND black boxes. In Theorem 4 we prove that for Boolean functions
this is optimal. However, the protocol implied by Theorem 2 is adaptive, and for
non-Boolean functions adaptively does help (namely the bound is not tight), as
shown in the following example. Consider the function f : {0, 1, 2}×{0, 1, 2, 3} →
{0, 1, 2} described in Figure 2. We next describe a secure protocol for f which

f 0 1 2 3
0 0 1 0 1
1 0 1 2 2
2 0 0 2 3

fA1,B1 0 1 2 3
0 0 1 0 1
1 0 1 ∗ ∗
2 0 0 ∗ ∗
〈1,1〉 ∗ ∗ 2 2
〈2,1〉 ∗ ∗ 2 3

The function f The function fA1,B1

Fig. 2. The functions f and fA1,B1 .

uses two ANDs. For the first AND, Alice puts 1 if x ∈ A1 = {1, 2} and Bob puts
1 if y ∈ B1 = {2, 3}. After this AND Alice and Bob need to securely compute
the function fA1,B1 described in Figure 2. Computing fA1,B1 is done using a
second AND where Alice puts 1 if x ∈ A2 = {0, 1, 〈2, 1〉} and Bob puts 1 if
y ∈ B2 = {1, 3}. After this AND, Alice can deduce the output of f from her
input and the outputs of the ANDs. In this protocol Alice is adaptive; with input
1, for example, she puts 1 to the second AND if the output of the first AND was
0 and she puts 0 otherwise.

A Quantitative Approach to Reductions in Secure Computation 249

4 Randomized Protocols

In this section we investigate the power of randomization in our setting. We show
that, in general, randomization helps: the gap between the number of ANDs
required by a randomized protocol and a deterministic one may be exponential.
We also quantify how much randomization can help, and study its limits. Finally,
we show that allowing a statistically secure protocol with some error probability
may significantly reduce the number of ANDs compared to the number required
by a perfect randomized protocol.

4.1 Randomization Helps

The following theorem, adapted from [16], establishes an upper bound on the
number of ANDs needed to securely compute a function, in terms of the num-
ber of gates in its circuit. Together with our characterization for deterministic
protocols in the previous section, the theorem proves that randomization helps,
as we elaborate below.

Theorem 5 ([16]). If f can be computed by a Boolean circuit with fan-in 2
whose size is s, then there is a perfectly-secure randomized protocol computing f
which uses 4s AND calls.

Proof. Theorem 5 is proved in [16] by having each of the parties additively secret-
share their inputs, and then processing the shares through each of the gates in
the circuit. Depending on the gate, the parties may need to use the primitive of
1-out-of-4 Oblivious Transfer, which can be implemented using four ANDs.

We next describe the protocol in our context. Alice and Bob compute the
function f one gate at a time, such that for each wire in the circuit, Alice and
Bob hold two random bits whose exclusive-or is the correct value for that wire
in a non-secure computation of the circuit (see Figure 3). For initialization, for
every variable xi held by Alice, the bits held by Alice and Bob respectively
are (sA, sB) where Alice holds the bit sA = xi and Bob holds the bit sB = 0.
The variables held by Bob are dealt symmetrically. We next explain how to
compute a Boolean gate G where the correct values of its inputs computed by
the circuit are s1 and s2 and the correct value of the output of the gate is
s3 = G(s1, s2). Before the computation of the gate Alice holds (s1A, s2A) and
Bob holds (s1B , s2B) such that s1 = s1A ⊕ s1B and s2 = s2A ⊕ s2B . At the
end of the computation Alice and Bob should hold random bits (s3A, s3B) such
that s3 = s3A ⊕ s3B . To compute the gate, Bob chooses a random bit s3B , and
computes the value of s3A for the 4 possible values (0, 0), (0, 1), (1, 0), and (1, 1)
of Alice’s inputs (s1A, s2A). That is, Bob computes for every a1, a2 ∈ {0, 1} the
value s3A = s3B ⊕ G(a1 ⊕ s1B , a2 ⊕ s2B). Thereafter, Alice and Bob perform
four ANDs, corresponding to the possible values of Alice’s inputs, where Alice
puts 1 to the AND execution corresponding to her true inputs (s1A, s2A), and
0 to the other three, and Bob puts the values of s3A he computed. For the final
gate application, Bob chooses s3B = 0, so that Alice’s output for that gate (in
the appropriate AND execution) is the output of the function. The correctness
and privacy of this protocol are easy to verify. ��

250 A. Beimel and T. Malkin

s1 = s1A ⊕ s1B s2 = s2A ⊕ s2B

G
gate

s3 = G(s1, s2) = s3A ⊕ s3B

Fig. 3. A secure evaluation of a gate G.

The above theorem applies for circuits with gates which are arbitrary Boolean
functions with fan-in 2. Depending on the circuit, the theorem can be optimized
to achieve a smaller number of ANDs, as some of the gates may require only
2 ANDs (when one of the incoming wires is from Bob’s initial inputs) or no
ANDs (when the gate computes exclusive-or). Such optimizations are used in
the following examples to obtain slightly better parameters than guaranteed by
a direct application of the theorem as stated.

We conclude that randomization helps for functions where the upper bound
promised by Theorem 5 for randomized protocols is smaller than the lower bound
established in Theorem 2 for deterministic protocols. We next provide a few
concrete examples, which exhibit when and how much randomization helps.

Example 1 (Inner Product IPn). Let IPn : {0, 1}n × {0, 1}n → {0, 1} be the
inner-product modulo 2 function, that is, IPn(x, y) = ⊕n

i=1xiyi. We show that
the function IPn can be computed with 2n ANDs using a perfect randomized
protocol, but requires at least 2n − 1 ANDs in any deterministic protocol.

Lemma 4. The function IPn can be securely computed with 2n ANDs using
a randomized protocol. Any deterministic protocol for securely computing IPn

requires at least 2n − 1 ANDs (and there is a deterministic protocol using this
number of ANDs).

Proof. Consider the following protocol on input x = x1, . . . , xn for Alice and
y = y1, . . . , yn for Bob. Bob chooses r1, . . . , rn−1 ∈ {0, 1}n uniformly at random
and sets rn ← ⊕n−1

i=1 ri. Then, for each i = 1, . . . , n, Alice and Bob run two
ANDs, as follows: a0

i ← ∧(1 − xi, ri) and a1
i ← ∧(xi, yi ⊕ ri). Alice outputs

⊕n
i=1a

xi
i = IPn(x, y). The claims about deterministic protocols for IPn follow

from Theorem 4 and Theorem 3. ��

As we will explain in Example 5, the number of ANDs in this protocol is tight
up to a constant, since every randomized protocol for IPn requires at least n/2
ANDs even if we allow errors and statistical privacy. We next show a tradeoff
between the number of random bits and the number of ANDs.

A Quantitative Approach to Reductions in Secure Computation 251

A randomized protocol for IP3↓(1,1,1) with 4 ANDs

Alice’s input: x1, x2, x3 where the number of variables with value 1 is ≤ 2.
Bob’s input: y1, y2, y3

Alice’s desired output: x1y1 ⊕ x2y2 ⊕ x3y3

Bob chooses r at random from {0, 1}.
Alice sets a = 1 iff exactly one of her inputs has value 1.
Alice and Bob execute the following 4 ANDs:

a1 ← ∧(x1, y1 ⊕ r), a2 ← ∧(x2, y2 ⊕ r),
a3 ← ∧(x3, y3 ⊕ r), a4 ← ∧(a, r).

Alice’s ouput: a1 ⊕ a2 ⊕ a3 ⊕ a4.

Fig. 4. A randomized protocol with 4 ANDs for a function requiring 6 ANDs in any
deterministic protocol.

Lemma 5. The function IPn can be securely computed using R−1 random bits
and R2�n/R� ANDs, for all 1 ≤ R ≤ n.

Proof. The protocol is a generalization of the protocol described in the proof of
Lemma 4. Denote n′ = �n/R�. Bob chooses R− 1 random bits r1, . . . , rR−1 and
sets rR ← ⊕R−1

i=1 ri. Then, for i = 0 to R−1 Alice and Bob compute the function
ai ← IP(〈xin′+1, . . . , x(i+1)n′〉, 〈yin′+1, . . . , y(i+1)n′〉)⊕ ri using the secure deter-
ministic protocol of Theorem 3, which uses 2�n/R� ANDs, where Alice’s input is
〈xin′+1, . . . , x(i+1)n′〉 and Bob’s input is 〈yin′+1, . . . , y(i+1)n′〉, ri. Alice outputs
the value ⊕R−1

i=0 ai which by the properties of IP and the choice of the ri’s is the
correct value. Since the first R − 1 random bits are chosen independently and
the deterministic IP protocol is secure, the protocol we construct is secure. ��

Example 2 (Restricted IP3). Consider the restricted-domain inner product func-
tion IP3, where Alice’s input cannot be x = (1, 1, 1), and denote it by IP3↓(1,1,1).
We show in Figure 4 that this function can be computed with 4 ANDs in a
randomized protocol with perfect privacy and correctness, but requires 6 ANDs
in any deterministic protocol. We note that 4 is the smallest number of ANDs
for which we can prove that randomization helps (in Section 4.3 we will see that
for one AND we can prove randomization does not help). We leave as an open
problem whether randomization helps or not for the case of 2 or 3 ANDs.

Lemma 6. The function IP3↓(1,1,1) can be securely computed with 4 ANDs in a
randomized protocol, but the minimal number of ANDs required by a determin-
istic protocol for this function is 6.

Example 3 (Equality EQn). Let EQn : {0, 1}n×{0, 1}n → {0, 1} be the equality
function, that is, EQn(x, y) = 1 iff x = y. We show below that the number of
ANDs required to compute the function EQn using a perfect deterministic pro-
tocol is exponential in n, while using a perfect randomized protocol this number

252 A. Beimel and T. Malkin

A randomized (imperfect) protocol with for EQn

Alice’s input: x = x1, . . . , xn ∈ {0, 1}n
Bob’s input: y = y1, . . . , yn ∈ {0, 1}n
Alice’s desired output: EQn(x, y)

Bob chooses k vectors r1, . . . , rk ∈ {0, 1}n uniformly at random,
Bob sends r1, . . . , rk ∈ {0, 1}n to Alice
Alice computes aj = IPn(x, rj) for j = 1, . . . , k, and sets a = a1, . . . , ak

Bob computes bj = IPn(y, rj) for j = 1, . . . , k, and sets b = b1, . . . , bk

Alice and Bob use the randomized prot. of Lemma 7 to compute EQk(a, b).
Alice’s ouput: the output of the protocol for EQk(a, b).

Fig. 5. A randomized protocol with O(k) ANDs, 1/2k error and 2/2k distance for
EQn.

is linear in n, and using a randomized protocol with small error probability and
statistical privacy, the number of ANDs is independent of n and depends only
on the allowed error and distance (which are exponentially small in the number
of ANDs). The specific lemmas are stated below.

Lemma 7. Any deterministic protocol computing EQn must use at least 2n

ANDs, and there is a deterministic protocl with this number of ANDs. Any
perfectly-secure randomized protocol computing EQn must use at least n ANDs,
and there exits such a protocol using O(n) ANDs.

Proof. Noting that the matrix for EQn is the identity matrix, the upper bound
for deterministic protocols follows directly from Theorem 3. The lower bound
for deterministic protocols follows from Theorem 4, since the matrix satisfies all
the conditions of the theorem (including the all-zero column, if we exchange the
roles of 0 and 1 outputs in one of the rows). The upper bound for randomized
protocols follows from Theorem 5, by noting that there is a Boolean circuit
with fan-in 2 and with O(n) gates that computes EQn. The lower bound for
randomized protocols follows from Theorem 6 below. ��

Lemma 8. For every k, the function EQn can be computed with O(k) ANDs by
a randimized protocol with 1/2k error and at most 1/2k statistical distance.

Proof. The protocl securely-computing EQn is described in Figure 5. The idea
of the protocol is to approximately compare the initial n-bit inputs by (exactly)
comparing k inner products of the inputs with random strings, which as we saw
can be done using O(k) ANDs. It is clear that if EQn(x, y) = 1 (i.e., the inputs
are equal) the protocol does not err. On the other hand, Pr[aj �= bj |EQn(x, y) =
0] = 1/2 for every j, and since the vectors rj are chosen independently at random,
Pr[EQk(a, b) = 1|EQn(x, y) = 0] = 1/2k, which establishes the error.

We next prove that the protocol has statistical privacy. Intuitively, Alice
learns information only when she gets an incorrect output. Formally, fix any
x, y, y′ ∈ {0, 1}n such that y �= y′ and EQn(x, y) = EQn(x, y′), and compute

A Quantitative Approach to Reductions in Secure Computation 253

the statistical distance between the view seen by Alice holding input x, when
executing the protocol with Bob’s input set to y or to y′ (we will denote the cor-
responding vectors computed in the protocol by (a, b) and (a′, b′) respectively).
Observe that if EQn(x, y) = 1, y and y′ must be identical. Thus, we only need to
consider the case where EQn(x, y) = 0, namely x, y, y′ are three different vectors.
The only information that Alice gets in the protocol which depends on Bob’s in-
put, is the output of the perfectly secure protocol for EQk(a, b) (or EQk(a′, b′)).
This implies that given this output is the same, the views are distributed iden-
tically. On the other hand, we can bound the probability that this output is not
the same, as follows.

Pr[EQk(a, b) �= EQk(a′, b′)|EQn(x, y) = 0]
≤ Pr[EQk(a, b) = 1|EQn(x, y) = 0] + [EQk(a′, b′) = 1|EQn(x, y) = 0] = 2/2k.

We may therefore conclude that the statistical distance between Alice’s views
for input (x, y) vs. (x, y′) is at most 1/2k. Finally, note that Bob does not receive
any messages in this protocol, so Alice’s perfect privacy follows immediately. ��

The number of ANDs used in the last lemma is independent of n, exhibit-
ing an inherent gap between perfect and imperfect protocols. In order to get
exponentially small statistical distance and error in this protocol, the number of
ANDs should still be set to be linear in n, though it may be smaller than n. Set-
ting the number of ANDs to be polylogarithmic in n will already give a negligible
statistical distance and error. This should be contrasted with the lower bounds
of n (or 2n) ANDs for perfect randomized (or deterministic, resp.) protocols for
this function.

4.2 How Much Does Randomization Help?

In the previous section we showed that randomization can help significantly
compared to deterministic protocols. In this section we consider the limitations
of randomized protocols. We first show lower bounds on the number of ANDs
required in randomized protocols. For a function f : {0, 1}n × {0, 1}n → {0, 1}n
our lower bound is at most n. Notice, that by Theorem 5 we cannot prove
super-linear lower-bounds on the number of calls to the AND black box for ex-
plicit functions unless we prove super-linear lower-bounds for circuit complexity
of explicit functions which is a long-standing open problem. We use our lower
bounds to show that for Boolean functions the gap in the number of calls to the
AND black box between deterministic protocols and randomized protocols with
perfect security can be at most exponential.

We start by giving two lower bounds on the number of ANDs in perfectly-
secure protocols. The proofs of these lower bounds is omitted for lack of space.

Theorem 6. Let f : A × B → C be a function s.t. all columns of Mf are
equivalent and no two columns are the same. The number of AND black box calls
in any perfectly-secure randomized protocol computing f is at least �log |B|�.

254 A. Beimel and T. Malkin

Example 4 (
(
n
1

)
OT). Consider the function

(
n
1

)
OT : {1, . . . , n}×{0, 1}n → {0, 1}

defined as
(
n
1

)
OT(i, 〈y1, . . . , yn〉) = yi. Theorem 6 proves that in any perfectly-

secure protocol for
(
n
1

)
OT the number of ANDs is at least n.3 This implies that

in any perfectly-secure protocol for
(
n
1

)
OT using an

(2
1

)
OT black box the number

of
(2
1

)
OT is at least n/2. This reproves the result of Dodis and Micali [14] up to

a factor of 2 (our proof does not use information theory).

Theorem 7. Let f : A × B → {0, 1} be a Boolean function s.t. all columns of
Mf are equivalent, no two rows of Mf are the same, and there is some y0 ∈ B
s.t. f(x, y0) = 0 for every x ∈ A. Then, the number of calls to the AND black
box in any perfectly-secure randomized protocol computing f is at least �log |A|�.

The next theorem states that for Boolean functions the gap in the number
of AND black-box calls between deterministic protocols and randomized pro-
tocols with perfect security is at most exponential. This seems to resemble the
simple derandomization of randomized algorithms, however this resemblance is
misleading (as executing a secure protocol with all possible random coins might
leek information). As an example of the difficulty, the gap can be much larger
for non-perfect randomized protocols. Another example is the malicious model
where randomization is essential (see, e.g., [14]). We prove the gap between ran-
domized and deterministic protocols by combining the lower bounds we proved
on randomized protocols and the upper bounds for deterministic protocols.

Theorem 8. Let f be a Boolean function. If there exists a perfectly-secure ran-
domized protocol computing f using q ANDs then there is a deterministic protocol
computing f with 2q ANDs.

Proof. By Lemma 1, the function f can be securely computed with q ANDs
if and only if every equivalence class of the columns of Mf can be computed
securely with q ANDs. Thus, by Theorem 7, the number of distinct rows in any
equivalence class is at most at most 2q. By Theorem 3, there is a deterministic
protocol securely computing every equivalence class of f using 2q ANDs, and
therefore, by Lemma 1, such protocol exists for f . ��

We next generalize Theorem 6 to protocols which might err with some prob-
ability. We first recall some definitions from communication complexity (for more
information on this subject see [23]). The one-round randomized communication
complexity in the public random coin model is defined as follows: Alice and Bob
each have a private input and they have a shared random input. Bob sends one
message to Alice, and Alice computes the output of the protocol (there are no
privacy requirements). The error of the protocol is the probability that Alice
outputs a value different than f(x, y). A protocol computes f with error ε if
for every inputs x, y its error is at most ε. Let Rpub,B→A

ε (f) be the number of
communication bits in the best such protocol computing f with error ε.
3 Using Theorem 9 below, one can prove that even in statistically-secure protocols for(

n
1

)
OT the number of ANDs is Ω(n).

A Quantitative Approach to Reductions in Secure Computation 255

Theorem 9. Let f : A×B → {0, 1} be a Boolean function s.t. all the columns
of Mf are equivalent and no two columns are identical. Then, in any randomized
(ε, δ)-secure protocol computing f , the number of ANDs is at least Rpub,B→A

ε+7δ (f).

The proof of Theorem 9 is omitted for lack of space. Theorem 6 is a special
case of Theorem 9 since it easy to see that Rpub,B→A

0 (f) = �log |B|�.
Example 5. By [15] it holds that Rpub,B→A

ε (IPn) = n/2 for every ε < 1/2. Thus,
unlike EQn, for every ε, δ where ε + 7δ < 1/2, the inner-product function does
not have an (ε, δ)-secure protocol which uses less than n/2 ANDs.

4.3 One AND: Randomization Does Not Help

We have seen that randomization can significantly reduce (up to an exponential
factor) the number of required ANDs, and that already with 4 ANDs, random-
ized protocols compute a strictly stronger class of functions than deterministic
protocols with the same number of ANDs. On the other hand, it is known (see
Theorem 1) that for secure computation in our model without any ANDs, ran-
domization does not help. In this section we show that with one AND random-
ization still does not help.

Theorem 10. Let f : A × B → C be a function such that all the columns of
Mf are equivalent according to ≡C . The function f can be computed securely by
a randomized protocol using one call to the AND black box if and only if there
are A1 ⊆ A and B1 ⊆ B such that:

1. For every x ∈ A1, y0 /∈ B1, and y1 ∈ B1 it holds that f(x, y0) �= f(x, y1),
2. For every x ∈ A and every y, y′ ∈ B such that either x /∈ A1 or y, y /∈ B1 it

holds that f(x, y) = f(x, y′).
3. For every x ∈ A1 and every y, y′ ∈ B it holds that f(x, y) = f(x, y′).

Proof. First, if Conditions (1)-(3) hold then, by Theorem 2, f can be computed
by a secure (deterministic) protocol with 1 AND. The function fA1,B1 can be
computed by Alice without any communication since each row of fA1,B1 is con-
stant.

For the other direction, assume there is a secure protocol that computes f
with 1 AND. Fix any communication string c that has positive probability for
some fixed inputs; by Lemma 2 c has positive probability given every x, y. Now,
define A1 = {x : Pr[Alice puts 1 to the black box with x and communication
c] > 0}, and B1 = {y : Pr[Bob puts 1 to the black box with y and communi-
cation c] > 0}. By the correctness and privacy requirements of the protocol A1
and B1 satisfy Conditions (1)-(3). ��

The protocol proving the sufficiency of the conditions in Theorem 10 is de-
terministic. Thus,

Corollary 1. Randomized protocols with one AND can compute securely exactly
the same functions as deterministic protocols with one AND.

256 A. Beimel and T. Malkin

Acknowledgments. We thank Yuval Ishai for helpful discussions and Enav
Weinreb for helpful remarks on earlier versions of this paper. We are also grate-
ful to AT&T Labs–Research that hosted us for two weeks and for three years,
respectively, during which part of this research was conducted.

References

1. D. Beaver. Perfect privacy for two-party protocols. Technical Report TR-11-89,
Computer Science, Harvard University, 1989.

2. D. Beaver. Correlated pseudorandomness and the complexity of private computa-
tions. In the 28th Symp. on the Theory of Computing, pages 479–488, 1996.

3. A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure
computation. In CRYPTO ’99, volume 1666 of LNCS, pages 80–97. Springer, 1999.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computations. In the 20th Symp. on the
Theory of Computing, pages 1–10, 1988.

5. G. Brassard and C. Crépeau. Oblivious transfers and privacy amplification. In
EUROCRYPT ’97, volume 1233 of LNCS, pages 334–347. Springer, 1997.

6. G. Brassard, C. Crépeau, and J.-M. Robert. Information theoretic reductions
among disclosure problems. In the 27th Symp. on Foundations of Computer Sci-
ence, pages 168–173, 1986.

7. G. Brassard, C. Crépeau, and M. Sántha. Oblivious transfers and intersecting
codes. IEEE Trans. on Information Theory, 42(6):1769–1780, 1996.

8. R. Canetti. Security and composition of multiparty cryptographic protocols. J. of
Cryptology, 13(1):143–202, 2000.

9. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-
tocols. In the 20th Symp. on the Theory of Computing, pages 11–19, 1988.

10. B. Chor and E. Kushilevitz. A zero-one law for Boolean privacy. SIAM J. on
Discrete Mathematics, 4(1):36–47, 1991.

11. C. Crépeau. Equivalence between two flavors of oblivious transfers. In CRYPTO
’87, volume 293 of LNCS, pages 350–354. Springer, 1988.

12. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In 29th Symp. on Found. of Computer Science, pp. 42–52, 1988.

13. I. Damgard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In EUROCRYPT
’99, volume 1592 of LNCS, pages 56–73. Springer, 1999.

14. Y. Dodis and S. Micali. Lower bounds for oblivious transfer reductions. In EU-
ROCRYPT ’99, volume 1592 of LNCS, pages 42–55, 1999.

15. J. Forster. A linear lower bound on the unbounded error probabilistic communi-
cation complexity. In 16th Conf. on Comput. Complexity, pp. 100–106, 2001.

16. O. Goldreich and R. Vainish. How to solve any protocol problem—an efficiency
improvement. In CRYPTO ’87, vol. 293 of LNCS, pages 73–86. Springer, 1988.

17. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In CRYPTO 2003, volume 2729 of LNCS, pages 145–161, Springer,
2003.

18. J. Kilian. Basing cryptography on oblivious transfer. In Proc. of the 20th Symp.
on the Theory of Computing, pages 20–31, 1988.

19. J. Kilian. A general completeness theorem for two-party games. In Proc. of the
23th Symp. on the Theory of Computing, pages 553–560, 1991.

20. J. Kilian. More general completeness theorems for two-party games. In Proc. of
the 32nd Symp. on the Theory of Computing, pages 316–324, 2000.

A Quantitative Approach to Reductions in Secure Computation 257

21. J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and complete-
ness in private computations. SIAM J. on Computing, 28(4):1189–1208, 2000.

22. E. Kushilevitz. Privacy and communication complexity. SIAM J. on Discrete
Mathematics, 5(2):273–284, 1992.

23. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

24. U. Maurer. Information-theoretic cryptography. In CRYPTO ’99, volume 1666 of
LNCS, pages 47–64. Springer, 1999.

25. M. Naor and K. Nissim. Communication preserving protocols for secure function
evaluation. In Proc. of the 33th Symp. on the Theory of Computing, 2001.

	Introduction
	Preliminaries
	Deterministic Protocols
	Randomized Protocols
	Randomization Helps
	How Much Does Randomization Help?
	One AND: Randomization Does Not Help

