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A Quantitative Assessment of Group Delay Methods
for Identifying Glottal Closures in Voiced Speech
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Abstract—Measures based on the group delay of the LPC  The use of a group delay measure to determine the acoustic
residual have been used by a number of authors to identify the excitation instants was first proposed in [18] and later re-
time instants of glottal closure in voiced speech. In this paper, we fined in [19] and [20]. The method calculates the frequency-

discuss the theoretical properties of three such measures and we d del lidi ind lied to th
also present a new measure having useful properties. We give a2V€raged group deiay over a sliding window applied 1o the

quantitative assessment of each measure’s ability to detect glottal LPC residual. It has been found to be an effective way of
closure instants evaluated using a speech database that includes docating the GCls and the authors have demonstrated its ro-
direct measurement of glottal activity from a Laryngograph/EGG  pustness to additive noise. The technique was extended in [21],
signal. We find that when using a fixed-length analysis window, [22] in order to capture GCls that were missed by the original

the best measures can detect the instant of glottal closure in 97% lgorith d th h th fd - . ¢
of larynx cycles with a standard deviation of 0.6 ms and that in algorithms and, throug € use of dynamic programming, to

9% of these cycles an additional excitation instant is found that €liminate spurious detections so as to identify more reliably
normally corresponds to glottal opening. We show that some those that correspond to true glottal closures. In [2], two
improvement in detection rate may be obtained if the analysis alternative methods of identifying excitation instants were
window length is adapted to the speech pitch. If the measures proposed, both related to the group delay. These were applied

are applied to the preemphasized speech instead of to the LPC . . .
residual, we find that the timing accuracy worsens but the to the problem of inter-segment coherence in concatenative

detection rate improves slightly. We assess the computational costSPeech synthesis.
of evaluating the measures and we present recursive algorithms  |n Section Il we define the four group delay measures to
that give a substantial reduction in computation in all cases. be evaluated in this paper. Three of these have been described
Index Terms—group delay, glottal closure, closed phase elsewhere [2], [20] and one is a new energy-weighted measure.
In Section Il we examine the theoretical properties of the mea-
sures and illustrate aspects of their behavior using synthetic
l. INTRODUCTION signals. In Section IV we provide a quantitative evaluation of

N voiced speech, the primary acoustic excitation normalffp€ir performance in identifying GCls in real speech. Included
I occurs at the instant of vocal-fold closure. This marki§ our database recordings is a Laryngograph signal (also
the start of the closed-phase interval during which there k§own as EGG) which provides a direct measurement of
little or no airflow through the glottis. There are several are&#0ttal activity and allows an objective assessment of accuracy.
of speech processing in which it is helpful to be able t¥/e examine in detail the effects of analysis window length on
identify the glottal closure instants (GCls) and/or the close@erformance and we identify the tradeoffs that exist between
phase intervals. Recent interest has concentrated on PSO@gtection rate and timing accuracy. We also evaluate the use
based concatenative synthesis and voice-morphing technige#Put signals other than the LPC residual. In Section V we
in which the identification of the GCls is necessary to preseri@ok at the computational cost of evaluating the measures and
coherence across segment boundaries [1], [2]. More generatyow how this may be reduced in all cases by using efficient
accurate identification of the closed phases allows the blifeursive procedures.
deconvolution of the vocal tract and glottal source through
the use of closed phase analysis and modelling [3]-[7]. The
resultant characterization of the glottal source gives benefits to Il. GROUPDELAY
speaker identification systems [8]-[10] and potential benefits
to speech recogr_nition_s_ystgms and low-bit rate coders._ Given an input signalu(r), we consider anN-sample

The accurate identification of GCIs has been an a'm,Windowed segment beginning at sample
speech researchers for many years and numerous techniques
have been proposed. The most widely used approach is to look
for discontinuities in a linear model of speech production [10]-
[13]. An alternative is to search for energy peaks in waveforms
derived from the speech signal [7], [14], [15] or for feature§he Fourier transform af..(n) at a frequency = 2k7/N is
in its time-frequency representation [16], [17].

zr(n) =wn)u(n+r) forn=0,...,.N -1 1)

N-1
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wherek can vary continuously. The group delay ©f(n) is C. Energy-weighted group delay

given by [19] The problem of unbounded terms in the summation of (4)

(k) = —darg(X,) o (le(Xr)) may be circumvented by weighting each term [6%,(k)|?,

dw dw the energy at frequency indéx This leads us to propose a
_ o1 dX, new measure, thenergy-weighted group delagefined by
N S X (R) 7 ()
_aNV-L —2jmnk/N d — k=0 r Tr
J 2= nar(n)e” Bw (7) -
= 9 ( X ) S X ()P
T N—1 o
N —o Xr(K)X](K)
X (k) = kao N-1 , (6)
§R X(k) (3) Zn:() LL',,,(’I’L)

- ) . This expression may be simplified by noting that
where X,.(k) is the Fourier transform ofz,.(n).

The motivation for using the group delay is that it is ableto ~N-1
identify the position of an impulse within the analysis window. Z X (k)X (k)
If z.(n) = d(n—no), whered(n) is the unit impulse function, k=0
then it follows directly from (3) that,.(k) = no Vk. In the = Z n@y (n)z, (m)e~2m(n=mk/N @)
presence of noise, however,(k) will no longer be constant P
and we need to form some sort of average okerdn the N-1
following sections, we sample the spectrum by restricting szr(n)xr(m)g(n —m)=N Z nz2(n)
to integer values and we describe four measuigs;, dpc, mon n—0
dpw anddgp that perform this averaging in different ways o o )
to generate alternative estimates of the delay from the start3fostituting this into (6) gives
the window to the impulse. No1

o nzi(n
A (r) = Sz o) ®
A. Average group delay > n—o Z7(n)

The frequency-averaged group delay is given by which may be viewed as the “center of energy” of(n).

N-1 N-1 &

The new measurelgw (1), thus has an efficient time-domain
1 1 X (k) ; : , =
dav(r) = + > T(k) = N X, (k) (4)  formulation. Unlike the previous measures it is bounded and
k=0 k=0 " lies in the range0 to N — 1 provided thatz,.(n) is not

where the conjugate symmetry of and X ensures that identically zero.

the latter summation is real. The use &fy, was proposed

in [18] as a way of estimating the GCls and was later refined )

in [19] and [20]. Direct evaluation of (4) requires two FourieP- Energy-weighted phase

transforms per output §ample but the_ computatiop may beEquation (8) may be viewed as a weighted average of
rgduced by the recursive formL_JIae given in Section V. & ysing22(n) as the weighting factors. An alternative way
disadvantage of this measure is thatXf.(k) approaches ¢ averagingn is to associate theV sample positions
zero for somek, then the resultant quotient will dominateythin the window with NV complex numbers of the form
the summation in (4) and may result in a very large V8.|L{§(p(j7.r(2n+ 1)/N), evenly spaced around the unit circle on
for dav(r). To avoid such extreme values we have found {he complex plane. To form the energy-weighted phase, we
essential to follow the recommendation in [20] that a 3-ter@ye a weighted average of these complex numbers using
median filter be applied toX,.(k)/X, (k) along ther axis ;2(p) as the weighting factors and then multiply its argument
before performing the summation in (4). by N/27 to convert back to a delay. This gives

B. Zero-frequency group delay N-1

— N 2 jm(2n+1)/N 1
The group delay at = 0 was proposed in [2] as a way of dpp(r) = 5 arg <Z_: zp(n)e -5 O
estimating the instant of excitation and is given by =0

ZN—lnx“(n) where 0 < arg(e) < 2m. The discontinuity inarg(e) has
dpe(r) =7,(0) = =250 —"—— (5) been chosen to lie midway between the complex numbers
2on—o r(n) associated with = N — 1 andn = 0. It is clear from

This measure may be interpreted as the “center of gravit8) that dgp always lies in the range-0.5 to N — 0.5. A

of z,.(n). Although easy to calculate, it is, as we shall seejeasure similar tdzp was used in [2] for aligning waveform
sensitive to noise and its value is unbounded if the mean vakegments in a speech synthesis system. The relationship to
of z,.(n) approaches zero. Because of this, we have foundlie energy-weighted group delay as described above and the
necessary to apply a median filter dp () after evaluating noise immunity described in Section IlI-B provide useful new
(5). insights into the properties of this measure.
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Fig. 1. (a) an impulse train with a dominant period of 100 samples and &#f- 2. The variation ofipc, dav, dew anddgp as the signal-to-noise

SNR of 10 dB. (b)-(e) the waveform (M'EP for different window lengths, ratio (SNR) varies frqm—30 to +30 QB for an input consisting of a single

N. The circles mark the negative-going zero crossings (NZCs). impulse atng = 20 with additive white Gaussian noise in a window length
of N = 101. For each measure, the graph shows the median valde ahd
the upper and lower quatrtiles.

I1l. PROPERTIES OFGROUPDELAY MEASURES

In Section IV we will use the delay measures defined aboveln Fig. 1(c), the window size equals the periadl & 100)
to identify the excitation instants in the LPC residual from reaésulting in a clearly defined NZC for each impulse without
speech. In this Section however, we gain insight into theine introduction of any spurious NZCs. However when the
properties by examining their behavior with synthetic signalsindow size is much less than the period as in Fig. 1(b),
that consist of impulses with additive white Gaussian noisethere are intervals between each impulse where the window
contains only noise. In these intervals, »(r) is almost
A. The Effect of Window Length flat and numerous spurious NZCs are introduced. The local

An idealized version of the LPC residual waveform is show%rad'erlt at these spurious NZCs is c_:losei_)tqather than—1
- . . .~ ._and this provides a possible way of identifying them.
as u(r) in Fig. 1(a) and consists of an impulse train with

additive white Gaussian noise at 10 dB SNR. The domin ntAS the window size is increased, it becomes common for

pulse period is 100 samples with an additional pulse in two or more impulses to lie within the window and individual

. . - . pulses may no longer be resolved. Thus in Fig. 1(d) where
Iﬁ;{tgfﬁﬁgoﬂhﬁg with the amplitude of the third pulse hafj{? = 150, we see that the two impulses that are closest

It is convenient to shift the time-origin of the sliding'[Ogethe.r (40 sam'ples separation) have resulted inasingle NZC

window, w(n) in (1), to its central point by defining _approxmately mldwa_ly bt_etween them. AS the window Ieng_th
is increased further in Fig. 1(e), each impulse now contains

d,(r) = d.(r — N/2—0.5) — N/2 — 0.5 (10) only a small fraction of the energy in the window. This means
that the amplitude of thel,, »(r) waveform is low and the
timing accuracy with which impulse locations can be identified
degrades. In this example, the low amplitude third impulse
contains so little energy compared to other nearby pulses that
it fails to generate a NZC at all.

The example of Fig. 1 therefore illustrates the way in which
the ability of d'EP to detect impulses depends on the ratio of

varying the window length is broadly similar for all measuresy . \vindow length to the input signal period. As we shall see

SOAVI\ﬁ WLIIn?lscusrs |tf|rn rc;e;an t(i)nrllyl roril\f;JP{h rrect result f irn Section IV the choice of window length is a compromise: a
fourmeasures from Section 1l give the correct resuit 1of:, 44\ that is too short will introduces many spurious NZCs
a noise-free impulse; i.e. it.(n) = d(n — ng) thend,(r) =

L . while a window that is too long may result in failure to detect
ng. All the measures also possess a form of shift invarian

so that ifw(n) = 1 andu(r) = w(N +r) = 0 then $Bme of the true GCls.

wherex is one of{ DC, AV, EW, EP}. Note that if N is even,
d. (r) is defined for values of midway between the integers
since the argument of,.(e) must always be an integer.

Fig. 1(b)—(e) show the waveform QfEP(r) for four dif-
ferent values of window lengthy, wherew(n) is chosen to
be a symmetric Hamming window of peridd. The effect of

de(r+1) =d.(r) -1 (11) B. Robustness to Noise

and so the graph of.(r) has a gradient of-1 under these  To assess the effect of noise on the delay measures, we have
circumstances. Although these conditions do not quite hcdghplied them to a signat(n) consisting of a single impulse

in this example because of the added noise, they are almegh additive white Gaussian noise. Fig. 2 shows the behavior
true when an impulse is near the center of the window &nd of each measure as the SNR is varied fre0 to +30 dB for

does not exceed the impulse period. For these cases therefaneimpulse at sample, = 20 within a rectangular window

we see in Fig. 1(b),(c) that’EP(r) has a negative-going zeroof length N = 101. For each measure, the corresponding
crossing (NZC) with a gradient of approximatel whenever graph shows the median value @f and the upper and lower

an impulse is present at(r). Each NZC is marked with a quartiles. We use the median rather than the mean because of
circle. the unbounded values sometimes generatedyy andd 4y .
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Fig. 3. The graph shows, as a function of SNR, how far an impulse mJse: Lll Tr;e valules OgAV& iISP'deWI_?'? dpp fo(rj a signal tqonltair+i29
: impulses at samples 0 an of amplitudes a and a respectively. The

be frgm the center of a 101'samp'|e window tq 'ensuredﬁ%, Lav: dgw window length is 101 and varies between 0 and 1.

anddy , have the correct sign with a probability of 75%.

be located and of how this accuracy degrades with noise. The
At an SNR of+30 dB all measures correctly givé, = n, algorithms attain a precision of 5 samples (5% of the window
with a very small inter-quartile range. As the SNR is reducd@ngth) with 75% probability at SNR levels dfl.9, —0.5,
all measures show an increasing spread and a progressive biag and—6.6 dB for thedpc, dav, dgw anddgp measures
with the median values tending to 50, the center of the windot@spectively. This indicates that the timing of the NZCs is least
The most robust measureds » whose median value is barelyaffected by noise when usinfzp and is most affected when
affected by noise until the SNR falls below6 dB. For this Usingdpc-.
measure, the effect of the noise is to add onto the summation
in (9) a random complex number of arbitrary phase. It followS. Response to multiple impulses
that the noise will not affect the median valuedip unless | js possible for the analysis window to contain multiple

the noise amplitude is large enough to cause the value of {ig,ises either because the window is longer than the pulse

summation to cross the positive real axis where there iSpgriod or because, as is often the case with the LPC residual,

discontinuity in thearg(e) function. For impulses near theye signal includes additional pulses or other features. We

centre of the window, the summation in (9) lies on or near the,nqider here the behavior of the measures when the window

negative real axis and so for positive SNR values, the noiggntains two impulses. From the shift invariance property,

has little effect on the median afp. (11), we may, without loss of generality take the impulses
The measure whose median is most sensitive to noisetdsbe at positions: = {0, 70} giving

dgw for which the effects are noticeable in Fig. 2 for SNRs

as high asl4 dB. Since this measure calculates the center of z(n) = (1 = a)d(n) + ad(n —no) (12)

energy of the windowed signal, the bias introduced depengfere the factor lies in the range 0 to 1 and determines

directly on the SNR and at an SNR of 0 dB, for examplghe relative amplitude of the two impulses. We can evaluate
dew will be halfway betweem, and the window center. The the four measures analytically (see appendix) to obtain the
median curves fotlpc andday are almost identical to eachfollowing exact results. It is convenient to express them in
other and lie between those of the other two measures Wilims ofb = 1 — ¢~ which ranges from to —oco and is the

significant bias only for SNRs worse than 5dB. Although lowegative of the ratio of the impulse magnitudes

levels of noise have little effect on the median valuelgt-, no

they have a substantial effect on its inter-quartile range which dpc = 1%
is considerably larger than that of the other measures. p B ng
When noise is added to an impulse train like that in Fig. 1(a) EWT 2
the NZCs are affected in two ways. Firstly, the bias towards day = 0 (13)
the window center means thdi (r) is pulled towards zero 1 — pN/ged(no.N)
either side of the NZC and so its gradient \{vill be less steep. dgp = N arg (b2 " ej27rn0/N> [modV]
It is possible, therefore, to use the gradientiofr) at a NZC ™

to estimate the SNR of the signal. The second effect is thaheregcd(e, ) denotes the greatest common divisor and the
the combination of the bias and the increased variance waljuation fordzp should be regarded as modulowith f% <

add uncertainty to the position of the NZC. Fig. 3 showsigp < N — % Fig. 4 plots the expressions from (13) versus
as a function of SNR, how far an impulse must be from the for the particular case oV = 101 andny = 40. As a
center of a 101 sample window for the upper or lower quartilearies from 0 to 1 all the measures change frém= 0 to

to lie exactly at the center of the window, i.e. how far the, = ng = 40. Measuredpc equals the center of gravity
impulse must be from the center fa);[(r) to have a probability of the pair of impulses and it therefore changes linearly with
of 0.75 of having the correct sign. We can view this as @ Measuredzy, on the other hand, which equals the center
measure of how accurately the position of the impulse wilif gravity of the squared input signal, is biassed towards the
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Fig. 5. Histogram of larynx cycle periods for male and female speakers. (d) %/\/WWM

position of the larger impulse giving rise to the S-shaped curve

; Fig. 6. (a) Segment of male speech from diphthond veith (b) the
shown. In the expression fatyv, the exponent ob depends Laryngograph waveform, (c) the LPC residual and (d) the waveform of

on ged(no, V) and is, for this case, equal to 101. Becausg__ (r) with NZCs identified by circles. The vertical dashed lines indicate
this is so high,d 4y makes an extremely abrupt transition athe larynx cycle boundaries.
a = 0.5 and this measure essentially locates the position of the
highest peak in the window. It is possible to obtain a similar
behavior ford gy or dgp by increasing the exponent of.(n) gograph waveform, (c) the LPC residuai(r), and (d) the
in (8) or (9) but we have found that this does not improvgaveform ofd),, with its zero-crossings (NZCs) marked by
their performance with real speech and so we do not disCy§gles. The Laryngograph waveform measures the electrical
the resultant measures in detail. The behaviotigf varies conductance of the larynx and shows an abrupt increase at
according to the separation of the two impulses. When thgttal closure. The boundaries of the larynx cycles are placed
are close to each other it is almost the samelgag but as  migway between adjacent closures and are shown as vertical
their separation increases to half the window length its gragBsned lines. The speech is first passed through arder
approaches that af,y . For separations greater thafy2 the preemphasis filter with a 50 Hz corner frequency and then
graph changes completely and asincreases from Odrp  processed using autocorrelation LPC of order 22 with 20 ms
decreases towards0.5, wrapping around abruptly & —0.5  Hamming windows overlapped by 50%. The preemphasised
then continuing down tay. speech is inverse filtered with linear interpolation of the LPC
IV, EVALUATION WITH SPEECH SIGNALS C(_)efficie_nts for 2.5 ms either side of the_frame bou_ndary.
' Finally, in order to remove high frequency noise, the residual is
The four measures defined in Section Il have been evaluaigipass filtered at 4 kHz using23¢ order Butterworth filter to
using the sentence subset of the APLAWD database [Z3l}tain the signal:(r). A sliding Hamming window is applied
recorded anechoically at a sample rate of 20 kHz with {8 () and the delay measures from Section Il are calculated.
lip-to-microphone distance of 15 cm. The database includgge energy weighting, median filter and 1.5 kHz low pass
a Larynograph (or EGG) channel which provides a diregiter recommended in [20] are applied to tha, measure
measurement of glottal activity [4], [24] and allows the instanigng a 3-point median filter is also applieddg in order to
of glottal closure to be determined using the HQTx prograggmove the extreme values that are sometimes generated.
from the Speech Filing System software suite [25], [26]. The The speech segment of Fig. 6 has been chosen to illustrate
database includes ten repetitions from each of ten Britiggme of the difficulties that arise in detecting the GCIs.
English speakers (five male, five female) of the fOHOWingdentifying the GCls has proved more difficult for the male

Female

Frequency

5
>
>

sentences ) speaker used in this example than for any of the other speakers
S1:  “George made the girl measure a good blue vasej, oyr database. His speech contains an unusually strong
S2: “Why are you early you owl?” excitation at glottal opening which, as can be seen from the
S3:  “Cathy hears a voice amongst SPAR’s data” LPC residual waveform in Fig. 6(c), is often comparable in
S4:  “Be sure to fetch a file and send their's off to Hovegirength to the excitation at glottal closure. In each of the first
S5 "Six plus three equals nine” four larynx cycles a strong excitation is visible in the LPC

for a total of 500 utterances. Ten of the utterances containgedidual at glottal closure and this results in a well-defined
recording errors and, after excluding voiced segments WilzC in d),,, at or near the center of the cycle. In the second
fewer than five cycles, the remaining 490 utterances containggy larynx cycles, the poor signal-to-noise ratio of the LPC
129537 glottal closures whose times were delayed by 1 msriidual results in a low amplitudé, , waveform. In these
provide a first order correction for the glottis-to-microphongycles, the secondary excitation at glottal opening gives rise to
delay. Fig. 5 shows the histograms of larynx period for thgn additional NZC and in the penultimate cycle, the excitation

male and the female speakers obtained from HQTX. at glottal closure is so weak that no NZC results although a
_ ripple in d'EP is visible. It is possible to use the projection
A. Waveform Processing technique described in [21], [22] to determine NZC-equivalent

Fig. 6 shows (a) a segment of speech with (b) the Larytime instants from the turning points of such ripples but this
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Fig. 7. Histograms of the deviation between the instant of glottal closure Identification Accuracy (ms)

and the zero crossings (NZCs) d)}‘zp. Histograms (a) and (b) are for larynx

cycles containing exactly one and exactly two NZCs respectively. Fig. 8. Identification Rate and Identification Accuracy for cycles containing

exactly one NZC. For each measure the window length varies from 4 ms
(leftmost point) to 13 ms in steps of 1 ms.
is outside the scope of this study.

100

B. Timing Error Histograms o5t - Eg/;v
In most larynx cycles the measures will generate a single % ol - EP
NZC at or near the instant of glottal closure. If, for example a 5 e

window length of 8 ms is used, then about 88% of larynx cy- 5 85

cles give exactly one NZC ini'EP. Fig. 7(a) shows a histogram  § ol

of the deviation of the NZC from the true larynx closure as A&

determined using HQTx applied to the Laryngograph signal. o

The mean value is close to zero which confirms the value of 70 02 o8 08 ; 2

1 ms used for the larynx-to-microphone delay compensation. Detection Accuracy (ms)

The standard deviation is 0.55 ms, but the underlying accuracy

of the GCI estimation is somewhat better than this because 9. Detection Rate and Detection Accuracy for cycles containing either
variations in the larynx-to-microphone acoustic delay due ﬁgfem?gst;"'gomtzﬁz' lzokiﬁ%hsfg%zrg?r? the window length varies from 4 ms
head movement can add as much as 0.1 ms onto this figure.

Of the remaining12% of larynx cycles, over three quarters

contain exactly two NZCs; in most cases these occur at glotfgh G| and the closest NZC for cycles containing either one
opening and closure respectively giving rise to the histogragp nvo NzCs.

shown in Fig. 7(b). The standard deviation of this tri-modal |, Fig. 8 we plot the identification rate against the identi-

distribution is not a useful measure. Instead, we consider {jRation accuracy for each of the four algorithms for window
our statistics only the NZC in each larynx cycle that is closegngthS varying between 4 ms and 13 ms in steps of 1 ms.
to the GCI and make the assumption that the other NZC can@gep cyrve is labelled with its algorithm abbreviation and in
rejected using techniques such as those described in [21], [24] cases the leftmost point corresponds to the shortest window
For this example, the standard deviation of these “closegly nq) The curves labelled “EPF” and “EPS” use alternative
NZCs is 0.97 ms and if we combine these W'tr:) the singlgsnyt signals and are discussed in Section IV-E. To take a
NZC cycles, we can detect the GCI in over 97% of larynxseific example, the;, measure is identified by circles and
cycles W|th_a standaro! deviation of 0.6 ms. The remaining 3‘_) see from the first point on the graph that for a 4 ms window,
of cycles either contain more than two NZCs or else contajfy jgentification accuracy is 0.34 ms but its identification rate

none at all and we assume, pessimistically, that the glotiglony 3696, This low rate arises because with a window as

closure instant cannot be identified for any of these cycles.q ot a5 this, most larynx cycles will contain more than one

NZC. As the window length in increased the accuracy steadily

C. Accuracy and Detection Rate worsens but the identification rate improves and reaches a peak
We define theidentification rateof a measure to be theof over 90% at a window length of 10 ms. Beyond this point,

fraction of larynx cycles that contain exactly one NZC anthe identification rate falls again as an increasing nu/mber of
the detection rateto be the fraction that contain either onecycles contain no NZC at all. The performance of thg,,
or two NZCs. Thus in Fig. 6, for example, the identificatiomeasure is almost identical to that of tHg,, measure but
rate is 50% and the detection rate is 100%. We consider thi@eaches its peak at the shorter window length of 8 ms. The
the detection rate gives a good assessment of the poterdi’ﬂ, measure has a somewhat worse performance and only
of the measure to locate the GCls provided that technigquashieves a peak of 83.2% while th&%c measure is by far
such as those from [21], [22] are used to reject the NZGse worst with a peak identification rate of only 55% and a
associated with glottal opening. Thdentification accuracys substantially worse accuracy.
the standard deviation of the timing error between the GCI andin Fig. 9 we show the same curves but this time for the
the NZC for cycles containing exactly one NZC. Tihetection detection rate and detection accuracy that are based on the
accuracyis the standard deviation of the timing error betweelarynx cycles that contain either one or two NZCs. 'lajgep
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10op © Female include in Figs. 8 and 9 the results of applying tdgp

measure to the preemphasized speech (EPS) and to the esti-
mated glottal energy flow (EPF). The use of the preemphasized
speech energy to detect glottal closures was proposed in [14]
and the estimation of the glottal energy flow is described in [7].
We see that applying théEP measure to these signals gives
good results and that the peak identification and detection
rates were respectively 92.6% and 97.7% for EPS and 87.2%
e and 97.4% for EPF. The identification rate fqr EPS and the
Window Length (ms) detection rates for/ both EPF and EPS are higher than those
obtained when thd ; , measure is applied to the LPC residual
Fig. 10. Detection Rate fa , , as a function of window length. A separatebut this improvement comes at the cost of poorer accuracy. It
curve is shown for each female (circles) and male (crosses) speaker. can also be seen that as the window length is decreased below
8 ms, the EPF identification rate decreases very rapidly while

) . ) : ) p ;
andd,,,, measures again show the best performance and regéhdetectlon rate remains well above 90% even for windows

a detection rate of 97.1% for window lengths of 8 ms and 7 s short.as 4 ms. This behawpr means thaF the EPF measure

respectively. Thel,,, measure is slightly worse with a pealJS detecting exactly two acoustic excitations in a large fraction

detection ra;[e of 92V6% and although tf}g measure reachesOf cycles and indicates that it could potentially be effective in

a peak of 90%, its detection accuracy is ocff the graph at 1.4 '%gnt/ifying ihe closed phase intervals. We have also evaluated
' dpp Measure on unpreemphasized speech but, with peak

In general, as the window length is decreased, the num Ep . 0 0 :
of NZCs rises and accuracies improve. It is not surprisin gntnflcanon and detection rates of 85% and 96% respectively,
is did not perform as well as EPS.

therefore, that for all measures the peak detection rate ha
better accuracy than the peak identification rate and occurs
with a window length that is between 1 ms and 2 ms shorter.

98f

Detection Rate (%)

V. EFFICIENT COMPUTATION

D. Gender and Linguistic Content Differences .
) . i Many popular windowsyw(n) can be expressed as the sum
In Fig. 10 the detection rate is shown for each of the &} 5 small number of exponentials

speakers as a function of the window length using dh@

measure. It can be seen that the female speakers (marked M

with circles) are closely bunched and the peak detection w(n) = Z Qe 20mmn/N (14)
rate is achieved with a window length of between 6 and m=—M

7 ms. The male speakers are less tightly bunched and have

slightly worse detection rates than the female speakers witar example, a centered Hamming window with peritd
peak performance occurring at window lengths between 7 affdgther than the commonly used period §f— 1) hasag =
10 ms. The male speaker used in the example of Fig. 6 shdW&t anda; = a*, = —0.23¢~7"/". The a,,, are the inverse
the poorest detection rate. His speech is notable for the higiscrete Fourier transform coefficientswofn) and in a similar
proportion of cycles that include a strong excitation at glottayay we defineb,,, to be the coefficients ofu?(n). For such
opening and in consequence his speech also shows the wettsdows, we will derive efficient recursive formulae for the
identification rate. If a single window is used for all speaker§uantitiesd.(r).

then the optimum compromise is a window length of 8 ms. If If we define

the best window length is used for each speaker the detection

rate for thed, , measure rises from 97.1% to 97.8% with the ®) (1 _ = » —9irkn/N
identification rate remaining at 87.4%. It is therefore likely that U (k) = 2—:0 u?(r +nje (15)

the use of an auxiliary pitch estimator and an adaptive window
length would give an modest improvgment in performance.\ye can derive the relationships

Evaluating the performance of th&;, measure on indi-
vidual sentences revealed only one significant difference. TheU(p)(k) _
fully voiced sentence, S2, gave a slightly higher detection rate " ®) 2jnpk/N
(97.8%) with much better accuracy (0.45 ms) than the other (Ur—l(k) +uf(r+N—1)—u(r— 1)) e P
sentences which all gave similar results of 97% and 0.62 ms.f](p)(k) _
We have not analyzed the reasons for this in detail but we " - () 2jnph/N -
suggest that the lack of frication in sentence S2 may be a (Ur—l(k) + NuP(r+ N — 1)) e PR —UP (k)
contributory factor.

We can use these to calculate tﬁé”) and ﬁr(”) recursively

E. Alternative Input Signals although in practice, the recursions must be reinitialized

The group delay measures may be applied to any sigmariodically using (15) to avoid cumulative errors. Having
containing an energy peak at the time of glottal closure. Valculated theUr(p) and Ur(p), we can use the following
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TABLE |
COMPUTATIONAL COST IN FLOPS PER SAMPLE FOR DIRECT AND
RECURSIVE IMPLEMENTATIONS OF MEASURESIpc, dav, dgw AND
dpp FOR A WINDOW LENGTH N = 101.

dependence on linguistic content but the detection accuracy
was much better for a sentence that was fully voiced sentence
without frication.

We have evaluated the application of thig, measure to

| bC AV EW EP the raw speech, the preemphasized speech and the glottal
Direct 410 165288 407 813 energy flow waveforms in addition to the LPC residual. We
Recursive| 38 4066 63 69 found that the highest accuracies were obtained with the LPC
residual but that the highest identification rate (92.5%) and
detection rate (97.7%) were obtained from the preemphasized
relationships to evaluate th& measures: speech. The glottal energy flow waveform showed the greatest
M robustness to window length variation and, for short windows,
X, (k) = Z am,U,(l) (k+m) (16) had the highest proportion of cycles with two NZCs indicating
Sy’ potential advantages in identifying glottal opening instants and
N—1 oM closed phase intervals.
Z 22 (n)e”HTHR/N Z b U (k +m) The computational cost of all the measures can be reduced
"0 oM greatly by calculating them recursively provided that a suitable

. . . ~ . window function is used. Even so, the cost of thg, measure
with similar expressions foX and the Fourier transform of is around 100 times greater than that of the others.

nx?(n) involving TP Additional savings can be made by Qverall, our preferred measures atgpr and dpy which
using the conjugate symmetry of thg,, b, U andU”.  haye virtually identical performance on real speech. Zhe

Table | shows the number of flops per sample reportefeasure has better theoretical noise immunity but is somewhat
by MATLAB when evaluating the four measures using bothore costly to evaluate and was slightly less robust to short
direct and recursive forms of evaluation for a window lengtfindow lengths. Despite the excellent performance obtained
of 101. The figures include the median filtering that is essentigdm the measures studied in this paper, they do not provide
for dpc andday. The figures fordzp are somewhat lower 3 complete solution to the problem of detecting GCls. To
than they should be since MATLAB budgets only one flogjiminate the NZCs corresponding to glottal opening and those
for the arg(e) function in (9). For the recursive forms, thegenerated during unvoiced speech segments, it is necessary

computational costs efpc, dew anddgp are independent of to combine them with a selection procedure such as that
N whereas those fof 4y are proportional taV. The savings described in [21], [22].

from the recursive formulation is greatest thf,, but even so

this measure is by far the most costly to compute. APPENDIX
RESPONSE TO ANOISEFREEDUAL IMPULSE
VI. CONCLUSION In this appendix we prove the expressions given in (13) for

In this paper we have investigated four measures of grotfif response of the group delay measures to a dual impulse.
delay: three have been described in earlier publications aY¥¢ assume that the input signal is given by
one is new. We have evaluated their behaviour with synthetic z(n) = (1 — a)d(n) + ad(n — ng)
data and their ability to detect GCls in real speech.

From the experiments with synthetic data, we found th
additive noise increases the variability of all the measures

gpd we defind =1-a~' = —(1 - a)/a.
We may write

and biases their value towards the center of the window. ZS:OI nz(n)
The dyp measure is the least sensitive to additive noise dpc = ZN_lﬁU(ﬂ)
while dp¢e is by far the most sensitive. To detect GCls in ”@Oa

real speech, we applied the measures to the LPC residual = m
using a sliding window and identified the negative-going zero- no
c/rossings (NZCS) of the time-aligned measurk$r). The - 1

dgy and dyp measures performed exceptionally well and, SN2 (n)
using the optimum fixed window length, generated either one dpw = %
or two NZCs in over 97% of larynx cycles. About 9% of 2 n=0 ¥3(1)
these cycles contained two NZCs and in most cases these o noa?
corresponded to excitations at glottal closure and opening  (1—a)?+a?
respectively. The standard deviation of the timing error be- _ no

tween the true GCI and the closest NZC was about 0.6 ms; 1+

this figure overestimates the true timing inaccuracy sincefbr convenience we now define= ¢ =27/ giving
includes variations in the larynx-to-microphone acoustic delay N1

arising from head movement. If the optimum window length dpp = - arg (Z x2(n)z_("+0'5)> 1

is used for each speaker, the detection rate rises to 97.8% 2m = 2

and it is expected that this would rise further if the window N 205 | 2. (not0.5)
length were adapted to the pitch. The detection rate shows little = 58 ((1 —a)’z" " +a'z ) -

N —
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from which we obtain the following equation modulé

2m

N .

2, T8 (b2 + eJQW”O/N) [modN]
T

dgp arg (1 —a)® +a’27™)

wheredgp must lie in the range-3 < dgp < N — 3. Finally
we observe that—"o" = 1 iff ngh is a multiple of N. This
in turn is true iff A is a multiple of H = N/ ged(ng, N). It
follows that for0 < h < H — 1

N-1
Z—nokh — N(S(h)
k=0

We may now write

i
S

(k
(k

dav

2l
~

DA
g

nopaz"ok

(1 —a) + az"ok

2l -
ZN‘
0L

1
1 — bz—nok
no If 1 — pH z—mokH
N(1—=bM) = 1= bznok

N—-1H-1

Z Z ph 5 —nokh

k=0 h=0
H-1

no h
NI > b NG(h)
h=0
_Mo
1—bH

z|3
=~
%

__ "o
N(1—0H)
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