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Abstract— Measures based on the group delay of the LPC
residual have been used by a number of authors to identify the
time instants of glottal closure in voiced speech. In this paper, we
discuss the theoretical properties of three such measures and we
also present a new measure having useful properties. We give a
quantitative assessment of each measure’s ability to detect glottal
closure instants evaluated using a speech database that includes a
direct measurement of glottal activity from a Laryngograph/EGG
signal. We find that when using a fixed-length analysis window,
the best measures can detect the instant of glottal closure in 97%
of larynx cycles with a standard deviation of 0.6 ms and that in
9% of these cycles an additional excitation instant is found that
normally corresponds to glottal opening. We show that some
improvement in detection rate may be obtained if the analysis
window length is adapted to the speech pitch. If the measures
are applied to the preemphasized speech instead of to the LPC
residual, we find that the timing accuracy worsens but the
detection rate improves slightly. We assess the computational cost
of evaluating the measures and we present recursive algorithms
that give a substantial reduction in computation in all cases.

Index Terms— group delay, glottal closure, closed phase

I. I NTRODUCTION

I N voiced speech, the primary acoustic excitation normally
occurs at the instant of vocal-fold closure. This marks

the start of the closed-phase interval during which there is
little or no airflow through the glottis. There are several areas
of speech processing in which it is helpful to be able to
identify the glottal closure instants (GCIs) and/or the closed-
phase intervals. Recent interest has concentrated on PSOLA-
based concatenative synthesis and voice-morphing techniques
in which the identification of the GCIs is necessary to preserve
coherence across segment boundaries [1], [2]. More generally,
accurate identification of the closed phases allows the blind
deconvolution of the vocal tract and glottal source through
the use of closed phase analysis and modelling [3]–[7]. The
resultant characterization of the glottal source gives benefits to
speaker identification systems [8]–[10] and potential benefits
to speech recognition systems and low-bit rate coders.

The accurate identification of GCIs has been an aim of
speech researchers for many years and numerous techniques
have been proposed. The most widely used approach is to look
for discontinuities in a linear model of speech production [10]–
[13]. An alternative is to search for energy peaks in waveforms
derived from the speech signal [7], [14], [15] or for features
in its time-frequency representation [16], [17].
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The use of a group delay measure to determine the acoustic
excitation instants was first proposed in [18] and later re-
fined in [19] and [20]. The method calculates the frequency-
averaged group delay over a sliding window applied to the
LPC residual. It has been found to be an effective way of
locating the GCIs and the authors have demonstrated its ro-
bustness to additive noise. The technique was extended in [21],
[22] in order to capture GCIs that were missed by the original
algorithms and, through the use of dynamic programming, to
eliminate spurious detections so as to identify more reliably
those that correspond to true glottal closures. In [2], two
alternative methods of identifying excitation instants were
proposed, both related to the group delay. These were applied
to the problem of inter-segment coherence in concatenative
speech synthesis.

In Section II we define the four group delay measures to
be evaluated in this paper. Three of these have been described
elsewhere [2], [20] and one is a new energy-weighted measure.
In Section III we examine the theoretical properties of the mea-
sures and illustrate aspects of their behavior using synthetic
signals. In Section IV we provide a quantitative evaluation of
their performance in identifying GCIs in real speech. Included
in our database recordings is a Laryngograph signal (also
known as EGG) which provides a direct measurement of
glottal activity and allows an objective assessment of accuracy.
We examine in detail the effects of analysis window length on
performance and we identify the tradeoffs that exist between
detection rate and timing accuracy. We also evaluate the use
of input signals other than the LPC residual. In Section V we
look at the computational cost of evaluating the measures and
show how this may be reduced in all cases by using efficient
recursive procedures.

II. GROUPDELAY

Given an input signalu(r), we consider anN -sample
windowed segment beginning at sampler,

xr(n) = w(n)u(n + r) for n = 0, . . . , N − 1 (1)

The Fourier transform ofxr(n) at a frequencyω = 2kπ/N is

Xr(k) =
N−1∑
n=0

xr(n)e−2jπnk/N (2)
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wherek can vary continuously. The group delay ofxr(n) is
given by [19]

τr(k) =
−d arg(Xr)

dω
= −=

(
d ln(Xr)

dω

)
= −=

(
1

Xr

dXr

dω

)
= −=

(
−j
∑N−1

n=0 nxr(n)e−2jπnk/N

Xr

)

= <

(
X̃r(k)
Xr(k)

)
(3)

whereX̃r(k) is the Fourier transform ofnxr(n).
The motivation for using the group delay is that it is able to

identify the position of an impulse within the analysis window.
If xr(n) = δ(n−n0), whereδ(n) is the unit impulse function,
then it follows directly from (3) thatτr(k) ≡ n0 ∀k. In the
presence of noise, however,τr(k) will no longer be constant
and we need to form some sort of average overk. In the
following sections, we sample the spectrum by restrictingk
to integer values and we describe four measures,dAV , dDC ,
dEW and dEP that perform this averaging in different ways
to generate alternative estimates of the delay from the start of
the window to the impulse.

A. Average group delay

The frequency-averaged group delay is given by

dAV (r) =
1
N

N−1∑
k=0

τr(k) =
1
N

N−1∑
k=0

X̃r(k)
Xr(k)

(4)

where the conjugate symmetry ofX and X̃ ensures that
the latter summation is real. The use ofdAV was proposed
in [18] as a way of estimating the GCIs and was later refined
in [19] and [20]. Direct evaluation of (4) requires two Fourier
transforms per output sample but the computation may be
reduced by the recursive formulae given in Section V. A
disadvantage of this measure is that ifXr(k) approaches
zero for somek, then the resultant quotient will dominate
the summation in (4) and may result in a very large value
for dAV (r). To avoid such extreme values we have found it
essential to follow the recommendation in [20] that a 3-term
median filter be applied toX̃r(k)/Xr(k) along ther axis
before performing the summation in (4).

B. Zero-frequency group delay

The group delay atk = 0 was proposed in [2] as a way of
estimating the instant of excitation and is given by

dDC(r) = τr(0) =
∑N−1

n=0 nxr(n)∑N−1
n=0 xr(n)

(5)

This measure may be interpreted as the “center of gravity”
of xr(n). Although easy to calculate, it is, as we shall see,
sensitive to noise and its value is unbounded if the mean value
of xr(n) approaches zero. Because of this, we have found it
necessary to apply a median filter todDC(r) after evaluating
(5).

C. Energy-weighted group delay

The problem of unbounded terms in the summation of (4)
may be circumvented by weighting each term by|Xr(k)|2,
the energy at frequency indexk. This leads us to propose a
new measure, theenergy-weighted group delay, defined by

dEW (r) =
∑N−1

k=0 |Xr(k)|2 τr(k)∑N−1
k=0 |Xr(k)|2

=
∑N−1

k=0 X̃r(k)X∗
r (k)

N
∑N−1

n=0 x2
r(n)

(6)

This expression may be simplified by noting that

N−1∑
k=0

X̃r(k)X∗
r (k)

=
∑

k,m,n

nxr(n)xr(m)e−2jπ(n−m)k/N (7)

= N
∑
m,n

nxr(n)xr(m)δ(n−m) = N
N−1∑
n=0

nx2
r(n)

Substituting this into (6) gives

dEW (r) =
∑N−1

n=0 nx2
r(n)∑N−1

n=0 x2
r(n)

(8)

which may be viewed as the “center of energy” ofxr(n).
The new measure,dEW (r), thus has an efficient time-domain
formulation. Unlike the previous measures it is bounded and
lies in the range0 to N − 1 provided thatxr(n) is not
identically zero.

D. Energy-weighted phase

Equation (8) may be viewed as a weighted average of
n using x2

r(n) as the weighting factors. An alternative way
of averaging n is to associate theN sample positions
within the window with N complex numbers of the form
exp(jπ(2n + 1)/N), evenly spaced around the unit circle on
the complex plane. To form the energy-weighted phase, we
take a weighted average of these complex numbers using
x2

r(n) as the weighting factors and then multiply its argument
by N/2π to convert back to a delay. This gives

dEP (r) =
N

2π
arg

(
N−1∑
n=0

x2
r(n)ejπ(2n+1)/N

)
− 1

2
(9)

where 0 ≤ arg(•) < 2π. The discontinuity inarg(•) has
been chosen to lie midway between the complex numbers
associated withn = N − 1 and n = 0. It is clear from
(9) that dEP always lies in the range−0.5 to N − 0.5. A
measure similar todEP was used in [2] for aligning waveform
segments in a speech synthesis system. The relationship to
the energy-weighted group delay as described above and the
noise immunity described in Section III-B provide useful new
insights into the properties of this measure.
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Algorithm EP, Period = 100, SNR = 10 dB

(a) u(r)

(b) N=50

(c) N=100

(d) N=150

(e) N=300

Fig. 1. (a) an impulse train with a dominant period of 100 samples and an
SNR of 10 dB. (b)–(e) the waveform ofd

′
EP for different window lengths,

N . The circles mark the negative-going zero crossings (NZCs).

III. PROPERTIES OFGROUPDELAY MEASURES

In Section IV we will use the delay measures defined above
to identify the excitation instants in the LPC residual from real
speech. In this Section however, we gain insight into their
properties by examining their behavior with synthetic signals
that consist of impulses with additive white Gaussian noise.

A. The Effect of Window Length

An idealized version of the LPC residual waveform is shown
as u(r) in Fig. 1(a) and consists of an impulse train with
additive white Gaussian noise at 10 dB SNR. The dominant
pulse period is 100 samples with an additional pulse in the
fourth period and with the amplitude of the third pulse half
that of the others.

It is convenient to shift the time-origin of the sliding
window, w(n) in (1), to its central point by defining

d
′

∗(r) = d∗(r −N/2− 0.5)−N/2− 0.5 (10)

where∗ is one of{DC, AV,EW, EP}. Note that ifN is even,
d

′

∗(r) is defined for values ofr midway between the integers
since the argument ofd∗(•) must always be an integer.

Fig. 1(b)–(e) show the waveform ofd
′

EP (r) for four dif-
ferent values of window length,N , wherew(n) is chosen to
be a symmetric Hamming window of periodN . The effect of
varying the window length is broadly similar for all measures,
so we will discuss it in detail only ford

′

EP .
All four measures from Section II give the correct result for

a noise-free impulse; i.e. ifxr(n) = δ(n− n0) thend∗(r) =
n0. All the measures also possess a form of shift invariance
so that ifw(n) ≡ 1 andu(r) = u(N + r) = 0 then

d∗(r + 1) = d∗(r)− 1 (11)

and so the graph ofd∗(r) has a gradient of−1 under these
circumstances. Although these conditions do not quite hold
in this example because of the added noise, they are almost
true when an impulse is near the center of the window andN
does not exceed the impulse period. For these cases therefore,
we see in Fig. 1(b),(c) thatd

′

EP (r) has a negative-going zero
crossing (NZC) with a gradient of approximately−1 whenever
an impulse is present atu(r). Each NZC is marked with a
circle.
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Fig. 2. The variation ofdDC , dAV , dEW anddEP as the signal-to-noise
ratio (SNR) varies from−30 to +30 dB for an input consisting of a single
impulse atn0 = 20 with additive white Gaussian noise in a window length
of N = 101. For each measure, the graph shows the median value ofd∗ and
the upper and lower quartiles.

In Fig. 1(c), the window size equals the period (N = 100)
resulting in a clearly defined NZC for each impulse without
the introduction of any spurious NZCs. However when the
window size is much less than the period as in Fig. 1(b),
there are intervals between each impulse where the window
contains only noise. In these intervalsd

′

EP (r) is almost
flat and numerous spurious NZCs are introduced. The local
gradient at these spurious NZCs is close to0 rather than−1
and this provides a possible way of identifying them.

As the window size is increased, it becomes common for
two or more impulses to lie within the window and individual
impulses may no longer be resolved. Thus in Fig. 1(d) where
N = 150, we see that the two impulses that are closest
together (40 samples separation) have resulted in a single NZC
approximately midway between them. As the window length
is increased further in Fig. 1(e), each impulse now contains
only a small fraction of the energy in the window. This means
that the amplitude of thed

′

EP (r) waveform is low and the
timing accuracy with which impulse locations can be identified
degrades. In this example, the low amplitude third impulse
contains so little energy compared to other nearby pulses that
it fails to generate a NZC at all.

The example of Fig. 1 therefore illustrates the way in which
the ability of d

′

EP to detect impulses depends on the ratio of
the window length to the input signal period. As we shall see
in Section IV the choice of window length is a compromise: a
window that is too short will introduces many spurious NZCs
while a window that is too long may result in failure to detect
some of the true GCIs.

B. Robustness to Noise

To assess the effect of noise on the delay measures, we have
applied them to a signalx(n) consisting of a single impulse
with additive white Gaussian noise. Fig. 2 shows the behavior
of each measure as the SNR is varied from−30 to +30 dB for
an impulse at samplen0 = 20 within a rectangular window
of length N = 101. For each measure, the corresponding
graph shows the median value ofd∗ and the upper and lower
quartiles. We use the median rather than the mean because of
the unbounded values sometimes generated bydDC anddAV .
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Fig. 3. The graph shows, as a function of SNR, how far an impulse must
be from the center of a 101 sample window to ensure thatd

′
DC , d

′
AV , d

′
EW

andd
′
EP have the correct sign with a probability of 75%.

At an SNR of+30 dB all measures correctly gived∗ = n0

with a very small inter-quartile range. As the SNR is reduced
all measures show an increasing spread and a progressive bias
with the median values tending to 50, the center of the window.
The most robust measure isdEP whose median value is barely
affected by noise until the SNR falls below−6 dB. For this
measure, the effect of the noise is to add onto the summation
in (9) a random complex number of arbitrary phase. It follows
that the noise will not affect the median value ofdEP unless
the noise amplitude is large enough to cause the value of the
summation to cross the positive real axis where there is a
discontinuity in thearg(•) function. For impulses near the
centre of the window, the summation in (9) lies on or near the
negative real axis and so for positive SNR values, the noise
has little effect on the median ofdEP .

The measure whose median is most sensitive to noise is
dEW for which the effects are noticeable in Fig. 2 for SNRs
as high as14 dB. Since this measure calculates the center of
energy of the windowed signal, the bias introduced depends
directly on the SNR and at an SNR of 0 dB, for example,
dEW will be halfway betweenn0 and the window center. The
median curves fordDC anddAV are almost identical to each
other and lie between those of the other two measures with
significant bias only for SNRs worse than 5dB. Although low
levels of noise have little effect on the median value ofdDC ,
they have a substantial effect on its inter-quartile range which
is considerably larger than that of the other measures.

When noise is added to an impulse train like that in Fig. 1(a)
the NZCs are affected in two ways. Firstly, the bias towards
the window center means thatd

′

∗(r) is pulled towards zero
either side of the NZC and so its gradient will be less steep.
It is possible, therefore, to use the gradient ofd

′

∗(r) at a NZC
to estimate the SNR of the signal. The second effect is that
the combination of the bias and the increased variance will
add uncertainty to the position of the NZC. Fig. 3 shows,
as a function of SNR, how far an impulse must be from the
center of a 101 sample window for the upper or lower quartile
to lie exactly at the center of the window, i.e. how far the
impulse must be from the center ford

′

∗(r) to have a probability
of 0.75 of having the correct sign. We can view this as a
measure of how accurately the position of the impulse will

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Impulses at 0 and 40

a

d *

DCAV EW
EPN = 101

n0 = 40

Fig. 4. The values ofdAV , dEP , dEW and dEP for a signal containing
impulses at samples 0 and 40 of amplitudes1 − a and a respectively. The
window length is 101 anda varies between 0 and 1.

be located and of how this accuracy degrades with noise. The
algorithms attain a precision of 5 samples (5% of the window
length) with 75% probability at SNR levels of11.9, −0.5,
−2.4 and−6.6 dB for thedDC , dAV , dEW anddEP measures
respectively. This indicates that the timing of the NZCs is least
affected by noise when usingdEP and is most affected when
usingdDC .

C. Response to multiple impulses

It is possible for the analysis window to contain multiple
impulses either because the window is longer than the pulse
period or because, as is often the case with the LPC residual,
the signal includes additional pulses or other features. We
consider here the behavior of the measures when the window
contains two impulses. From the shift invariance property,
(11), we may, without loss of generality take the impulses
to be at positionsn = {0, n0} giving

x(n) = (1− a)δ(n) + aδ(n− n0) (12)

where the factora lies in the range 0 to 1 and determines
the relative amplitude of the two impulses. We can evaluate
the four measures analytically (see appendix) to obtain the
following exact results. It is convenient to express them in
terms ofb = 1− a−1 which ranges from0 to −∞ and is the
negative of the ratio of the impulse magnitudes

dDC =
n0

1− b

dEW =
n0

1 + b2

dAV =
n0

1− bN/ gcd(n0,N)
(13)

dEP =
N

2π
arg
(
b2 + ej2πn0/N

)
[modN ]

wheregcd(•, •) denotes the greatest common divisor and the
equation fordEP should be regarded as moduloN with − 1

2 ≤
dEP < N − 1

2 . Fig. 4 plots the expressions from (13) versus
a for the particular case ofN = 101 and n0 = 40. As a
varies from 0 to 1 all the measures change fromd∗ = 0 to
d∗ = n0 = 40. MeasuredDC equals the center of gravity
of the pair of impulses and it therefore changes linearly with
a. MeasuredEW on the other hand, which equals the center
of gravity of the squared input signal, is biassed towards the
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Fig. 5. Histogram of larynx cycle periods for male and female speakers.

position of the larger impulse giving rise to the S-shaped curve
shown. In the expression fordAV , the exponent ofb depends
on gcd(n0, N) and is, for this case, equal to 101. Because
this is so high,dAV makes an extremely abrupt transition at
a = 0.5 and this measure essentially locates the position of the
highest peak in the window. It is possible to obtain a similar
behavior fordEW or dEP by increasing the exponent ofxr(n)
in (8) or (9) but we have found that this does not improve
their performance with real speech and so we do not discuss
the resultant measures in detail. The behavior ofdEP varies
according to the separation of the two impulses. When they
are close to each other it is almost the same asdEW but as
their separation increases to half the window length its graph
approaches that ofdAV . For separations greater thanN/2 the
graph changes completely and asa increases from 0,dEP

decreases towards−0.5, wrapping around abruptly toN−0.5
then continuing down ton0.

IV. EVALUATION WITH SPEECH SIGNALS

The four measures defined in Section II have been evaluated
using the sentence subset of the APLAWD database [23]
recorded anechoically at a sample rate of 20 kHz with a
lip-to-microphone distance of 15 cm. The database includes
a Larynograph (or EGG) channel which provides a direct
measurement of glottal activity [4], [24] and allows the instants
of glottal closure to be determined using the HQTx program
from the Speech Filing System software suite [25], [26]. The
database includes ten repetitions from each of ten British
English speakers (five male, five female) of the following
sentences

S1: “George made the girl measure a good blue vase”
S2: “Why are you early you owl?”
S3: “Cathy hears a voice amongst SPAR’s data”
S4: “Be sure to fetch a file and send their’s off to Hove”
S5: “Six plus three equals nine”

for a total of 500 utterances. Ten of the utterances contained
recording errors and, after excluding voiced segments with
fewer than five cycles, the remaining 490 utterances contained
129537 glottal closures whose times were delayed by 1 ms to
provide a first order correction for the glottis-to-microphone
delay. Fig. 5 shows the histograms of larynx period for the
male and the female speakers obtained from HQTx.

A. Waveform Processing

Fig. 6 shows (a) a segment of speech with (b) the Laryn-

as02e0 samples 5100:6100, window = 7 ms

(d)

(c)

(b)

(a)

Fig. 6. (a) Segment of male speech from diphthong /aI/ with (b) the
Laryngograph waveform, (c) the LPC residual and (d) the waveform of
d
′
EP (r) with NZCs identified by circles. The vertical dashed lines indicate

the larynx cycle boundaries.

gograph waveform, (c) the LPC residual,u(r), and (d) the
waveform ofd

′

EP with its zero-crossings (NZCs) marked by
circles. The Laryngograph waveform measures the electrical
conductance of the larynx and shows an abrupt increase at
glottal closure. The boundaries of the larynx cycles are placed
midway between adjacent closures and are shown as vertical
dashed lines. The speech is first passed through a1st order
preemphasis filter with a 50 Hz corner frequency and then
processed using autocorrelation LPC of order 22 with 20 ms
Hamming windows overlapped by 50%. The preemphasised
speech is inverse filtered with linear interpolation of the LPC
coefficients for 2.5 ms either side of the frame boundary.
Finally, in order to remove high frequency noise, the residual is
lowpass filtered at 4 kHz using a2nd order Butterworth filter to
obtain the signalu(r). A sliding Hamming window is applied
to u(r) and the delay measures from Section II are calculated.
The energy weighting, median filter and 1.5 kHz low pass
filter recommended in [20] are applied to thedAV measure
and a 3-point median filter is also applied todDC in order to
remove the extreme values that are sometimes generated.

The speech segment of Fig. 6 has been chosen to illustrate
some of the difficulties that arise in detecting the GCIs.
Identifying the GCIs has proved more difficult for the male
speaker used in this example than for any of the other speakers
in our database. His speech contains an unusually strong
excitation at glottal opening which, as can be seen from the
LPC residual waveform in Fig. 6(c), is often comparable in
strength to the excitation at glottal closure. In each of the first
four larynx cycles a strong excitation is visible in the LPC
residual at glottal closure and this results in a well-defined
NZC in d

′

EP at or near the center of the cycle. In the second
four larynx cycles, the poor signal-to-noise ratio of the LPC
residual results in a low amplituded

′

EP waveform. In these
cycles, the secondary excitation at glottal opening gives rise to
an additional NZC and in the penultimate cycle, the excitation
at glottal closure is so weak that no NZC results although a
ripple in d

′

EP is visible. It is possible to use the projection
technique described in [21], [22] to determine NZC-equivalent
time instants from the turning points of such ripples but this
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Fig. 7. Histograms of the deviation between the instant of glottal closure
and the zero crossings (NZCs) ofd

′
EP . Histograms (a) and (b) are for larynx

cycles containing exactly one and exactly two NZCs respectively.

is outside the scope of this study.

B. Timing Error Histograms

In most larynx cycles the measures will generate a single
NZC at or near the instant of glottal closure. If, for example a
window length of 8 ms is used, then about 88% of larynx cy-
cles give exactly one NZC ind

′

EP . Fig. 7(a) shows a histogram
of the deviation of the NZC from the true larynx closure as
determined using HQTx applied to the Laryngograph signal.
The mean value is close to zero which confirms the value of
1 ms used for the larynx-to-microphone delay compensation.
The standard deviation is 0.55 ms, but the underlying accuracy
of the GCI estimation is somewhat better than this because
variations in the larynx-to-microphone acoustic delay due to
head movement can add as much as 0.1 ms onto this figure.
Of the remaining12% of larynx cycles, over three quarters
contain exactly two NZCs; in most cases these occur at glottal
opening and closure respectively giving rise to the histogram
shown in Fig. 7(b). The standard deviation of this tri-modal
distribution is not a useful measure. Instead, we consider in
our statistics only the NZC in each larynx cycle that is closest
to the GCI and make the assumption that the other NZC can be
rejected using techniques such as those described in [21], [22].
For this example, the standard deviation of these “closest”
NZCs is 0.97 ms and if we combine these with the single-
NZC cycles, we can detect the GCI in over 97% of larynx
cycles with a standard deviation of 0.6 ms. The remaining 3%
of cycles either contain more than two NZCs or else contain
none at all and we assume, pessimistically, that the glottal
closure instant cannot be identified for any of these cycles.

C. Accuracy and Detection Rate

We define theidentification rateof a measure to be the
fraction of larynx cycles that contain exactly one NZC and
the detection rateto be the fraction that contain either one
or two NZCs. Thus in Fig. 6, for example, the identification
rate is 50% and the detection rate is 100%. We consider that
the detection rate gives a good assessment of the potential
of the measure to locate the GCIs provided that techniques
such as those from [21], [22] are used to reject the NZCs
associated with glottal opening. Theidentification accuracyis
the standard deviation of the timing error between the GCI and
the NZC for cycles containing exactly one NZC. Thedetection
accuracyis the standard deviation of the timing error between
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Fig. 8. Identification Rate and Identification Accuracy for cycles containing
exactly one NZC. For each measure the window length varies from 4 ms
(leftmost point) to 13 ms in steps of 1 ms.
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Fig. 9. Detection Rate and Detection Accuracy for cycles containing either
one or two NZCs. For each algorithm the window length varies from 4 ms
(leftmost point) to 13 ms in steps of 1 ms.

the GCI and the closest NZC for cycles containing either one
or two NZCs.

In Fig. 8 we plot the identification rate against the identi-
fication accuracy for each of the four algorithms for window
lengths varying between 4 ms and 13 ms in steps of 1 ms.
Each curve is labelled with its algorithm abbreviation and in
all cases the leftmost point corresponds to the shortest window
(4 ms). The curves labelled “EPF” and “EPS” use alternative
input signals and are discussed in Section IV-E. To take a
specific example, thed

′

EP measure is identified by circles and
we see from the first point on the graph that for a 4 ms window,
its identification accuracy is 0.34 ms but its identification rate
is only 36%. This low rate arises because with a window as
short as this, most larynx cycles will contain more than one
NZC. As the window length in increased the accuracy steadily
worsens but the identification rate improves and reaches a peak
of over 90% at a window length of 10 ms. Beyond this point,
the identification rate falls again as an increasing number of
cycles contain no NZC at all. The performance of thed

′

EW

measure is almost identical to that of thed
′

EP measure but
reaches its peak at the shorter window length of 8 ms. The
d

′

AV measure has a somewhat worse performance and only
achieves a peak of 83.2% while thed

′

DC measure is by far
the worst with a peak identification rate of only 55% and a
substantially worse accuracy.

In Fig. 9 we show the same curves but this time for the
detection rate and detection accuracy that are based on the
larynx cycles that contain either one or two NZCs. Thed

′

EP
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Fig. 10. Detection Rate ford
′
EP as a function of window length. A separate

curve is shown for each female (circles) and male (crosses) speaker.

andd
′

EW measures again show the best performance and reach
a detection rate of 97.1% for window lengths of 8 ms and 7 ms
respectively. Thed

′

AV measure is slightly worse with a peak
detection rate of 94.6% and although thed

′

DC measure reaches
a peak of 90%, its detection accuracy is off the graph at 1.4 ms.
In general, as the window length is decreased, the number
of NZCs rises and accuracies improve. It is not surprising,
therefore, that for all measures the peak detection rate has a
better accuracy than the peak identification rate and occurs
with a window length that is between 1 ms and 2 ms shorter.

D. Gender and Linguistic Content Differences

In Fig. 10 the detection rate is shown for each of the ten
speakers as a function of the window length using thed

′

EP

measure. It can be seen that the female speakers (marked
with circles) are closely bunched and the peak detection
rate is achieved with a window length of between 6 and
7 ms. The male speakers are less tightly bunched and have
slightly worse detection rates than the female speakers with
peak performance occurring at window lengths between 7 and
10 ms. The male speaker used in the example of Fig. 6 shows
the poorest detection rate. His speech is notable for the high
proportion of cycles that include a strong excitation at glottal
opening and in consequence his speech also shows the worst
identification rate. If a single window is used for all speakers,
then the optimum compromise is a window length of 8 ms. If
the best window length is used for each speaker the detection
rate for thed

′

EP measure rises from 97.1% to 97.8% with the
identification rate remaining at 87.4%. It is therefore likely that
the use of an auxiliary pitch estimator and an adaptive window
length would give an modest improvement in performance.

Evaluating the performance of thed
′

EP measure on indi-
vidual sentences revealed only one significant difference. The
fully voiced sentence, S2, gave a slightly higher detection rate
(97.8%) with much better accuracy (0.45 ms) than the other
sentences which all gave similar results of 97% and 0.62 ms.
We have not analyzed the reasons for this in detail but we
suggest that the lack of frication in sentence S2 may be a
contributory factor.

E. Alternative Input Signals

The group delay measures may be applied to any signal
containing an energy peak at the time of glottal closure. We

include in Figs. 8 and 9 the results of applying thed
′

EP

measure to the preemphasized speech (EPS) and to the esti-
mated glottal energy flow (EPF). The use of the preemphasized
speech energy to detect glottal closures was proposed in [14]
and the estimation of the glottal energy flow is described in [7].
We see that applying thed

′

EP measure to these signals gives
good results and that the peak identification and detection
rates were respectively 92.6% and 97.7% for EPS and 87.2%
and 97.4% for EPF. The identification rate for EPS and the
detection rates for both EPF and EPS are higher than those
obtained when thed

′

EP measure is applied to the LPC residual
but this improvement comes at the cost of poorer accuracy. It
can also be seen that as the window length is decreased below
8 ms, the EPF identification rate decreases very rapidly while
its detection rate remains well above 90% even for windows
as short as 4 ms. This behavior means that the EPF measure
is detecting exactly two acoustic excitations in a large fraction
of cycles and indicates that it could potentially be effective in
identifying the closed phase intervals. We have also evaluated
the d

′

EP measure on unpreemphasized speech but, with peak
identification and detection rates of 85% and 96% respectively,
this did not perform as well as EPS.

V. EFFICIENT COMPUTATION

Many popular windows,w(n) can be expressed as the sum
of a small number of exponentials

w(n) =
M∑

m=−M

ame−2jπmn/N (14)

For example, a centered Hamming window with periodN
(rather than the commonly used period ofN − 1) hasa0 =
0.54 anda1 = a∗−1 = −0.23e−jπ/N . The am are the inverse
discrete Fourier transform coefficients ofw(n) and in a similar
way we definebm to be the coefficients ofw2(n). For such
windows, we will derive efficient recursive formulae for the
quantitiesd∗(r).

If we define

U (p)
r (k) =

N−1∑
n=0

up(r + n)e−2jπkn/N (15)

we can derive the relationships

U (p)
r (k) =(

U
(p)
r−1(k) + up(r + N − 1)− up(r − 1)

)
e2jπpk/N

Ũ (p)
r (k) =(

Ũ
(p)
r−1(k) + Nup(r + N − 1)

)
e2jπpk/N − U (p)

r (k)

We can use these to calculate theU
(p)
r and Ũ

(p)
r recursively

although in practice, the recursions must be reinitialized
periodically using (15) to avoid cumulative errors. Having
calculated theU

(p)
r and Ũ

(p)
r , we can use the following



8 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. ?, NO. ?, JANUARY 200?

TABLE I

COMPUTATIONAL COST IN FLOPS PER SAMPLE FOR DIRECT AND

RECURSIVE IMPLEMENTATIONS OF MEASURESdDC , dAV , dEW AND

dEP FOR A WINDOW LENGTH N = 101.

DC AV EW EP
Direct 410 165288 407 813
Recursive 38 4066 63 69

relationships to evaluate thed∗ measures:

Xr(k) =
M∑

m=−M

amU (1)
r (k + m) (16)

N−1∑
n=0

x2
r(n)e−2jπnk/N =

2M∑
m=−2M

bmU (2)
r (k + m)

with similar expressions for̃X and the Fourier transform of
nx2(n) involving Ũ

(p)
r . Additional savings can be made by

using the conjugate symmetry of theam, bm, U
(p)
r and Ũ

(p)
r .

Table I shows the number of flops per sample reported
by MATLAB when evaluating the four measures using both
direct and recursive forms of evaluation for a window length
of 101. The figures include the median filtering that is essential
for dDC and dAV . The figures fordEP are somewhat lower
than they should be since MATLAB budgets only one flop
for the arg(•) function in (9). For the recursive forms, the
computational costs ofdDC , dEW anddEP are independent of
N whereas those fordAV are proportional toN . The savings
from the recursive formulation is greatest fordAV but even so
this measure is by far the most costly to compute.

VI. CONCLUSION

In this paper we have investigated four measures of group
delay: three have been described in earlier publications and
one is new. We have evaluated their behaviour with synthetic
data and their ability to detect GCIs in real speech.

From the experiments with synthetic data, we found that
additive noise increases the variability of all the measures
and biases their value towards the center of the window.
The dEP measure is the least sensitive to additive noise
while dDC is by far the most sensitive. To detect GCIs in
real speech, we applied the measures to the LPC residual
using a sliding window and identified the negative-going zero-
crossings (NZCs) of the time-aligned measuresd

′

∗(r). The
d

′

EW and d
′

EP measures performed exceptionally well and,
using the optimum fixed window length, generated either one
or two NZCs in over 97% of larynx cycles. About 9% of
these cycles contained two NZCs and in most cases these
corresponded to excitations at glottal closure and opening
respectively. The standard deviation of the timing error be-
tween the true GCI and the closest NZC was about 0.6 ms;
this figure overestimates the true timing inaccuracy since it
includes variations in the larynx-to-microphone acoustic delay
arising from head movement. If the optimum window length
is used for each speaker, the detection rate rises to 97.8%
and it is expected that this would rise further if the window
length were adapted to the pitch. The detection rate shows little

dependence on linguistic content but the detection accuracy
was much better for a sentence that was fully voiced sentence
without frication.

We have evaluated the application of thed
′

EP measure to
the raw speech, the preemphasized speech and the glottal
energy flow waveforms in addition to the LPC residual. We
found that the highest accuracies were obtained with the LPC
residual but that the highest identification rate (92.5%) and
detection rate (97.7%) were obtained from the preemphasized
speech. The glottal energy flow waveform showed the greatest
robustness to window length variation and, for short windows,
had the highest proportion of cycles with two NZCs indicating
potential advantages in identifying glottal opening instants and
closed phase intervals.

The computational cost of all the measures can be reduced
greatly by calculating them recursively provided that a suitable
window function is used. Even so, the cost of thedAV measure
is around 100 times greater than that of the others.

Overall, our preferred measures aredEP and dEW which
have virtually identical performance on real speech. ThedEP

measure has better theoretical noise immunity but is somewhat
more costly to evaluate and was slightly less robust to short
window lengths. Despite the excellent performance obtained
from the measures studied in this paper, they do not provide
a complete solution to the problem of detecting GCIs. To
eliminate the NZCs corresponding to glottal opening and those
generated during unvoiced speech segments, it is necessary
to combine them with a selection procedure such as that
described in [21], [22].

APPENDIX

RESPONSE TO ANOISEFREEDUAL IMPULSE

In this appendix we prove the expressions given in (13) for
the response of the group delay measures to a dual impulse.
We assume that the input signal is given by

x(n) = (1− a)δ(n) + aδ(n− n0)

and we defineb = 1− a−1 = −(1− a)/a.
We may write

dDC =
∑N−1

n=0 nx(n)∑N−1
n=0 x(n)

=
n0a

(1− a) + a

=
n0

1− b

dEW =
∑N−1

n=0 nx2(n)∑N−1
n=0 x2(n)

=
n0a

2

(1− a)2 + a2

=
n0

1 + b2

For convenience we now definez = e−j2π/N giving

dEP =
N

2π
arg

(
N−1∑
n=0

x2(n)z−(n+0.5)

)
− 1

2

=
N

2π
arg
(
(1− a)2z−0.5 + a2z−(n0+0.5)

)
− 1

2
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from which we obtain the following equation moduloN

dEP =
N

2π
arg
(
(1− a)2 + a2z−n0

)
=

N

2π
arg
(
b2 + ej2πn0/N

)
[modN ]

wheredEP must lie in the range− 1
2 ≤ dEP < N− 1

2 . Finally
we observe thatz−n0h = 1 iff n0h is a multiple ofN . This
in turn is true iff h is a multiple ofH = N/ gcd(n0, N). It
follows that for0 ≤ h < H − 1

N−1∑
k=0

z−n0kh = Nδ(h)

We may now write

dAV =
1
N

N−1∑
k=0

X̃(k)
X(k)

=
1
N

N−1∑
k=0

n0azn0k

(1− a) + azn0k

=
n0

N

N−1∑
k=0

1
1− bz−n0k

=
n0

N(1− bH)

N−1∑
k=0

1− bHz−n0kH

1− bz−n0k

=
n0

N(1− bH)

N−1∑
k=0

H−1∑
h=0

bhz−n0kh

=
n0

N(1− bH)

H−1∑
h=0

bhNδ(h)

=
n0

1− bH
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