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A quantitative criterion for determining
the order of magnetic phase transitions
using the magnetocaloric effect
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The ideal magnetocaloric material would lay at the borderline of a first-order and a second-

order phase transition. Hence, it is crucial to unambiguously determine the order of phase

transitions for both applied magnetocaloric research as well as the characterization of other

phase change materials. Although Ehrenfest provided a conceptually simple definition of the

order of a phase transition, the known techniques for its determination based on magnetic

measurements either provide erroneous results for specific cases or require extensive data

analysis that depends on subjective appreciations of qualitative features of the data. Here we

report a quantitative fingerprint of first-order thermomagnetic phase transitions: the expo-

nent n from field dependence of magnetic entropy change presents a maximum of n > 2 only

for first-order thermomagnetic phase transitions. This model-independent parameter allows

evaluating the order of phase transition without any subjective interpretations, as we show

for different types of materials and for the Bean–Rodbell model.
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T
here is a recent increased interest in understanding and
unambiguous determining the order of thermomagnetic
phase transitions1–4, motivated by fundamental studies of

the characterization of different phase transitions and due to the
important role that phase change materials play in different
technological areas, like data storage in rewritable optical mem-
ories5, thermal energy storage6, etc. One timely application of
thermomagnetic phase transitions is magnetic refrigeration,
whereby a magnetocaloric material acts as a solid refrigerant,
replacing the gas compression system employed in refrigerators
and air conditioners nowadays7–10.

Magnetocaloric materials can be classified into the order of
phase transition that they undergo: either first- (FOPT) or
second-order (SOPT) type phase transitions. FOPT materials
have the advantages of exhibiting large magnetic entropy change
and adiabatic temperature change but accompanied by thermal
hysteresis, rate dependent behavior and decreased cyclic perfor-
mance compared to quasistatic single shot characterization as a
function of field or temperature. Conversely, SOPT materials do
not suffer from thermal hysteresis but their magnetocaloric
responses are usually smaller than those of most FOPT materials
operating within the same temperature range. Therefore, a cur-
rent goal of magnetocalorics is to combine the best from both
types of materials: large response without hysteresis and a tra-
deoff between static and cyclic performance10. The search for
such materials bring forth the intermediate point of FOPT con-
verting to SOPT, which is usually termed tricritical point in lit-
erature though the critical point of the SOPT will be more
appropriate. LaFeSi-11,12 and MnFePSi-type13 alloy series are
examples exhibiting a gradual change from FOPT to SOPT. From
simulations point of view, the most extensively used model to
study FOPT materials in magnetocalorics is the Bean and Rodbell
model14. It reproduces FOPT, SOPT, and a critical point of the
SOPT by simply changing a single parameter, η15: η= 0 corre-
sponds to the Brillouin model, 0 � η< 1 relates to SOPT; η > 1 to
FOPTs and η= 1 ascribes to the critical point of the SOPT.

The formal classification of phase transitions has historically
evolved16 from the simple conceptual definition given by
Ehrenfest17 to a modern definition18 whereby the change of the
order parameter (e.g., magnetization in a ferromagnetic material)
across the transition is analyzed. In cases that the order parameter
discontinuously changes, the transition corresponds to first-order
type while a continuous change implies a higher order or con-
tinuous phase transition. At a FOPT, typically a discontinuous
change of entropy (ΔS) occurs, giving rise to a latent heat at the
critical temperature: ΔQ= Tc ΔS. In this way, transitions wherein
there is no latent heat, like First-Order Magnetization Processes
(FOMP)19,20, or those where the derivatives of the thermo-
dynamic potential diverge (instead of presenting a discontinuous
jump) can be properly classified16.

In the magnetocalorics field, techniques for determining the
order of phase transitions are distinguished as calorimetric or
magnetic. The former consists in measuring the latent heat of the
transition2,21, whose equipment is highly specific and not easily
available in every magnetics laboratory. Moreover, identifying the
order of phase transitions using bulk heat capacity alone can
become cumbersome in some cases22. As a substitute for these
calorimeters, purely magnetic techniques have been developed.
Among them, the most remarkable one is the broadly used
Banerjee criterion23, though in some specific cases the resulting
interpretations contradict to those arising from calorimetric
measurements3. This discrepancy arises from the assumption of
Banerjee criterion that the material follows a mean field model,
which might not apply to all cases. An alternative method was
proposed24 based on the scaling nature of the magnetocaloric
curves of SOPT materials25–28. However, controversies regarding

the applicability limits of this technique and of scaling itself were
raised15,29. Furthermore, the method involves extensive calcula-
tions (it requires construction of a rescaled curve using different
temperature dependent magnetocaloric curves at different applied
fields) and the interpretations depend on qualitative data features,
which require appropriate data processing and experience. In
particular, for cases close to the change of the order of phase
transition4, the complexity to evaluate the quality of the collapse
of the data is highly dependent on subjective interpretations. Just
recently, another method based on the Bean and Rodbell model
has been reported30, but is still based on a particular equation of
state that fulfill the mean field approach and, therefore, might not
be generally applicable.

A particularly challenging limitation of the existing methods
used for identifying the order of phase transitions is the study of
composite samples or transition temperature distribution. For
SOPT materials, if the distribution of Curie temperatures of their
phases are rather separated (typically ~100 K), some of the pre-
viously mentioned methods can be successfully applied, some-
times requiring a deconvolution of the data31. However, when
Curie transitions are nearer, distortions could arise due to either a
FOPT or distributed Curie temperatures; as the recently proposed
method based on Bean–Rodbell model requires fitting of the
data30, its applicability is de facto prevented by the distribution of
transition temperatures.

In this work, we propose a quantitative method to identify the
order of thermomagnetic phase transitions using the field
dependence of magnetocaloric effect: for samples with FOPT,
ΔSM depends on field with exponent n > 2. This characteristic
fingerprint can be easily identified in a quantitative way. The
method does not require rescaled curves construction, inter-
pretations based on overlapping of different curves or data fitting
to any specific equation of state. Its applicability is, therefore, not
based on any specific magnetization model, making it a generally
applicable approach. The method is applied to various systems
with different origin of phase transition, namely an alloy series
exhibiting FOPT → SOPT based on their compositions (LaFeSi-
type), numerical simulations using the Bean and Rodbell model, a
Heusler-type alloy and a perovskite cobaltite that exhibits an
antiferromagnetic-ferromagnetic FOPT. Furthermore, the
applicability to materials with distributed transition temperatures
is demonstrated using numerical simulations and experimental
composite materials, demonstrating that our proposed method is
also valid for heterogeneous, multiphase and composite magne-
tocaloric materials.

Results
La1Fe13−xSix-type alloys. La1Fe13−xSix-type alloys are selected in
this work (x= 1.2, 1.4, 1.6, 1.8) to represent alloy series experi-
encing a change from FOPT to SOPT, which in this case is
attained by increasing Si content4. They are denoted by their Si
content as Si 1.2, Si 1.4, Si 1.6, and Si 1.8 samples. Their order of
phase transition will be identified using previously existing
techniques (starting with calorimetry and continuing with mag-
netic measurements) and with our proposed method to enable
comparison.

Figure 1a shows the temperature dependence of the heat flow
measured at a constant heating rate of 10 Kmin−1 using a DSC
calorimeter. In the case of FOPT, the curves should show a sharp
peak associated to the latent heat, which is observed for Si 1.4 and
Si 1.6 samples. Contrastingly, the curve of Si 1.8 shows the
characteristics of a SOPT, namely a shallower lambda-like cusp in
the heat flow at the transition temperature32. The ultimate shape
of the curve would be affected by the characteristics of the sample
such as disorder, inhomogeneity, etc.32,33 The limitation of using
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DSC to identify the order of the transition is to correctly
distinguish the cusp-like feature from a shallow peak and not
erroneously attribute a latent heat to the former, whereby overall
require much experience of the researcher.

An alternative calorimetric method to identify the order of the
transition is to continuously cool/heat the sample while recording
its temperature change through the transition to reveal the
presence of the latent heat associated with FOPT. While the
evolution of sample temperature with SOPT is continuous, for
FOPT materials there will be a time interval during which the
temperature of the sample should remain constant despite that
heat is constantly rejected/absorbed by the sample (a plateau-like
behavior). Figure 1b and c shows the presence of these plateaus
for Si 1.4 and Si 1.6 under heating and cooling protocols, which
gives a clear indication of a FOPT in these two compounds,
whereas Si 1.8 exhibits a well-defined SOPT behavior. This is in
agreement with the results of the DSC thermograms of Fig. 1a,
serving as an additional confirmation of the order of the phase
transition of the samples.

Arrott plots in combination with Banerjee criterion (Fig. 2)
also confirm that samples Si 1.4 and 1.6 are FOPT materials (they
exhibit negative slopes) while Si 1.8 undergoes a SOPT (all slopes
are positive).

Figure 3 shows the three dimensional plots of the field and
temperature dependence of the magnetic entropy change (ΔSM)
of the studied alloys. In the case of the SOPT material (Si 1.8), the
temperature evolution of ΔSM is gradual for all magnetic field
values. Likewise, there is no abrupt change in the field
dependence of this magnitude for any of the isotherms. However,
for FOPT materials both their field and temperature dependen-
cies of ΔSM show an abrupt behavior for certain values of the
magnetic field (H) or temperature (T). It is particularly important
to notice that for temperatures above the transition temperature
(e.g., for T > 185 K in Si 1.4 sample), ΔSM presents a sharp
increase once the field reaches a certain value (which is
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temperature dependent). The SOPT magnetocaloric curves had
been termed as “caret type”34; in contrast, we can describe this
observation in Si 1.4 sample as a “cliff” in the 3D representation.
While this cliff behavior is clearly observed for Si 1.4 and Si
1.2 samples, it is not that evident for Si 1.6, which displays an
almost mixed behavior depending if we account for the surface
regions of low temperatures or high temperatures. However, both
calorimetric and Arrott plot techniques indicated its FOPT
character. The ambiguity of the identification of the order of
phase transition from the shape of MCE curves is because this
composition is close to the critical point of the SOPT (predicted
as Si 1.654).

The solution to this problem lays in the cliff shape of the
MCE surface and the quantitative description of this feature
will further extend its advantages. The lines over the surfaces in
Fig. 3 show the field dependence of ΔSM at selected
temperatures for all studied alloys. For Si 1.8 (SOPT), the field
dependence behavior is rather similar for temperatures above
and below Tpk: a gradual increase of ΔSM with increasing fields.
However, the situation begs to differ for FOPT cases. Looking at
the most evident cases (Si 1.4 and Si 1.2), for T < Tpk and while
still restricting the observed T range close to the transition,
there is an abrupt increase of ΔSM, followed by a gradual
increase at larger fields. This latter gradual increase corresponds
to the apparent plateau above the cliff. For T > Tpk, it is seen
that, for low fields, ΔSM has a relatively small value, then
abruptly increases to comparatively high values. This sharp

increase is temperature dependent and requires increasingly
larger fields at higher temperatures after the transition
temperature. Although this can be a general trend in the field
and temperature dependence of ΔSM that clearly marks a
distinction between FOPT and SOPT materials, this method of
identifying the order of the phase transition is still qualitative.
The perception of abruptness depends on the appreciation of
the researcher and would not be quantitative. Therefore, the
results from this method might not be conclusive for the case of
Si 1.6.

To quantify the change in the field dependence, we can use Eq.
(4) to calculate the local temperature and field variations of
exponent n that defines the field dependence of ΔSM. Results are
shown as 3D plots in Fig. 4. For very small fields, the sample is in
a multi-domain state and, therefore, those values of the
exponent should not be considered. The temperature dependence
of n for SOPT materials was thoroughly studied in the
literature25,35. At temperatures well below the transition tem-
perature, n should have a value that tends to 1; for T much larger
than Tpk, n tends to the paramagnetic value of 2, while for T=Tpk
or T = TC (with Tc being the Curie temperature)36, n has a value
that depends on the critical exponents of the material (
n ¼ 1� αð Þ=Δ ¼ 1þ ð1� 1=βÞ=δ), provided that the applied
field is in the range that make the material remain within the
critical region15. This behavior is clearly observed for Si 1.8,
where we find a trend of 1→minimum→2 in its n(T) isofield
curves. However, this is dissimilar for the other samples. For these
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alloys, although the low and high temperature limits (n= 1 and
n= 2, respectively) are still observed, the minimum of n is
followed by a maximum with a value larger than 2. This
maximum is field dependent but is a distinctive feature of FOPT
samples: the existence of this overshoot of n above 2 is the
criterion to determine that the transition is a FOPT. Hence, Fig. 4
clearly indicates that Si 1.6 undergoes a FOPT. A more
pronounced maximum of n is observed with decreasing Si
content, i.e. with a more pronounced FOPT behavior.

Bean and Rodbell model. To justify that this maximum of n as a
function of temperature is an intrinsic feature of first-order phase
transition materials, we also performed calculations using the
Bean and Rodbell model14. However, it is important to note that
here the currently proposed criterion is not based on the Bean
and Rodbell model or connected to the applicability of this model
to a specific sample, as we will demonstrate in later sections with
experimental results arising from very different families of mag-
netocaloric materials.

In this paper, parameters similar to those of Gd are
used, namely J= 7/2, g= 2, N ¼ 3:0 ´ 1028 m�3, λ= 59 and
ρ ¼ 7:90 ´ 103 kgm�3, all with the typical meaning used in the
model. Instead of calculating magnetic entropy change from the
numerical processing of M(H,T) curves, the discontinuity of
magnetization for FOPT cases (i.e. when the η parameter of the
model is larger than 1) makes it preferable to calculate the

magnetic entropy change from the difference of the entropy value
at zero field and at field H:

ΔSM ¼ SðT;HÞ � SðT; 0Þ ð1Þ

Once these curves are calculated, the local exponent n is
determined using Eq. (4). Figure 5 shows the temperature
dependence of n at a field of 1 T for different values of the
parameter η, where η < 1 corresponds to SOPT, η= 1is the
critical point of the SOPT and η > 1 indicates a FOPT. In
agreement with the experimental results, the existence of n > 2
after the transition temperature, which subsequently tend to n=
2 at higher temperatures, is a distinctive feature of FOPT. As
shown in Fig. 6, for each given value of η, the maximum value of
n is field dependent. Likewise, for a given value of the field, n
increases with increasing η. These two features agree with the
behavior observed for the La–Fe–Si series with decreasing Si
content. The detection of these n > 2 values is a quantitative
measurement that is not subjectively dependent on the data
analysis interpretation or data processing skills of the researcher
when attempting to obtain a good collapse of different curves
onto a single universal curve. The inset of Fig. 6 shows the
proximity of the critical point of the SOPT for an applied field of
0.2 T. As it could be expected, points very close to η= 1 exhibit
an overshoot that is difficult to detect. However, it is worth
mentioning that for η= 1.03 the separation from n= 2 is already
visible by simple inspection. Different models might give different
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values of the smallest η > 1 value for which the overshoot is
apparent. Likewise, in the case of experimental samples, the fine
details of the phase transition will also dictate when the first order
nature of the transition is detectable beyond the experimental
noise. This is not a limitation of the currently proposed criterion
but intrinsic to any experimental method.

Heusler alloy. For the case of Ni45.7Mn36.6In13.5Co4.2 Heusler
alloy, it exhibits low temperature martensite and high tempera-
ture austenite, dissimilar to the former La(Fe,Si)13 alloys. Its
exponent n is expected to asymptotically tend to n= 2 in the low
temperature range and n= 1 for high temperatures. There is
another major difference with the former La(Fe,Si)13 case: the
magnetocaloric effect associated to the magneto-structural phase
transition is inverse (i.e. ΔSM > 0) while the high temperature
ferromagnetic phase exhibits a small but negative magnetic
entropy change (conventional MCE).

Figure 7 shows the temperature dependence of the exponent n
for the studied Heusler alloy for an applied field of 1.5 T. The
main feature that should be observed is the peak of n > 2 for a
temperature around ~275 K, which corresponds to the
martensitic-austenitic phase transition of the first-order type. At
~300 K, there is an anomalous behavior of n, which goes below 0
and immediately reaches a spike above 2. This anomaly is related
to the change of sign of magnetic entropy change at the transition
from inverse to conventional MCE that can be easily identified
from the comparison of the temperature dependent ΔSM and n
curves. Hence, it does not imply a limitation for the identification
of the overshoot associated to a FOPT. It is therefore confirmed
that Heusler alloys exhibit the proposed fingerprint of a FOPT,
showing the validity of the proposed criterion also for these
alloys.

Composites and inhomogeneous materials. As previously
mentioned in the introduction, composite materials are one of the
most challenging cases to test the applicability of a method to
determine the order of phase transitions due to the presence of a
transition temperature distribution arising from inhomogeneities
in the sample or due to the presence of several discrete phases.
Normally, a deconvolution method is necessary, although that
would require the previous knowledge of the phases present in

the sample. This severe data processing might then alter the
conclusions of the study.

Figure 8 shows the temperature dependence of exponent n for
a single powder particle of LaFe11.38Mn0.32Si1.30H1.6, which
exhibits a well-defined transition temperature. In addition, several
composite materials (see Methods section for details) are also
characterized. The distributed span of the transition temperatures
of the composites gives a smoother peak of n but clearly with a
magnitude larger than 2. Hence, the fingerprint of FOPT is
evidently detected and this is observed in all cases of the
composite materials. This experimentally demonstrates that
inhomogeneities in the material or the presence of different
magnetocaloric phases, in principle, do not constitute limitations
in this proposed approach to identify the order of phase
transition.

From the simulation point of view, a Gaussian distribution of
transition temperatures (with 500 discreet values per distribution)
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has been introduced into the Bean and Rodbell model. Figure 9
shows the magnetic entropy change curves and the temperature
dependence of exponent n for a maximum field of 2.25 T, η= 1.5
and three different values of σ of the Gaussian distribution. It is
worth noting that even when the magnetic entropy change curves
do not resemble a FOPT due to the broad distribution of
transition temperatures (σ= 10 K) the characteristic overshoot of
n is still visible. The largest used σ of 10 K for a transition close to
room temperature corresponds to a full width at half maximum
of the distribution of ~24 K, which is larger than that of carefully
prepared experimental samples.

Cobaltite perovskite. GdBaCo2O6−δ cobaltite perovskite exhibits
low temperature FOPT antiferromagnetic-ferromagnetic followed
by a ferromagnetic-paramagnetic transition, leading to a narrow
ferromagnetic window37. The increase of magnetization of the
sample upon increasing temperature causes the cooling of the
sample upon the application of magnetic field (inverse magne-
tocaloric effect). This type of transition cannot be described with
the Bean and Rodbell model. However, as the criterion we pro-
pose here is not based on Bean and Rodbell, it should be capable
to describe also this type of transition: The overshoot of n > 2 is
also clearly observed for the first-order antiferromagnetic-ferro-
magnetic transition as shown in Fig. 10, underlining the gen-
erality of our proposed criterion.

Discussion
The determination of the order of phase transition of magneto-
caloric materials for compositions close to the change from
second-order phase transition to first order phase transition is not
trivial. Nevertheless, this correct determination is important for
fundamental characterization of materials and for studies of their
potential application in magnetic refrigerator devices. In this
paper we have shown that the field dependence of magnetic
entropy change gives a characteristic fingerprint of first-order
phase transition materials, which can be used as a quantitative
criterion to identify the order of phase transitions: the magnetic
entropy change has a dependence that is stronger than a parabolic
behavior above the transition temperature for FOPT, which
returns to a parabolic behavior at much larger temperatures. This
method has been tested on a La–Fe–Si series of alloys with

changing behavior from a first order phase transition into a
second order phase transition, giving a good agreement with all
other known methods based on magnetic measurements for
performing this identification. The validity of the proposed pro-
cedure has been confirmed using the Bean and Rodbell model, as
well as with a Heusler alloy, a set of composite materials and
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perovskite cobaltites exhibiting an antiferromagnetic-
ferromagnetic phase transition.

The main advantage of the method proposed in this paper is
that it is quantitative, as opposed to previous methods that rely on
different qualitative features of the data, and therefore it does not
depend on a subjective choice of a metric to evaluate the
appropriate scaling of curves. Two other major limitations of
existent methods are also overcome with this fingerprint
approach: Unlike other methods based of data fitting, the pro-
cedure does not impose a specific equation of state for the
material under study, making it general. In addition, it has been
shown that this criterion is also valid for multiphase or inho-
mogeneous materials.

Methods
La1Fe13−xSix-type alloys. The La1Fe13−xSix alloy series, with x values from 1.2 up
to 1.8 was prepared by arc melting, suction casting and subsequent annealing at
1375 K for 12 h. In this compositional range, the order of the phase transition
changes from FOPT to SOPT depending on the Si content (from small Si content
to large Si content, respectively). The microstructure of the samples was studied
by X-ray diffraction and scanning electron microscopy. Results show that the
annealed samples contain >98% of La(Fe,Si)13 phase. In addition, the results
from energy-dispersive X-ray spectroscopy (EDS) show that the actual compo-
sitions of the alloys are: La1.07Fe11.2Si1.8, La1.07Fe11.4Si1.6, La1.12Fe11.6Si1.4, and
La1.07Fe11.8Si1.2. Hence, the studied samples are denoted by their Si content (x).
Further details of the magnetic and microstructural characterization are pub-
lished elsewhere4.

Heusler alloy. A Ni45.7Mn36.6In13.5Co4.2 Heusler alloy was prepared by arc-melting
and subsequent annealing in a quartz tube at 1173 K for 24 h, under 0.5 bar argon
atmosphere, followed by water quenching. ICP-OES confirmed the stoichiometry
with a resolution better than 1 at. %. Further details about magnetic and magne-
tocaloric properties as well as its thermomagnetic hysteresis characterization can be
found in the literature38,39.

Composites and inhomogeneous materials. To prepare the magnetocaloric
composites, LaFe11.38Mn0.32Si1.30H1.6 magnetocaloric powder produced by
Vacuumschmelze GmbH had been used. XRD results confirm 95% main phase
with NaZn13 cubic structure and unit cell with a= 11.568 ± 0.002 Å. The initial
powder, with a transition temperature Ttr= 297 K, was sieved and sorted by par-
ticles size. Magnetocaloric materials exhibiting a first-order paramagnetic-ferro-
magnetic transition are very sensitive to changes of their microstructure. At the
same time, variation of Mn content by <0.01% can lead to several degrees shift of
Ttr. As a result, the Ttr of different grains of the bulk sample are scattered around
Ttr of the bulk sample. However, the bulk sample exhibits a sharp Ttr due to the
stress-coupling mechanism between the individual grains40. The constrain effect is
then removed by crushing the bulk sample and the span of the Ttr of individual
fragments is extended in interval of Ttr ± 3 K, so the loose powder exhibits a dis-
tribution of Ttr that leads to the smoothing of MCE maximum, making this
maximum broader but lower. The largest particles (with volume larger than 5
mm3) were used as a single particle sample. The loose powder samples were
prepared by tight packing them (size 160–250 µm) into weighing paper boxes.
Polymer bonded composite samples, in form of pellets or plates, were prepared by
mixing magnetocaloric powder with epoxy binder as described in the literature41.
For the present study, we had chosen composites containing a particle size dis-
tribution of 160–250 µm.

To check the consistency of the proposed criterion for a discrete distribution of
transition temperatures in a broad temperature range, a final composite sample was
prepared by mixing three types of magnetocaloric powders with compositions
LaFe11.83Mn0.32Si1.28H1.6, LaFe11.88Mn0.3Si1.29H1.6, LaFe11.9Mn0.27Si1.29H1.6 of Ttr=
295, 301, and 305 K, respectively. The Ttr of the particles in this powder composite
mixture are extended over a temperature interval of 15 K and can be considered as
an example of a non-homogeneous magnetocaloric alloy exhibiting both FOPT and
a very broad redistribution of the individual Ttr.

Cobaltite perovskite. GdBaCo2O6−δ samples, provided by Dr. Stevin Pramana,
were synthesized via a solid state reaction. Further details about the synthesis and
functional properties can be found elsewhere42.

Characterization. Differential scanning calorimetry experiments were performed
using a TA-Instruments DSC Q20 with a cooling stage. Measurements were made
at a heating rate of 10 Kmin−1 starting with the lowest temperature of the device
(185 K). The presence of a time interval at which the temperature of the sample
remains constant (i.e., another characteristic feature of FOPT) was measured in a
custom made magnetocaloric rig developed at TU-Darmstadt. In this case, the time
dependence of the temperature of the sample holder is carefully adjusted using a

PID controller to adopt a slow temperature ramp (0.4 Kmin−1). The temperature
of the sample is independently measured using a different thermocouple. The slow
ramp rate is necessary to avoid the influence of the heat capacity on the evolution
of the sample temperature. Faster ramp rates or a sizeable increase of the sample
mass would lead to an undesirable lag in the sample temperature.

Magnetization measurements were performed using a Vibrating Sample
Magnetometer by recording isothermal magnetization vs. magnetic field curves, M
(H), in a discontinuous protocol that involved the following steps for LaFeSi type
alloys: (a) the sample was pre-heated in zero field to a temperature value well above
its transition temperature; (b) then cooled down in zero field to the measuring
temperature; and (c) measured with increasing field up to the maximum applied
field. The field dependence of the transition temperature justifies the specific choice
of the protocol: the transition temperature increases with field for LaFeSi-type
materials. However, the behavior is different for the Heusler alloy: it decreases with
field. This prompts for a modification of the measurement protocol for the latter:
step (a) was modified to cooling the sample in zero field to a temperature value well
below its transition temperature; followed by (b) heating in zero field up to the
measuring temperature. Step (c) remained unmodified. Samples were shaped as
thin plates (3 mm wide and 0.1 mm thick) and magnetized with the field in plane,
to minimize the possible effect of demagnetizing factor. As the temperature region
of the first order phase transition implies the coexistence of magnetic and non-
magnetic phases, the correction of the demagnetizing field cannot be accurately
performed and any correction would be an approximation. However, the effect of
the demagnetizing field close to the transition is small and does not produce any
overshoot of the exponent n.

ΔSM was indirectly determined from magnetization measurements up to 5 T
using Maxwell relation (where the initial magnetic field is zero):

ΔSM ¼ μ0

Z H

0

∂M

∂T
dH0 ð2Þ

As indicated in the literature, ΔSM curves calculated using this discontinuous
protocol will exhibit no spurious results regardless of the order of the phase
transition43,44.

The field dependence of the magnetic entropy change is represented as a power
law of the field

ΔSM / Hn ð3Þ

with an exponent n that, in general, is field and temperature dependent. It can be
locally calculated as45:

nðT;HÞ ¼
d ln ΔSMj j

d lnH
ð4Þ

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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