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Abstract

Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide
insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that
make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met
in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles
insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present
in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence
for stress-responsive gene expression of five different purification methods - Laser Capture Microdissection (LCM),
Translating Ribosome Affinity Purification (TRAP), Immunopanning (PAN), Fluorescence Activated Cell Sorting (FACS), and
manual sorting of fluorescently labeled cells (Manual). We found that all methods obtained comparably high levels of
repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other
methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes,
samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively
translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational
regulation.
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Introduction

Neurons differ widely in their morphology, firing properties,

connectivity and other cellular phenotypes due in part to profound

differences in gene expression. Recently, several approaches have

been used to comprehensively measure cell-type-specific gene

expression using microarrays. In each method, targeted cell types

are identified visually, typically through expression of a fluorescent

protein, but the methods differ in the way that targeted cells are

separated from surrounding tissue. These differences may have

important effects on the resulting data. For example, the degree to

which a sample exclusively reflects expression in the targeted cells

depends on the efficiency of the separation. On the other hand,

vigorous dissociation of tissues associated with some separation

methods can potentially cause activation of stress or cell death

pathways thereby distorting the resulting expression profile. Here

we quantitatively compare five different cell-type specific profiling

approaches with respect to repeatability, accuracy, and sensitivity

to several artifacts. Data from studies employing laser capture

microdissection (LCM;[1,2], translating ribosome affinity purifi-

cation (TRAP;[3,4], fluorescence activated cell sorting (FACS;

[5]), immno panning (PAN; [6]), and manual sorting (Manual;

[7,8] to isolate cell-type-specific samples for hybridization with the

same microarray platform (Affymetrix Mouse) were re-analyzed

and directly compared. The results reveal that all methods are

highly reproducible but that they differ in the apparent purity of

the samples from contamination with transcripts from other cell

types. Because some methods rely on dissociation while others do

not, we also compared the degree of activation of apoptosis-

related, stress-related and immediate early genes and found

evidence for a mounted response in the PAN method, but not in

the other two dissociation-based methods. Although most of the

data was obtained from cell types not tested with more than one

method, for a single cell-type, cerebellar Purkinje cells, it was

possible to directly compare profiles obtained with three different

methods: LCM, TRAP and Manual. Most known Purkinje cell

markers were identified by all three approaches, but many other

transcripts showed surprisingly large differences. Some of these

differences may reflect differential contamination, while others

may reflect real differences in the degree to which transcripts are

actively translated.

Methods

Cell-type-specific purification methods
Details of the methods used in each of the reviewed studies

(LCM, TRAP, PAN, FACS, and Manual) can be found in the

corresponding references given in the introduction. Note, the

Cahoy, et al. 2008 study from which the PAN data was obtained

employed a combination of PAN and FACS to varying degrees,
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however given that all purified cell types from this study were

initially subject to panning purification, we refer to the method

simply as PAN. All studies used similar methods for isolation and

cleanup of RNA from either isolated cells (LCM, PAN, FACS, and

Manual) or from immunoprecipitated polysomes. Also, all studies

used two round T7-mediated In Vitro Transcription (IVT) for

amplification and labeling of RNA and used similar input amounts

of cRNA for microarray hybridization.

Analysis of microarray data
We obtained microarray data (CEL files) from the Gene

Expression Omnibus (GEO) or directly from the authors of six

published studies as well as from one unpublished study (Table 1,

Table S1).This included all cell type-specific microarray data

available at the outset of the analysis which made use of the

Mouse430v2 or MOE430A Affymetrix platform (only probes

common to both platforms were used). All the CEL files were

subjected together to background correction, normalization and

summary value calculation using Affymetrix Power Tools (apt

version 1.8.6 using ‘‘rma-sketch’’ option) (http://www.affymetrix.

com/partners_programs/programs/developer/tools/powertools.affx).

Resulting summary values were used for the analysis.

Calculating replicate correlation coefficients
We treated each of the 195 samples as a 22,690-element vector,

where each element corresponds to the log 2 normalized

microarray signal-intensity for a given probe set on the Affymetrix

Mouse 430 A gene chip. We then computed the Pearson product-

moment correlation coefficients between all pairings of biological

replicate samples for each of the 64 profiled cell types.

Contamination Indices
The procedure for calculating the contamination index of a

given sample was as follows. Non-GABAergic sample microarray

signal values for a given GABAergic marker gene (Slc32a1

(Vesicular GABA transporter), Gad1, Gad2) were normalized to

the range [0,1], where a value of 0 corresponded to the lowest

expression level of that gene among the non-GABAergic samples

and a value of 1 corresponded to the maximum expression level of

that gene among the GABAergic samples (Figure S1a). We then

obtained the GABAergic contamination index of each non-

GABAergic sample by averaging over the normalized signal values

of multiple marker genes. In the same manner, we obtained the

astrocyte (marker genes: Aqp4, Gfap, Fgfr3, Slc1a2, Gjb6) and

oligodendrocyte (marker genes: Mbp, Sox10, Mag, Mog) contam-

ination indices (Figure S1b,c). A second index was computed for

each contamination category using an expanded set of genes

selected by clustering analyses. Focusing on the most significantly

differentially expressed genes (minimum of 10-fold difference in

expression between at least 2 cell types and an ANOVA p-val ,

1e-70; a total of 1612 genes) we first performed hierarchical

clustering of genes across samples and then of samples across

genes, using the Euclidean distance metric and average-linkage

(unweighted pair-group method average), and then plotted a heat

map of expression levels for these 1612 genes for each cell type,

where the genes (rows) and cell types (columns) are ordered by

their corresponding hierarchical clusters. The results of these

analyses are given in Figure S2. For astrocyte and oligoenden-

drocyte samples, large blocks of highly enriched genes can be

readily discerned. We selected the ‘‘best-looking’’ subset (i.e.

uniformly high across cells of a similar type, and low otherwise) of

these clustered genes for each cell type to compute the expanded

contamination index (42 genes for astrocytes and 26 genes for

oligodendrocytes; Figures S3 and S4). GABA gene clusters were

less apparent and consisted of fewer genes, perhaps reflecting the

greater heterogeneity between different subsets of GABAergic

neurons. This poorer clustering led us to relax the significance

threshold (ANOVA p value , 1e-40) and to include markers of

interneuron subsets, such as Sst and Lhx6, rather than strictly pan-

GABAergic genes (12 genes in all; Figure S5). It should be noted

that the greatest ‘‘improvements’’ in purity are seen for

GABAergic contamination with this second index, which may

be a direct consequence of including less general GABAergic

markers.

Lists of genes for assessing expression artifacts
We obtained a list of Immediate Early genes (IEGs) from [9],

the apoptosis gene set was constructed using the WhichGenes gene

set building tool (http://www.whichgenes.org/), and stress genes

were selected on the basis of Gene Ontology (GO) annotation

(Table S3).

Determination of glia-enriched genes for filtering out
probable contaminants

A non-glial comparison group was constructed by combining all

samples with lower than 0.2 astrocyte and oligodendrocyte

contamination indices as calculated above, and t-tests were

performed between these samples and the astrocyte and oligoden-

drocyte sample groups for all genes. Genes with a t-test p-value

,0.001 and showing a more than 2-fold enrichment in the glial

samples were considered glia-enriched, and thus may reflect glial

contamination when expressed in non-glial profiles (Table S5a,b).

Analysis of UTR and ORF sequence length
We downloaded full length mRNA and protein sequences for all

mouse genes (http://www.ncbi.nlm.nih.gov/Ftp/), and calculated

Table 1. An overview of the different purification methods, references, number of cell types, and number of microarrays used in
the analysis.

Method References # Cell Types # Microarrays

LCM Chung et al., 2005; Rossner et al., 2006 5 19

TRAP Doyle et al., 2008; Heiman et al., 2008 24 76

FACS Arlotta et al., 2005 7 15

PAN/FACS Cahoy et al., 2008 8 23

Manual Sugino et al., 2006; Okaty et al., 2009 20 62

Total 64 195

doi:10.1371/journal.pone.0016493.t001
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UTR lengths by subtracting three times the protein sequence

length from the length of the full mRNA for each gene represented

on the MOE 430 A chip for which we were able to map the

affymetrix identifier to the RefSeq identifier (,10,000 genes).

Determination of Purkinje enriched gene
T-tests were performed between all Purkinje samples taken as a

single group and all Non-Purkinje samples taken as a group for all

genes. Heirarchical clustering was performed as described above.

Genes included in Figure S9 are tightly clustered, have a t-test p-

value , 1e-20 and show .10-fold difference in expression

between group means.

Results

We compared microarray data from 7 different studies, utilizing

5 different cell-type-specific mRNA isolation methods, and

representing a total of 64 different cell types (Table 1; Table

S1). The 5 methods were: LCM, TRAP, PAN, FACS, and

Manual.

Repeatability
In order to assess the repeatability of purification methods, we

first computed the mean correlation coefficient between biological

replicates for each cell type (Figure 1; see Methods). Then we

performed a one-way ANOVA across methods, followed by

Tukey’s post hoc test, and found an extremely modest but

significant difference between the repeatability of the TRAP and

Manual methods (ANOVA p-val ,0.01, Tukey’s post hoc test p-

val ,.0.05), with the TRAP replicate samples showing a 1.006-

fold higher correlation on average than the Manual samples.

Given that gene regulation is a stochastic process which can lead to

significant cell-to-cell variability in the expression levels of various

transcripts even within a discrete class of cells [10,11,12,13], this

result was not altogether unexpected insofar as these two methods

represent the maximum (.10,000) and minimum (50-100)

number of cells, respectively, from which mRNA was extracted

among all of the compared methods. However, given the very

small magnitude of the effect, it also suggests that cell-to-cell

variability among well-defined neural cell types may likewise be

relatively small.

Sample Purity and Contamination
As a first step toward assessing sample purity, we partitioned the

samples into six gross categories: GABAergic neurons, non-

GABAergic neurons, astrocytes, non-astrocytes, oligodendrocytes,

and non-oligodendrocytes (Table S2a,b, and c). Our selection of

these categories was motivated by the fact that well-recognized

cell-type-specific marker genes for GABAergic cells, astrocytes,

and oligodendrocytes were reliably represented by probes on the

Affymetrix Mouse 430 A gene chip. In order to quantify the

degree to which, for example, the non-GABAergic cell samples

contained contaminating GABAergic cell-specific mRNAs, we

computed a contamination index for each of the non-GABAergic

samples, and likewise for the other two categories of contamina-

tion (see Methods; Figure 2 a,b,c). We then performed ANOVAs

across methods for each contamination category, followed by

Tukey’s post-hoc test, and found that the mean contamination

indices for LCM and TRAP were significantly higher than PAN,

FACS, and Manual for GABA and oligodendrocyte contamina-

tion (Figure 2d; GABA: ANOVA p-val , 1e-6, Tukey’s post hoc

p-val ,0.05, maximum fold difference between methods ,5;

Oligodendrocyte: ANOVA p-val , 1e-7, Tukey’s post hoc ,0.05,

maximum fold difference between methods ,3.4), and that the

Figure 1. Repeatability of microarray measurements is high and largely uniform across all cell purification methods. Each data point
represents the mean Pearson product-moment correlation coefficient between biological replicates for each of the analyzed cell types. Cell types are
grouped by purification method, corresponding to the labels on the horizontal axis and demarcated by the shaded regions.
doi:10.1371/journal.pone.0016493.g001
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mean LCM astrocyte contamination index was significantly higher

than all other methods and the TRAP astrocyte contamination

was significantly higher than Manual (ANOVA p-val , 1e-7,

Tukey’s post hoc p-val ,0.05, maximum fold difference between

methods ,2.9).

While these indices were based on the expression levels of

undisputed cell-type-specific marker genes, a possible shortcoming

is that they were calculated using a relatively small number of

genes (3 for GABA, 5 for astrocytes, and 4 for oligodendrocytes).

Thus we computed alternative contamination indices using an

expanded set of genes selected by unsupervised clustering of gene

expression profiles across cell types (see Methods). The Pearson

correlation coefficient of the original contamination index and this

second index was .81, p-val , 1e-4 (Figure S6A). While on

average the values of the second index were lower than the first,

some samples showed a higher value, and except in the case of

PAN and FACS glial contamination the ordinal relationships

between methods were maintained (i.e. the mean contamination

index for LCM samples was always highest and Manual was

always lowest, etc.; Figures S6B,C, and D). The contamination

indices for each sample can be found in Tables S2a,b, and c.

Expression Artifacts
The separation of select populations of cells from acutely

dissected tissue poses several technical challenges. For example,

potential stressors introduced in the intervening steps between

tissue extraction and mRNA isolation may distort the resulting

portrait of cell-type-specific transcriptional state if they induce a

transcriptional response not representative of the in vivo state.

Potential stressors include antibodies, enzymes and other reagents

used for immunopanning or to digest tissue, non-physiological

variations in temperature and other aspects of the cellular

environment, as well as the mechanical stress of physically

breaking up the tissue. Since the longer it takes to extract the

mRNA, the greater the likelihood of a transcriptional response, the

reliability of methods requiring cellular dissociation, such as PAN,

FACS, and Manual, may be more prone to these effects than

methods that do not require dissociation, such as LCM and

TRAP. In order to investigate the prevalence of these speculative

effects, we focused on three categories of gene function –

immediate early genes (IEGs), apoptosis related genes, and stress

related genes (see Methods). Heat maps depicting the expression

levels of genes for each of the three categories show similar global

trends across samples and methods (Figure 3a,b,c), however there

are many clear cases of cell-type and method differences. In order

to quantify the differences in the overall effects for each method,

we computed the mean values for each sample over all genes

within a category, and then performed an ANOVA on the sample

means across methods for each category. By this measure, PAN

samples showed significantly higher levels of expression of IEGs,

apoptosis related genes, and stress related genes than other

methods (IEG: ANOVA p-value , 1e-8, Tukey’s post hoc p-value

,0.05, maximum fold difference between methods .,1.9;

Apoptosis: ANOVA p-value ,0.001, Tukey’s post hoc p-value

Figure 2. Cell purification methods show differential suscep-
tibility to contamination. (A) GABA contamination indices of non-
GABAergic cell types, (B) astrocyte contamination indices of non-
astrocyte cell types, and (C) oligodendrocyte contamination indices of
non-oligodendrocyte cell types. For an explanation of how the

contamination indices were computed, see the Methods. (D) Mean
sample contamination indices of each purification method for the three
different categories of contaminants (from A, B, and C). Differences in
mean contamination indices across methods were significant for each
category of contaminant (ANOVA p,0.005). Asterisks indicate which
means were significantly different from the lowest means (Tukey’s post-
hoc test, p,0.05), which were achieved by the Manual sorting method
in the case of GABA and astrocyte contamination, and PAN in the case
of oligodendrocyte contamination.
doi:10.1371/journal.pone.0016493.g002
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,0.05, maximum fold difference between methods .,1.1; Stress:

ANOVA p-value ,1 e-5, Tukey’s post hoc p-value ,0.05,

maximum fold difference between methods .,1.2). However,

compared to the magnitude of the contamination effects,

heightened expression of these categories of genes in PAN samples

was relatively modest. The comparison also revealed a lack of any

significant difference between LCM and TRAP versus FACS and

Manual, suggesting that dissociation in and of itself does not

necessarily induce an appreciable stress response.

It is important to note that given the largely non-overlapping

array of cell types profiled by each method, a possible confound of

the foregoing analysis is that intrinsic differences in the

amenability to purification of specific cell types may contribute

to purported method effects. Moreover, several IEGs, apoptosis-

related genes, and stress-related genes appear to be differentially

expressed between different cell types. For example, the bulk of the

PAN samples are from astrocytes and oligodendrocytes, and a

subset of the genes elevated in PAN appear to be likewise elevated

in TRAP astrocyte and oligodendrocyte samples. However, data

from at least two methods was available for five cell types: cortical

pyramidal neurons (TRAP,LCM, and Manual data), cerebellar

Purkinje neurons (TRAP,LCM, and Manual data), cortical

astrocytes (TRAP and PAN data), cortical oligodendrocytes

(TRAP and PAN data), and cortical GABAergic interneurons

(TRAP and Manual). In each of these cases LCM or TRAP

showed the highest levels of contamination and Manual or PAN

showed the lowest levels of contamination as measured by the two

contamination indices (Table S2d).

Within Cell-Type Comparison
Ideally, a comparison between methods should be conducted

using identical cell types. While different means of cellular

identification were employed in each case, cerebellar Purkinje cell

profiles were common to LCM, TRAP, and Manual studies.

Whereas Purkinje cells were identified by virtue of anatomy and

morphology alone in the LCM study, restricted expression of a

GFP transgene [14] aided the purification of Purkinje cells in the

Manual method, and pull down of EGFP-ribosomal fusion protein

allowed for the purification of Purkinje cell mRNA in TRAP. Each

method successfully detects the majority of known Purkinje cell

markers [15]; Figure S7), however, we found that 5,314 genes

were differentially expressed between LCM, TRAP, and Manual,

using a criterion of ,1e-3 ANOVA p-value and a minimum fold-

change of 2 (Figure 4a). As a first pass at characterizing the types of

genes that were differentially expressed, we first focused on the

most significant, namely those genes with less than a 1e-10

ANOVA p-value and showing a greater than 20-fold difference in

expression between methods (Figure 4b). 55 genes met this

criterion. By combining literature searches with Allen brain atlas in

situ hybridization data, we established that 23 of these genes were

likely the result of contamination from non-Purkinje cells

(Figure 4b, gene names in red font; Table S4). 17 of these genes

showed the highest signal level in the LCM samples, with

intermediate to low levels in TRAP, and the lowest levels in

Manual. A handful of genes appeared to be non-translated RNAs

which showed low signal in the TRAP profiles (Figure 4b, gene

names in green font), reflecting the fact that TRAP only targets

RNAs associated with ribosomes, and hence only those RNAs

which are actively being translated at the time the tissue is

processed.

To further characterize genes that were differentially expressed

as a result of method, we performed a series of t-tests in which the

Purkinje samples from a given method were compared against

samples from the other two methods combined, and examined

those genes with a p-value less than 0.001 and a fold-difference

.3. This allowed us to distinguish between genes that were

significantly enriched or depleted in each method. Given the high

number of genes enriched and depleted in each method, we

needed a systematic way of assigning differentially expressed genes

to informative categories. Thus we applied GO overrepresentation

analysis to enriched and depleted sets of genes, as well as our own

filter for glia-enriched contaminant genes (see Methods). Taking

the intersection of each set of method-enriched and depleted genes

with the glia-enriched gene set, we found that roughly 70% of the

LCM Purkinje enriched genes are also glia-enriched, versus 37%,

and 8% respectively for TRAP and Manual. Reciprocally, 69% of

the genes that are depleted in Manual with respect to the other

two methods are glia-enriched (Figure 4c). This pattern of

contamination is consistent with the contamination indices

computed previously (Figure 2b,c; LCM Purkinje mean contam-

ination index: 0.36, TRAP Purkinje mean contamination index:

0.16, Manual Purkinje mean contamination index: 0.10).

In order to focus on method differences not overtly related to

glial contamination, we restricted GO overrepresentation analysis

to non glia-enriched genes, and found that the remaining method

enriched and depleted genes showed significant enrichment for

several categories of gene function and cellular localization (Table

S6a,b,c). Interestingly, LCM and Manual enriched and depleted

genes are associated with many of the same gene ontology terms.

For example, genes associated with the biological processes of ‘‘ion

transport’’ and ‘‘localization’’ are overrepresented among LCM

and Manual enriched genes, and thereby overrepresented in

TRAP depleted genes (Figure 4d). Likewise genes localized to the

synapse and membrane are enriched in LCM and Manual

Purkinje, but depleted in TRAP (Figure 4d).

Given that LCM and Manual methods profile all transcribed

mRNAs, whereas the TRAP method only profiles mRNAs

associated with tagged ribosomes, lower expression of specific

genes in TRAP data may reflect lower ribosome density and/or

ribosomal occupancy of these transcripts, resulting in translational

suppression [16,17,18]. One mechanism by which mRNAs are

post-transcriptionally regulated is through interactions with RNA

binding proteins and sequences contained in their 39 and 59

untranslated regions (UTRs) [19]. Given that longer UTRs in

theory have a higher probability of containing regulatory

sequences [20], we looked for correlations between suppressed

expression in the TRAP data and UTR length (see Methods). We

found that the mean UTR length of TRAP depleted genes is 1.3-

fold higher than the mean UTR length of all MOE 430 A chip

transcripts (t-test p-value = 8.27e-5). However we found no

significant correlation between the UTR length of TRAP depleted

transcripts and the magnitude of suppressed expression as

measured by the fold change in expression between TRAP and

the other methods. To our surprise, we also found that the mean

Figure 3. PAN samples show moderately heightened expression of (A) immediate early genes, (B) apoptosis-related genes, and (C)
stress-responsive genes, however overall global trends are comparable for most samples. For each heat map, the replicate-averaged
log2 microarray signal intensity (normalized) for each cell type (columns) is presented for all genes (rows) in a given category. Horizontal axis labels
and vertical lines indicate purification method groups. (D) Average mean signal intensity for each method and each gene category. Asterisks indicate
which means were significantly different from the lowest means (Tukey’s post-hoc test, p,0.05).
doi:10.1371/journal.pone.0016493.g003
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Figure 4. Gene expression profiles of Purkinje cells purified by three different methods show striking differences. (A) Scatter plot
depicting the maximum fold difference of expression level between methods (vertical axis) and the corresponding ANOVA p-value (horizontal axis)
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length of the coding sequences, or open reading frames (ORFs), of

TRAP depleted genes is 2.02-fold greater than the mean ORF

length of all MOE 430 A chip transcripts, and that the ORF

length of TRAP depleted genes shows a modest but significant

correlation with fold-suppression (Pearson product-moment cor-

relation coefficient = 0.28, p-val , 1e-4). These results are

summarized in Figure S8.

Interestingly, comparison between TRAP profiles and profiles

obtained from other methods for cortical pyramidal neurons,

cortical astrocytes, cortical oligodendrocytes, and cortical GA-

BAergic interneurons all showed similar trends. The mean ORF

lengths of TRAP depleted genes ranged from 1.38-fold (cortical

oligodendrocytes) to 2.04-fold (cortical GABAergic interneurons)

higher than the average ORF length for all MOE 430 A genes.

Also, the GO cellular component term ‘‘plasma membrane’’ is

overrepresented in the set of TRAP depleted genes for each of

these cell types.

Despite possible differences in the translational efficiency of

particular subsets of genes, differential contamination, or other

potential artifacts, concordant microarray data across Purkinje

samples obtained from these diverse methods provides stronger

evidence for genuine expression than from any one study alone.

Moreover, the vast number of cell types compiled for this study

affords a highly inclusive comparison group for identifying cell-

type enriched genes. Thus we used both t-tests and clustering to

identify Purkinje enriched genes (see Methods). The results of these

analyses corroborated known Purkinje enriched genes and also

identified novel marker genes, such as Nrk, Ebf1, Smpx, Il22/

Iltitfb (single probe set covers sequences common to both genes),

and Krt25. The full set of enriched genes can be found in Figure

S9.

Discussion

Faithful representation of the in vivo global transcriptional or

translational state of a given class of neural cells using microarrays

is encumbered by the underlying structure of brain tissue:

heterogeneous, spatially intermingled cell types, distributed in

varying proportions. An ideal method for purifying cell-type-

specific mRNAs must thereby optimize selectivity for one class of

cells above all others while minimizing the potential for artificially

perturbing gene expression in the process. We compared

microarray data from five different methods and found significant

differences in the extent of contamination and stress artifacts.

LCM and TRAP data showed significantly higher levels of

contamination than the other methods, and PAN data showed

elevated levels of IEGs and apoptosis and stress related genes.

Given the high cell density of brain tissue, contamination in the

case of LCM may result from the technical difficulty of restricting

the microdissecting laser to the contours of only a single cell body,

thus allowing closely apposed cells to be dissected along with the

cell of interest. Contamination of TRAP samples may be a

consequence of pulling down tagged ribosomes from tissue

homogenate, which contains mRNA from numerous non-target

cell types. PAN, FACS, and Manual all sort target cells from a

population of mostly intact dissociated cells, thus the risk of

contamination from mRNA in the surrounding medium is smaller.

Alternatively, contamination in the TRAP samples could reflect

low level expression of the EGFP-L10a transgene outside of the

intended population. For example, the Etv1 BAC line used in the

Doyle, et al. 2008 TRAP study labels predominantly Layer 5a

corticostriatal pyramidal neurons, however EGFP expression in

this line can also be faintly detected in astrocytes, which is in turn

reflected in the expression profile of these samples (data not

shown). We did not however include any such lines, for which off-

target transgene expression was explicitly known, in our analysis of

contamination. Transgene expression in mixed cell populations is

a common feature of transgenic mouse lines, as single genes are

often insufficient to fully delineate a single cell type. In these cases,

PAN and Manual may allow a greater degree of selectivity than

the other methods, insofar as the expression of surface proteins

may serve as an additional filter in the case of PAN, and cell

morphological features may further inform selection of target cells

in the Manual method. However the long processing time

required for performing antibody reactions in PAN may induce

aberrant gene expression in target cells as a result of prolonged

exposure to an artificial environment.

Both contamination and stress artifacts are somewhat variable

between within-method samples, however, suggesting that the

purification of certain cell types may be more tractable than

others. Interpretation of the stress effects is further complicated by

the fact that some of the observed gene expression differences may

be the result of intrinsic cell-type differences rather than method

differences. Also, PAN and FACS data came from early postnatal

mice whereas the majority of the data from the other studies came

from mature mice (Table S1). Thus differential contamination and

stress effects in these cases may in part reflect developmental

differences rather than method differences. With these caveats in

mind, we chose to focus our analyses more closely on Purkinje cell

data, for which LCM, TRAP, and Manual data was available. We

detected thousands of differentially expressed genes between the

three methods. Given that non-biological ‘‘batch effects’’ are a

common occurrence in microarray experiments [21], some

amount of variance is to be expected when comparing different

batches of microarray data. Sources of this variation may include

differences in the efficacy of amplification reagents, the use of

different RNA isolation kits, different atmospheric pressure and

temperature conditions, and different locations. While each

method successfully identifies Purkinje cell-specific marker genes,

in theory differences in the sensitivities of each method may also

result in differential expression of transcripts. However, we found

that some of the observed differences in gene expression level

could be accounted for by differential contamination. Consistent

with the results of our analyses using all samples, we detected the

highest degree of glial contamination in the LCM Purkinje data,

with intermediate levels in TRAP data, and the lowest in Manual.

Gene Ontology overrepresentation analysis suggests that many

interesting categories of gene function and cellular compartmen-

for all genes (where an ANOVA was performed for each gene across groups defined by purification method). Upper right quadrant formed by the two
intersecting red lines delineates significantly differentially expressed genes (maximum fold difference .2, ANOVA p-value , 1e-3). (B) Heat map
depicting the most significantly differentially expressed genes (maximum fold difference between methods .20, ANOVA p-value , 1e-10) where
each column represents an individual replicate sample. Gene names given in red font indicate genes that have a strong likelihood of being non-
Purkinje gene contaminants (based on Allen Brain Atlas In-situ data and literature searches, see Results), green font indicates non-translated mRNAs,
and the expression specificity of the remaining genes is unknown. (C) Pie graphs depicting the percentage of method enriched and depleted genes
that are also enriched in glia, and thus are likely to be the result of contamination. The total number of genes in each category is given beneath each
graph. (D) Gene ontology terms associated with Manual and LCM enriched genes and TRAP depleted genes. Number of genes associated with each
term is given on the vertical axis.
doi:10.1371/journal.pone.0016493.g004
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talization, such as ‘‘ion transport’’ and ‘‘synaptic localization’’, are

commonly enriched in LCM and Manual data with respect to

TRAP data. An important distinction of the TRAP method is that

it selectively pulls down polysomal mRNAs, and therefore targets

only translationally active mRNAs. This can be seen most clearly

in the low or absent signal levels of non-coding RNA probes in

TRAP data versus the other methods. Thus, excluding method

artifacts, genes showing consistent expression in LCM and

Manual, but diminished expression in TRAP may indicate

translational suppression. Consistent with this hypothesis, mount-

ing evidence suggests that many mRNAs encoding dendritic and

synaptic proteins [19,22,23], as well as proteins enriched in other

cellular compartments, are trafficked to and ultimately translated

at the site of their localization, rather than in the cell soma.

Through a variety of mechanisms, these trafficked mRNAs are

often translationally repressed en route to their destination and

their translation is often dependant on activity or signaling, and

hence one would expect lower signal values for these transcripts in

TRAP data, as indicated by GO overrepresentation analysis. In

principle, regardless of the intervening regulatory mechanisms, the

translational efficiency of a given gene is primarily influenced by its

ribosomal occupancy, or the fraction of the encoding mRNA

molecules associated with at least one ribosome, and the ribosome

density, which is the number of ribosomes associated with that

transcript per unit length. Thus translational suppression may

reflect a decrease in either or both of these factors. Additionally, a

number of studies have demonstrated a negative correlation

between ribosome density and ORF length, the reasons for which

remain enigmatic [16,24,25]. The observation that the mean ORF

length of TRAP depleted genes is greater than the average ORF

length for all genes, and that there exists a moderate correlation

between the degree of reduced TRAP signal and ORF length,

suggests that the TRAP signal in part reflects ribosome density,

and not simply ribosome occupancy as might be expected.

Thus systematic comparison of TRAP data with data obtained

by transcriptional profiling methods for a variety of cell types may

facilitate a global perspective on cell-type-specific post-transcrip-

tional regulation. However, it is important to note that the ability

to detect differentially regulated transcripts within a particular cell

type by comparing data obtained by different methods may be

impeded by artifacts associated with a given method. Likewise,

attempts at inferring the structure of intracellular gene networks by

comparing microarray data across different cell types is potentially

confounded by the inclusion of contaminating mRNAs, insofar as

they distort the true set of interacting genes [26,27]. Our analyses,

together with other analytical approaches that have been

developed to identify cell-specific genes from contaminated data

[28], suggest ways of detecting and ultimately filtering out

contamination artifacts in order to hone in on meaningful

expression differences. This is especially important in the case of

LCM, which by our analyses shows the greatest propensity for

contamination, however is a uniquely indispensable tool in

isolating cell types of interest from human post-mortem tissue

[29,30,31]. Ultimately, despite differences in sample purity or

other method artifacts, comparison across datasets from multiple

studies and cell types has the potential to yield insights beyond that

of any single study. As one example, our lists of astrocyte,

oligodendrocyte, and Purkinje enriched genes (Tables S5a,b;

Figure S9) were derived from comparisons between expression

profiles from the largest number of cell types assembled to date,

and are thus novel and valuable resources for applications in

which expression ‘‘signatures’’ of these cell types are desired.

Understanding how method differences influence the resulting

data will aid future efforts to mine and analyze combined

expression data, if not lead to improvements in the methods

themselves.

Supporting Information

Figure S1 Normalized signal intensities of known (A)
GABAergic,(B) astrocyte, and (C) oligodendrocyte and
marker genes.
(TIF)

Figure S2 Dendrograms and heat map of highly signif-
icantly differentially expressed genes (see Methods).
Genes (rows) and cell types (columns) were clustered using

Euclidean distance metric and average linkage. Microarray signal

intensity values were standardized (across rows) such that the mean

(i.e. mean signal value of a given gene across all samples) is zero

and the standard deviation is one. Notice the primary division of

glia and neurons.

(TIF)

Figure S3 Normalized signal intensities of astrocyte
enriched genes selected by clustering. Columns are sorted

by method.

(TIF)

Figure S4 Normalized signal intensities of oligodendro-
cyte enriched genes selected by clustering. Columns are

sorted by method.

(TIF)

Figure S5 Normalized signal intensities of GABAergic
neuron enriched genes selected by clustering. Columns

are sorted by method.

(TIF)

Figure S6 Comparison of two different contamination
indices. The first was calculated based on the expression of well

established marker genes alone, whereas the second was based on

the expanded sets of genes selected by clustering (Figures S3, S4,

S5). (A) Scatter plot of the two different contamination indices

(correlation = .81). Comparison of the mean contamination

indices for each method for (B) GABA contamination, (C)

astrocyte contamination, and (D) oligodendrocyte contamination.

(TIF)

Figure S7 Purkinje samples from all three methods
identify most known marker genes. Microarray signal levels

are represented as a heat map for all cerebellar samples.

(TIF)

Figure S8 The mean UTR and ORF lengths of TRAP
depleted genes are significantly higher than the mean
UTR and ORF lengths for all annotated genes on the
MOE 430 A gene chip, and show modest but significant
correlation with the degree of suppressed expression. (A)

Histogram depicting the normalized frequency of ORF lengths for

all genes and for only TRAP depleted. (B) Histogram depicting the

normalized frequency of UTR lengths for all genes and for only

TRAP depleted.

(TIF)

Figure S9 Heat map of purkinje enriched genes.
(TIF)

Table S1 A brief description of each analyzed cell type,
and the study from which it came, including anatomical
region, cell type, mouse age, RNA isolation and
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amplification method, microarray input RNA amount,
and microarray platform.
(XLS)

Table S2 Sample groups used for computing contami-
nation indices and the values of the contamination
indices. (A) Non GABAergic and GABAergic samples. (B) Non

astrocyte and astrocyte samples. (C) Non oligodendrocyte and

oligodendrocyte samples (D) Comparison of contamination indices

for groups of samples representing similar cell types. Maximum

and minimum values are indicated by yellow or blue shading,

respectively.

(XLS)

Table S3 Immediate Early Genes, Apoptosis Genes,
and Stress genes (see Methods).
(XLS)

Table S4 Suspected non-Purkinje contamination genes.
Links to Allen Brain Atlas in situ hybridization data and PubMed

identifiers of references indicating non-Purkinje expression of the

corresponding gene.

(XLS)

Table S5 Glia-enriched genes. (A) Astrocyte enriched genes

and the corresponding fold enrichment, and t-test p-value for each

gene. (B) Oligodendrocyte enriched genes and the corresponding

fold enrichment, and t-test p-value for each gene.

(XLS)

Table S6 GO overrepresentation analysis for Purkinje
Cells. (A) LCM enriched and depleted, (B) TRAP enriched and

depleted, (C) Manual enriched and depleted.

(XLS)
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