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Smoking is the largest preventable cause of morbidity and mortality in the world.
Despite the development of numerous preventive and treatment interventions, the rate
of daily smoking in the United States is still approximately 22%. Effective psychosocial
interventions and pharmacologic agents exist for the prevention and treatment of
smoking. Unfortunately, both approaches are hindered by our inability to accurately
quantify amount of cigarette consumption from the point of initial experimentation
to the point of total dependency. Recently, we and others have demonstrated that
smoking is associated with genome-wide changes in DNA methylation. However,
whether this advance in basic science can be employed as a reliable assay that is
useful for clinical diagnosis and treatment has not been shown. In this communication,
we determine the sensitivity and specificity of five of the most consistently replicated
CpG loci with respect to smoking status using data from a publically available
dataset. We show that methylation status at a CpG locus in the aryl hydrocarbon
receptor repressor, cg05575921, is both sensitive and specific for smoking status in
adults with a receiver operated curve characteristic area under the curve of 0.99.
Given recent demonstrations that methylation at this locus reflects both intensity of
smoking and the degree of smoking cessation, we conclude that a methylation-
based diagnostic at this locus could have a prominent role in understanding the
impact of new products, such as e-cigarettes on initiation of cigarette smoking among
adolescents, while improving the prevention and treatment of smoking, and smoking
related disorders.

Keywords: DNA methylation, epigenetics, aryl hydrocarbon receptor repressor, cg05575921, diagnostics,
smoking, e-cigarettes

Introduction

Smoking is the largest preventable cause of morbidity andmortality in the United States. Each year,
nearly 1/2 million Americans die secondary to the effects of smoking (Centers for Disease Control
and Prevention, 2008). Beyond the personal toll, smoking has an enormous financial impact on
the United States. Each year, the U.S. spends nearly $100 billion on the treatment of smoking-
related illnesses and suffers an additional $100 billion in lost wages (Centers for Disease Control
and Prevention, 2008).
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In response to this public health crisis, state and federal
governments have implemented a series of policy measures
and supported the implementation of preventive interventions
by public health workers. In addition, large Pharma has
collaborated with academia to develop effective medications,
such as bupropion and varenicline for smoking cessation (Mills
et al., 2012). Despite these efforts, 22% of all U.S. adults
reported daily smoking in 2010 (Centers for Disease Control and
Prevention, 2011).

Surprisingly, one of the largest barriers to developing more
effective smoking prevention and cessation interventions has
been our relative inability to objectively quantify tobacco
consumption. Currently, there are three principal methods for
determining tobacco consumption. The first is self-report. In
general population samples, self-report is an adequate measure of
tobacco consumption. However, in high risk populations and in
adolescents, self-report is often unreliable (Fendrich et al., 2005;
Jarvis et al., 2008; Gorber et al., 2009). This is especially true in
higher risk clinical settings, such as pregnancy, where patients are
sometimes reluctant to confide to physicians their inability to quit
(Shipton et al., 2009; Dietz et al., 2011).

In attempts to supplement self-report, objective measures
of tobacco consumption, such as serum or salivary cotinine
or exhaled carbon monoxide levels, are sometimes used.
Unfortunately, each of these approaches for determining
smoking status has its limitations (Florescu et al., 2009). While
easy to perform, exhaled carbon monoxide levels are only
useful for detecting smoking within 3–4 h of the last cigarette
(Jatlow et al., 2008; Florescu et al., 2009). Serum and salivary
cotinine levels are more sensitive, generally detecting use with
48 hours, but are usually determined using more difficult to
perform enzyme linked immunoassays (ELISA; Jatlow et al.,
2008). These relatively narrow time windows for detection limit
the usefulness of these approaches in detecting nascent smoking
among adolescents during the critical smoking initiation period,
or for “chippers,” i.e., light and intermittent non-daily smokers
that use cigarettes only in specific situations such as bars or with
their first cup of coffee in the morning (Levinson et al., 2007).

Over the past several years, the limitations of cotinine based
assays of smoking have made more apparent by the introduction
of e-cigarettes. These devices, which vaporize a solution of
propylene glycol that contains nicotine, are gaining popularity
use among adolescents, with prevalence data showing that use at
least doubled in the U.S. and Britain every year from 1% in 2009
to 2% in 2010, and 6–7% in 2012 (Pepper et al., 2013; Centers
for Disease Control and Prevention, 2014). Although perceived
by teens as being healthier than cigarettes, many e-cigarette users
also smoke cigarettes, and there is considerable concern from
public health experts that these devices will further increase teen
smoking (Grana et al., 2014; Wills et al., 2015). Since use of these
e-cigarettes, nicotine replacement agents, such as the “patch,”
and non-smoked forms of tobacco consumption also results in
positive serum and salivary cotinine results, the usefulness of
cotinine determinations in differentiating between their use and
surreptitious cigarette smoking and guiding smoking cessation
treatment is relatively limited. Hence, there is urgent need for new
measures for the detection of cigarette consumption.

Recently developed epigenetic approaches to determine
smoking status may provide the necessary tools to bridge
the chasm in our ability to detect and quantitate cigarette
consumption. Beginning in the first decade of this millennium,
we and others demonstrated gene specific changes in DNA
methylation in response to smoking (Philibert et al., 2008;
Breton et al., 2009; Launay et al., 2009). When the first truly
genome-wide platform for measuring smoking consumption was
developed (Illumina HumanMethylation450 BeadChip), we used
it to show that demethylation at a CpG residue interrogated
by probe cg05575921 in the aryl hydrocarbon receptor is a
sensitive and highly specific indicator of cigarette consumption
(Monick et al., 2012). Since that time, numerous independent
studies using this chip have confirmed these findings in DNA
from newborns, adolescents, and adults (see Table 1; Joubert
et al., 2012; Philibert et al., 2012, 2013; Shenker et al., 2012;
Zeilinger et al., 2013; Besingi and Johansson, 2014; Dogan
et al., 2014; Elliott et al., 2014; Harlid et al., 2014; Tsaprouni
et al., 2014; Guida et al., 2015). In addition, three groups have
shown that smoking induced methylation changes can revert
as a function of smoking cessation and that cg05575921 is the
most sensitive residue in the genome in response to smoking
cessation (Zeilinger et al., 2013; Harlid et al., 2014; Guida et al.,
2015). Finally, we have shown that the effects of smoking on
DNA methylation are unique to smoking and are not affected
by alcohol consumption, thus allowing smoking and alcohol
consumption status to be assessed simultaneously from the same
dataset (Philibert et al., 2014a). Taken together, these studies
indicate that DNA methylation assessments hold considerable
promise as a tool for supplementing self-report information in
smoking prevention and smoking cessation efforts. The question
is as to how they will be integrated into our current prevention
and treatment framework.

For now, the studies listed in Table 1 indicate a potential
for DNA methylation to be used as an independent method to
unequivocally establish the presence of smoking. This capability
may be potentially useful under certain circumstances. For
example, it is well established that smoking is a modifiable

TABLE 1 | Results of replication attempts of the original findings by
Monick et al. (2012) with respect to methylation status at AHRR probe
cg05575921 using independent populations.

Reference Rank (of 485557
probes)

FDR P-values Population

Philibert et al. (2012) 1st 3 × 10−7 Adolescents

Joubert et al. (2012) 1st 8 × 10−33 Newborns

Shenker et al. (2012) 1st 2 × 10−15 Adults

Philibert et al. (2013) 1st 2 × 10−3 Young adults

Zeilinger et al. (2013) 1st 3 × 10−182 Adults

Dogan et al. (2014) 2nd 6 × 10−19 Adults

Besingi and
Johansson (2014)

1st 7 × 10−70 Adults

Elliott et al. (2014) 1st 6 × 10−59 Adults

Tsaprouni et al. (2014) 1st 9 × 10−69 Adults

Harlid et al. (2014) 2nd 2 × 10−2 Adults

Guida et al. (2015) 1st 1 × 10−106 Adults
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risk factor for certain high risk medical procedures with many
physicians refusing to operate unless the patient has quit smoking
(Peters et al., 2004). Or, in efforts to promote a healthier
workforce, prominent governmental bodies such as the World
Health Organization (WHO) as well as many private employers
are refusing to employ smokers (Cage, 2005). By taking advantage
of the inherent stability of methylation signatures over short
periods of time, the potential surety of detection afforded by these
methylation technologies provides a framework around which
the appropriate incentives can be placed to improve medical
outcomes and decrease overall healthcare costs.

However, in order for that vision be realized, the current
genome wide approaches need to be reduced to a potentially
clinical format. In hopes of accomplishing this, using the
information generated in these studies, our academic/corporate
consortium devised an easy to use quantitative PCR assay of
cg05575921 methylation status referred to as Smoke Signature
(Dogan et al., 2014). Nevertheless, the question remains as to
whether determination of methylation at this locus or any other
of the loci that were commonly identified in the prior studies are
solely capable of determining smoking status.

As a first step in answering this question, in this study, we use
publically available methylation data from a recently completed
study and standard analytic approaches to test single andmultiple
locus approaches to the determination of smoking consumption.

Materials and Methods

The data used in the study are derived from subjects who
participated in a previously described National Institutes of
Health study that examined the effects of alcohol on DNA
methylation (R43AA022041; Philibert et al., 2014a). All protocols
and procedures used in this study were approved by the
University of Iowa Institutional Review Board.

In brief, the drinking participants (drinkers) were recruited
from either local alcohol treatment centers or the University
of Iowa Hospitals and Clinics for the treatment of alcohol
dependence. Participants were approached after they had
detoxified from alcohol intake (between 3–7 days after the last
drink). The inclusion criteria for the study specified good overall
health and the absence of active substance use outside of alcohol
or tobacco. Furthermore, participants could not be taking any
medication hypothesized to affect DNA methylation (such as
valproic acid). The controls (non-drinkers) were recruited from
the University of Iowa community and were required to be
abstinent from alcohol and all other forms of substance use with
the exception of tobacco. All participants reported the number of
cigarettes smoked per day over the past month and past year.

After consent was obtained, all participants were interviewed
with a modified version of the Semi Structured Assessment
for the Genetics of Alcoholism, Version 2 (SSAGA-II) by a
trained research assistant (Bucholz et al., 1994). The SSAGA-II
is a publically available standardized interview that demographic
and modules for each of the major behavioral disorders with
particular emphasis on the substance use disorders (see Appendix
1). This information was supplemented by a questionnaire that

assessed consumption of substances over the past day, past
week, past month, past 6 months, and past year (see Appendix
2). They were then phlebotomized to provide the biomaterial
for the current study. Serum samples were obtained using
standard serum separator tubes and stored at −80◦C until
analyzed. Mononuclear cell pellets were obtained via gradient
centrifugation of whole blood through Ficoll as previously
described (Philibert et al., 2012). DNA was then prepared
from these samples using a QiaAMP DNA (Qiagen, Germany)
according to the manufacturer’s instructions.

We defined smokers as those individuals who reported the
recent use of cigarettes or other forms of combustible tobacco
while we defined those who did not use any type of combusted
tobacco or cannabis as non-smokers. In order to confirm
self-reported smoking status, serum cotinine and hydroxy-
tetrahydro-cannabinol (hydroxy-THC) levels were assessed using
immuno ELISA supplied by Abnova (Taiwan) according to
manufacturer’s directions. Data from one participant whose
serum assessments were not consistent with self-report were
excluded from further analysis in the study. Because the serum
cotinine levels are highly dependent as to the time of the last
cigarette and the two of the facilities where we recruited subjects
did not allow free access to cigarettes at all time, we used serum
cotinine levels as only as an indicator of smoking status and not
as an indicator of total cigarette consumption.

The methylation data for the five loci described in the current
study were extracted from the previously conducted genome-
wide methylation assessments which are publicly available
(GEO accession number GSE57853). These DNA methylation
assessments were conducted by the University of Minnesota
Genome Center using the Illumina HumanMethylation450
BeadChip (Illumina, San Diego, CA, USA; Philibert et al., 2012,
2013). The resulting data were inspected for complete bisulfite
conversion. Then average β-values (the ratio of the methylated
probe fluorescence intensity to the sum of the methylated and
unmethylated probe fluorescence intensities) were determined
using the GenomeStudio R© suite of programs. These values were
then cleaned using a Perl-based algorithm to remove unreliable
data points before deposition into the Gene Expression Omnibus
(GEO) website (Dogan et al., 2014).

Clinical and demographic data were then analyzed using JMP
version 10 (SAS Institute, Cary, NC, USA, software company)
using the tests indicated in the text. The Receiver Operator
Characteristic analyses were also conducted using this package.

Results

In the previous study of the effects of alcohol consumption on
DNA methylation, we used data from a total of 66 participants.
For the purposes of the current study, we excluded the data
from five of those participants. The first was excluded because
his substance use self-report of abstinence was not consistent
with our serum ELISA assessments. The second and third were
excluded because while they were not current smokers, they were
both cigarette smokers in the past 10 years and were currently
smoking cannabis-which is commonly mixed with tobacco to
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improve pyrolysis. The fourth and fifth were excluded from
the primary analyses because they used chew or snuff which
precluded serum verification of smoke free status.

The demographic characteristics of the remaining 61
participants whose data are included in the main analyses are
given in Table 2. Overall, the middle-aged participants were
mostly male and white. Only two of the smokers did not have
a history of recent alcohol consumption. All of the participants
who reported daily smoking had detectable levels of cotinine in
their serum (average 99 ± 42 ng/ml). Please note that because all
of the drinkers were ascertained in smoke-free facilities several
days after admission when they had detoxified from alcohol
intake, the levels of cotinine observed in the current study are
probably not representative of daily cigarette consumption prior
to admission. Nine of the smokers had positive tests for cannabis
consumption.

The loci selected for this study are the five most commonly
replicated loci and the only five loci that are consistently
demethylated in both European and African American
populations (Dogan et al., in submission). As a first step of our
analyses, we conducted ANOVA analysis of the case and control
data using methylation at these loci as the dependent variable (see
Figure 1). Overall, the model that included cg05575921 provided
the best fit and the largest arithmetic differences (21%) between
cases and controls (adjusted R2 = 0.66). The results from the
three loci on Chromosome 2, cg01940273, cg21566642, and
cg05951221 provided the next best fits with adjusted R2-values
of 0.55, 0.50, and 0.44, respectively. However, the differences in
the means of the Chromosome 2 loci were much more modest,
ranging from approximately 8–10%. Finally, the model that used
data only from cg23576855 was the worst fit with an adjusted R2
of 0.34. Consistent with recent studies showing that methylation

TABLE 2 | Clinical and demographic characteristics of subjects included in
main analysis.

Non-smokers Smokers

N 35 26

Age 47 ± 8 46 ± 7

Gender

Male 28 18

Female 7 8

Ethnicity

White 33 24

African American 1 2

Hispanic 1 0

Daily cigarette consumption in the past month 0 20 ± 8

Substance use status

Alcohol 4 24

Positive Cotinine 0 26

Positive Hydroxy THC 0 9

Average methylation (% β)

cg05575921 90.3 ± 1.9 68.8 ± 11.6

cg01940273 59.8 ± 4.4 49.9 ± 4.6

cg21566642 46.2 ± 4.8 34.2 ± 7.0

cg05951221 39.5 ± 4.2 31.1 ± 5.2

cg23576855 67.0 ± 13.1 49.2 ± 11.1

in these arrays and at this locus in particular is often affected by
local genotype (Shenker et al., 2012; Philibert et al., 2014b) visual
inspection of the data showed strong evidence of GxMeth effects
with respect to smoking (data not shown).

Although our smoking subjects did not exclusively smoke
cigarettes, the main mode of tobacco consumption for our
subjects was cigarette smoking. Therefore, we next analyzed
the relation between DNA methylation at each locus with self-
reported average smoking in the past month and past year using
a linear bivariate fit model. In general, methylation at cg05575921
produced the best fit, with the three Chromosome 2 probes
producing intermediate levels of fit, and cg23576855 produced
the worst fit (see Table 3). In attempts to improve the goodness
of fit of the model, we then tested whether log transformation
of either absolute methylation or number of cigarettes consumed
could improve the fit of the models. Unfortunately, no consistent
improvements in model effects were obtained.

As the final step of our analyses, we used data from all five
loci alone and in combination with one another, in an attempt to
determine whether data from a single marker or multiple markers
is optimal for the discrimination of smokers from non-smokers.
When only single markers were considered, receiver operating
characteristic model (ROC) analyses of the data showed that
cg05575921 provided the best discrimination with area under the
curve (AUC) of 0.99 (Table 4). Review of the logistic fit curve
for cg05575921 with respect to smoking status shows excellent
sensitivity for these smokers at all ranges of specificity (Figure 1).
DNAmethylation at the other four loci, in particular, cg01940273
were slightly less discriminative with the use of a two marker

TABLE 3 | The relationship of DNA methylation to average cigarette
consumption in the past month and past year.

Adjusted R2 of linear fit model for
average cigarette consumption

CpG probe Past month Past year

cg05575921 0.64 0.63

cg01940273 0.57 0.56

cg21566642 0.46 0.45

cg05951221 0.47 0.45

cg23576855 0.30 0.32

The adjusted R2 is based on a linear fit model.

TABLE 4 | Summary of ROC area under the curve (AUC) analyses for single
and two marker sets.

When combined with methylation from
another locus

Alone cg21566642 cg05951221 cg23576855

cg05575921 0.990

cg01940273 0.940 0.939 0.946 0.947

cg21566642 0.905 0.918 0.923

cg05951221 0.903 0.919

cg23576855 0.860
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FIGURE 1 | The Logistic Fit plot of the relationship between
methylation at cg05575921 and smoking status. Observed cg05575921
methylation for each 61 subjects in the study is shown on the X-axis (smokers
are represented by a filled triangle, non-smokers by a light gray box) with their
position on the Y-axis not having meaning. In contrast, the position on the
Y-axis with respect to the fitted curve indicates the probability for each
response (either smoker or non-smoker) for a given value on the X-axis. In
essence, for those subjects with a methylation level less than 0.82 have
essentially no chance of being in the non-smoker group. At a methylation level
of approximately 0.85, the probability of being a smoker is approximately 0.75
and the probability of being a non-smoker is 0.25. Then, the probability of
being non-smoker then rises as a function of increasing methylation becoming
virtually certain at levels of 0.9 or greater.

set consisting of the Chromosome 2 probe cg01940273 and the
AHRR probe cg23576855 resulting in an AUC of 0.947.

Discussion

In this limited, but well characterized set of participants, we show
that DNAmethylation status at cg05575921, and to a lesser extent
at three Chromosome 2 loci, can be used to accurately quantify
the amount of smoking. Important limitations of the current
study include sample size and the limited diversity in the subject
pool.

To a large extent, the strength of the findings is in large
part due to the careful selection and characterization of the
participants. In our experience with several large cohorts of
subjects from longitudinal studies, we often find that participants
who deny ever smoking cigarettes often have markedly elevated
levels of cotinine in their serum and have medical illnesses, such
as chronic obstructive lung disease (COPD), that are generally
found in association with smoking. Review of the literature
suggests that our experience is not unique. In 2007, Gorber et al.
(2009) conducted a meta-analysis of 67 studies of the relationship
between self-reported smoking status and smoking status as
determined by serum, urine, or salivary cotinine levels. They
found trends of underestimation of the true rate of smoking when
smoking status is based only on self-report depending on the

population studied. These findings confirmed the earlier results
from Fendrich et al. (2005) who found that the sensitivity of
self-report in a large (n = 627) cohort from an epidemiological
study was less than 90%, even after generous compensation for
passive exposure. In order to minimize the likelihood that our
controls smoked, we recruited our controls from the employee
pool of our hospital complex which forbids smoking. Even so, it
is notable that one of the participants who reported no smoking
history had a positive test for cannabis consumption. Hence, the
level of methylation at cg05575921 observed in the non-smoking
participants in our study (β% of 90.3 ± 1.9) is probably an
accurate reflection of adult methylation values in the complete
absence of smoking and highlights the need for intense scrutiny
and serum confirmation of non-smoking controls. In this regard,
the substance use status participants from almost all of the studies
listed inTable 1were not biochemically verified. Hence, it is likely
that small numbers of smokers were misclassified and that as
a result, the average β-values for the non-smoking groups were
underestimated.

Even though several of the loci showed considerable promise
for possible clinical translation, it is important to realize that
the ROC AUC calculations were conducted using data from
methylation microarrays. This hybridization-based approach is
performed under meticulous conditions and takes several days
to complete. After the assessment is complete, sophisticated
computational processing is then required to extract the
normalized β-values. It is unlikely that this assessment approach
can be adapted to the point of care (POC) or hospital-based
pathology lab practice.

In contrast, quantitative PCR (qPCR) techniques are
becoming increasingly common in clinical settings (Lorincz,
2014). At least one epigenetic diagnostic is already FDA
approved, and it is likely that several others will gain approval
in the near future (Heichman, 2014; Lorincz, 2014). Like all
qPCR assessments, the power of these tests to distinguish groups
from one another is dependent on the variability of the assay
itself, and the absolute difference between the two groups. In
normal practice, inter-assay variability of approximate 1–2% is
routinely observed for most qPCR assays. Because the average
difference at cg05575921 between adult smoker and non-smokers
is approximately 21%, while the absolute difference at the three
Chromosome 2 loci is only 8–10%, it is readily apparent that
the AHRR site is a better choice for clinical systems. This is
why our initial assay was targeted at this locus (Dogan et al.,
2014). However, with the appropriate amount of effort, it is still
may be feasible to pursue clinical tests for adults based on the
other loci. Unfortunately, this is not the case for any diagnostic
targeted at adolescents because the magnitude of change at the
Chromosome 2 loci in nascent smokers is only on the order of
1–2% (Philibert et al., 2012, 2013). In contrast, the change at
cg05575921 is much more robust (5–10%) and is a much more
suitable locus for detection of adolescent smokers.

This methylation-based assessment technique could be
particularly valuable for understanding the relation between the
use of e-cigarettes and cigarette smoking. The changes in AHRR
methylation are not secondary to nicotine consumption itself.
Rather, AHRR methylation is an exquisite indicator of exposure

Frontiers in Psychology | www.frontiersin.org 5 June 2015 | Volume 6 | Article 656

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Philibert et al. Quantitative methylation assessment of smoking

to the dioxins and polyaromatic hydrocarbons (PAH) found in
cigarette smoke. Indeed, in the current study, the two subjects
excluded from our study secondary to the use of “chew” had
the exact same methylation at cg05575921 (90.3 and 90.9 β%) as
our non-smoking controls (β% of 90.3 ± 1.9) confirming prior
findings by Besingi and Johansson (2014) that nicotine ingestion
itself has no effect on AHRRmethylation. Although it is true that
the heat filament induced vaporization of the propylene glycol
solution also produces small amounts of potentially concerning
byproducts, the extent of these pollutants, in particular dioxins
and PAH, appears to be relatively small (McAuley et al., 2012;
Schober et al., 2014). To date, the most incriminating study of
dioxins or PAH in e-cigarette aerosols showed a total of 96 ng
of PAH and no dioxins being produced from the pyrolysis of
an entire e-cigarette cartridge (equivalent to the puffs of about
15 cigarettes; Laugesen, 2008). For the sake of reference, this
corresponds to approximately 11 pg/ml in the typical 35 ml puff-,
which is about the 30 times the PAH content in urban or rural
air (Li et al., 2005; Primbs et al., 2008). Because the average
human breathes 8–12 times per minute with an average tidal
volume of 500 ml, smoking “e-cigarettes” essentially doubles the
amount of PAH inhaled only while smoking the e-cigarette. In
contrast, the PAH just the mainstream smoke of the equivalent
number of cigarettes is between 15000 and 24000 ng of PAH
(Ding et al., 2005). Hence, those who smoke e-cigarettes only
should not have an appreciable change at cg05575921 but
have positive cotinine levels while those who are smoking real
cigarettes will have both changes at cg05575921 and a positive
cotinine level. Therefore, the amount of incorporation of DNA
methylation assessments into research protocols could provide
valuable biological information to longitudinal studies of the
relationship of e-cigarette use to subsequent cigarette smoking.

An additional boon to potential clinical translation is the fact
that methylation in DNA from blood is closely correlated to that
obtained from saliva. In fact, one recent study that provided
analyses of paired samples from the same person demonstrated a
correlation of 0.90 of cg05575921methylation in DNA drive from
blood and saliva (Smith et al., 2015). Unfortunately, unlike blood,
the principal cell components found in saliva differ significantly
with respect to their methylation set point at this locus. Therefore,
techniques that can compensate for cellular heterogeneity will
be required before saliva DNA methylation approaches can be
used alongside blood-based approaches in the assessment of
smoking status. Our group is currently working on one such
technique.

Somewhat ironically, these methylation assessments may
increase our ability to improve self-report measures. It goes
without saying that bad questions asked poorly illicit are likely to
elicit unreliable answers. A shortcoming of prior assessments of
self-report reliability with respect to adolescent smoking was that
the methods to assess reliability themselves seldom performed
objective testing and when they did they only tested cotinine
levels (Gorber et al., 2009). The current findings suggest that the
addition of methylation assessmentsmay increase our confidence
in identifying true positives and true negatives, resulting in an
improved mechanism through which to evaluate methods of
obtaining substance use histories.

A critical question not addressed in this manuscript is whether
changes in DNA methylation at cg05575921 can be used as a
marker of smoking cessation. Already, three independent studies
have shown that this is also the locus that shows the most
significant change in response to cessation of smoking. There are
two principal challenges to the use of methylation status at this
AHRR locus in this regard. First, since the average methylation
for heavy smokers seems to vary widely, any assessment of
tobacco cessation will have to take into account the initial
methylation status of the patient in question. Second, the half-
life for decay of the smoking induced changes at this locus
will have to be much better characterized. All three of the
studies that showed the primacy of cg05575921 remethylation
in response to smoking cessation were based solely on self-
report data. Since the self-reports of “former smokers” can be
unreliable as to the extent and timeframe of smoking cessation
(Attebring et al., 2001), and the true “set point” of cg05575921
is still being refined, examination of this phenomenon in large,
well-characterized samples (i.e., frequent biochemical validation)
will be required before the viability of this approach for
assessing smoking cessation can be considered. Still, given the
positive response of smokers to biofeedback information from
exhaled carbon monoxide measurements, the possibility that
patients could gain enhanced motivation to quit smoking by
seeing methylation changes at loci, such as F2RL3, which is
implicated in heart disease risk (Breitling et al., 2012; Zhang
et al., 2014), as a function of smoking cessation suggests that
this possibility deserves further exploration. Currently, in efforts
funded by the National Institute of Drug Abuse, our consortium
is pursuing a small pilot study to explore the feasibility of this
approach.

In summary, using data from well-characterized,
biochemically verified participants, we show that DNA
methylation assessments, particularly at cg05575921, are
very sensitive and specific indicators of smoking status in adults.
We suggest that additional study of large, well characterized,
biochemically confirmed, epidemiological representative
populations are the next logical step in the translation of this
approach into routine clinical, research, and commercial usage.
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