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Abstract

A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and
any integer k ≥ 3, any set of integers with density δ will contain infinitely many
proper arithmetic progressions of length k. For general k there are essentially four
known proofs of this fact; Szemerédi’s original combinatorial proof using the Sze-
merédi regularity lemma and van der Waerden’s theorem, Furstenberg’s proof using
ergodic theory, Gowers’ proof using Fourier analysis and the inverse theory of ad-
ditive combinatorics, and the more recent proofs of Gowers and Rödl-Skokan using
a hypergraph regularity lemma. Of these four, the ergodic theory proof is arguably
the shortest, but also the least elementary, requiring passage (via the Furstenberg
correspondence principle) to an infinitary measure preserving system, and then de-
composing a general ergodic system relative to a tower of compact extensions. Here
we present a quantitative, self-contained version of this ergodic theory proof, and
which is “elementary” in the sense that it does not require the axiom of choice,
the use of infinite sets or measures, or the use of the Fourier transform or inverse
theorems from additive combinatorics. It also gives explicit (but extremely poor)
quantitative bounds.

1 Introduction

A famous theorem of van der Waerden [44] in 1927 states the following.

Theorem 1.1 (Van der Waerden’s theorem). [44] For any integers k,m ≥ 1 there ex-
ists an integer N = NvdW(k,m) ≥ 1 such that every colouring c : {1, . . . , N} → {1, . . . , m}
of {1, . . . , N} into m colours contains at least one monochromatic arithmetic progression
of length k (i.e. a progression in {1, . . . , N} of cardinality k on which c is constant).
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See for instance [22] for the standard “colour focusing” proof; another proof can be
found in [36]. This theorem was then generalized substantially in 1975 by Szemerédi [39]
(building upon earlier work in [33], [38]), answering a question of Erdős and Turán [8], as
follows:

Theorem 1.2 (Szemerédi’s theorem). For any integer k ≥ 1 and real number 0 <
δ ≤ 1,
there exists an integer NSZ(k, δ) ≥ 1 such that for every N ≥ NSZ(k, δ), every set A ⊂
{1, . . . , N} of cardinality |A| ≥ δN contains at least one arithmetic progression of length k.

It is easy to deduce Van der Waerden’s theorem from Szemerédi’s theorem (with
NvdW(k,m) := NSZ(k, 1

m
)) by means of the pigeonhole principle. The converse implication

is however substantially less trivial.
There are many proofs already known for Szemerédi’s theorem, which we discuss

below; the main purpose of this paper is present yet another such proof. This may seem
somewhat redundant, but we will explain our motivation for providing another proof later
in this introduction.

Remarkably, while Szemerédi’s theorem appears to be solely concerned with arithmetic
combinatorics, it has spurred much further research in other areas such as graph theory,
ergodic theory, Fourier analysis, and number theory; for instance it was a key ingredient
in the recent result [23] that the primes contain arbitrarily long arithmetic progressions.
Despite the variety of proofs now available for this theorem, however, it is still regarded
as a very difficult result, except when k is small. The cases k = 1, 2 are trivial, and the
case k = 3 is by now relatively well understood (see [33], [11], [35], [37], [6], [25], [7] for
a variety of proofs). The case k = 4 also has a number of fairly straightforward proofs
(see [38], [34], [19], [9]), although already the arguments here are more sophisticated
than for the k = 3 case. However for the case of higher k, only four types of proofs
are currently known, all of which are rather deep. The original proof of Szemerédi [39]
is highly combinatorial, relying on van der Waerden’s theorem (Theorem 1.1) and the
famous Szemerédi regularity lemma (which itself has found many other applications, see
[27] for a survey); it does provide an upper bound on NSZ(k, δ) but it is rather poor
(of Ackermann type), due mainly to the reliance on the van der Waerden theorem and
the regularity lemma, both of which have notoriously bad dependence of the constants.
Shortly afterwards, Furstenberg [10] (see also [15], [11]) introduced what appeared to be a
completely different argument, transferring the problem into one of recurrence in ergodic
theory, and solving that problem by a number of ergodic theory techniques, notably the
introduction of a Furstenberg tower of compact extensions (which plays a role analogous
to that of the regularity lemma). This ergodic theory argument is the shortest and most
flexible of all the known proofs, and has been the most successful at leading to further
generalizations of Szemerédi’s theorem (see for instance [3], [5], [12], [13], [14]). On the
other hand, the infinitary nature of the argument means that it does not obviously provide
any effective bounds for the quantity NSZ(k, δ). The third proof is more recent, and is
due to Gowers [20] (extending earlier arguments in [33], [19] for small k). It is based
on combinatorics, Fourier analysis, and inverse arithmetic combinatorics (in particular
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multilinear versions of Freiman’s theorem and the Balog-Szemerédi theorem). It gives
far better bounds on NSZ(k, δ) (essentially of double exponential growth in δ rather than
Ackermann or iterated tower growth), but also requires far more analytic machinery
and quantitative estimates. Finally, very recent arguments of Gowers [21] and Rödl,
Skokan, Nagle, Tengan, Tokushige, and Schacht [29], [30], [31], [28], relying primarily
on a hypergraph version of the Szemerédi regularity lemma, have been discovered; these
arguments are somewhat similar in spirit to Szemerédi’s original proof (as well as the
proofs in [35], [37] in the k = 3 case and [9] in the k = 4 case) but is conceptually somewhat
more straightforward (once one accepts the need to work with hypergraphs instead of
graphs, which does unfortunately introduce a number of additional technicalities). Also
these arguments can handle certain higher dimensional extensions of Szemerédi’s theorem
first obtained by ergodic theory methods in [12].

As the above discussion shows, the known proofs of Szemerédi’s theorem are extremely
diverse. However, they do share a number of common themes, principal among which is
the establishment of a dichotomy between randomness and structure. Indeed, in an ex-
tremely abstract and heuristic sense, one can describe all the known proofs of Szemerédi’s
theorem collectively as follows. Start with the set A (or some other object which is a
proxy for A, e.g. a graph, a hypergraph, or a measure-preserving system). For the object
under consideration, define some concept of randomness (e.g. ε-regularity, uniformity,
small Fourier coefficients, or weak mixing), and some concept of structure (e.g. a nested
sequence of arithmetically structured sets such as progressions or Bohr sets, or a partition
of a vertex set into a controlled number of pieces, a collection of large Fourier coefficients,
a sequence of almost periodic functions, a tower of compact extensions of the trivial fac-
tors, or a k − 2-step nilfactor). Obtain some sort of structure theorem that splits the
object into a structured component, plus an error which is random relative to that struc-
tured component. To prove Szemerédi’s theorem (or a variant thereof), one then needs
to obtain some sort of generalized von Neumann theorem to eliminate the random error,
and then some sort of structured recurrence theorem for the structured component.

Obviously there is a great deal of flexibility in executing the above abstract scheme,
and this explains the large number of variations between the known proofs of Szemerédi
type theorems. Also, each of the known proofs finds some parts of the above scheme more
difficult than others. For instance, Furstenberg’s ergodic theory argument requires some
non-elementary machinery to set up the appropriate proxy for A, namely a measure-
preserving probability system, and the structured recurrence theorem (which is in this
case a recurrence theorem for a tower of compact extensions) is also somewhat techni-
cal. In the Fourier-analytic arguments of Roth and Gowers, the structured component
is simply a nested sequence of long arithmetic progressions, which makes the relevant
recurrence theorem a triviality; instead, almost all the difficulty resides in the structure
theorem, or more precisely in enforcing the assertion that lack of uniformity implies a
density increment on a smaller progression. The more recent hypergraph arguments of
Gowers and Rödl-Skokan-Nagel-Schacht are more balanced, with no particular step be-
ing exceptionally more difficult than any other, although the fact that hypergraphs are
involved does induce a certain level of notational and technical complexity throughout.
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Finally, Szemerédi’s original argument contains significant portions (notably the use of
the Szemerédi regularity lemma, and the use of density increments) which fit very nicely
into the above scheme, but also contains some additional combinatorial arguments to
connect the various steps of the proof together.

In this paper we present a new proof of Szemerédi’s theorem (Theorem 1.2) which
implements the above scheme in a reasonably elementary and straightforward manner.
This new proof can best be described as a “finitary” or “quantitative” version of the
ergodic theory proofs of Furstenberg [10], [15], in which one stays entirely in the realm of
finite sets (as opposed to passing to an infinite limit in the ergodic theory setting). As
such, the axiom of choice is not used, and an explicit bound for NSZ(k, δ) is in principle
possible1 (although the bound is extremely poor, perhaps even worse than Ackermann
growth, and certainly worse than the bounds obtained by Gowers [20]). We also borrow
some tricks and concepts from other proofs; in particular from the proof of the Szemerédi
regularity lemma we borrow the L2 incrementation trick in order to obtain a structure
theorem with effective bounds, while from the arguments of Gowers [20] we borrow the
Gowers uniformity norms Uk−1 to quantify the concept of randomness. One of our main
innovations is to complement these norms with the (partially dual) uniform almost peri-
odicity norms UAP k−2 to quantify the concept of an uniformly almost periodic function
of order k − 2. This concept will be defined rigorously later, but suffice to say for now
that a model example of a uniformly almost periodic function of order k − 2 is a finite
polynomial-trigonometric sum f : ZN → C of the form2

F (x) :=
1

J

J
∑

j=1

cje(Pj(x)/N) for all x ∈ ZN , (1)

where ZN := Z/NZ is the cyclic group of order N , J ≥ 1 is an integer, the cj are
complex numbers bounded in magnitude by 1, e(x) := e2πix, and the Pj are polynomials
of degree at most k − 2 and with coefficients in ZN . The uniform almost periodicity
norms serve to quantify how closely a function behaves like (1), and enjoy a number of

1It may also be possible in principle to extract some bound for NSZ(k, δ) directly from the original
Furstenberg argument via proof theory, using such tools as Herbrand’s theorem; see for instance [17]
where a similar idea is applied to the Furstenberg-Weiss proof of van der Waerden’s theorem to extract
Ackermann-type bounds from what is apparently a nonquantitative argument. However, to the author’s
knowledge this program has not been carried out previously in the literature for the ergodic theory proof
of Szemerédi proof. Also we incorporate some other arguments in order to simplify the proof and highlight
some new concepts (such as a new Banach algebra of uniformly almost periodic functions).

2Actually, these functions are a somewhat special class of uniformly almost periodic functions of order
k − 2, which one might dub the quasiperiodic functions of order k − 2. The relationship between the two
seems very closely related to the distinction in ergodic theory between k− 2-step nilsystems and systems
which contain polynomial eigenfunctions of order k−2; see [16], [26] for further discussion of this issue. It
is also closely related to the rather vaguely defined issue of distinguishing “almost polynomial” or “almost
multilinear” functions from “genuinely polynomial” or “genuinely multilinear” functions, a theme which
recurs in the work of Gowers [19], [20], and also in the theorems of Freiman and Balog-Szemerédi from
inverse additive combinatorics which were used in Gowers’ work. It seems of interest to quantify and
pursue these issues further.
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pleasant properties, most notably that they form a Banach algebra; indeed one can think
of these norms as a higher order variant of the classical Wiener algebra of functions with
absolutely convergent Fourier series.

The argument is essentially self-contained, aside from some basic facts such as the
Weierstrass approximation theorem; the only main external ingredient needed is van der
Waerden’s theorem (to obtain the recurrence theorem for uniformly almost periodic func-
tions), which is standard. As such, we do not require any familiarity with any of the
other proofs of Szemerédi’s theorem, although we will of course discuss the relationship
between this proof and the other proofs extensively in our remarks. In particular we do
not use the Fourier transform, or theorems from inverse arithmetic combinatorics such
as Freiman’s theorem or the Balog-Szemerédi theorem, and we do not explicitly use the
Szemerédi regularity lemma either for graphs or hypergraphs (although the proof of that
lemma has some parallels with certain parts of our argument here). Also, while we do use
the language of ergodic, measure, and probability theory, in particular using the concept
of conditional expectation with respect to a factor, we do so entirely in the context of finite
sets such as ZN ; as such, a factor (or σ-algebra) is nothing more than a finite partition of
ZN into “atoms”, and conditional expectation is merely the act of averaging a function
on each atom3. As such, we do not need such results from measure theory as the con-
struction of product measure (or conditional product measure, via Rohlin’s lemma [32]),
which plays an important part of the ergodic theory proof, notably in obtaining the struc-
ture and recurrence theorems. Also, we do not use the compactness of Hilbert-Schmidt
or Volterra integral operators directly (which is another key ingredient in Furstenberg’s
structure theorem), although we will still need a quantitative finite-dimensional version
of this fact (see Lemmas 9.3, 10.2 below). Because of this, our argument could technically
be called “elementary”. However we will need a certain amount of structural notation
(of a somewhat combinatorial nature) in order to compensate for the lack of an existing
body of notation such as is provided by the language of ergodic theory.

In writing this paper we encountered a certain trade-off between keeping the paper
brief, and keeping the paper well-motivated. We have opted primarily for the latter; if one
chose to strip away all the motivation and redundant arguments from this paper one could
in fact present a fairly brief proof of Theorem 1.2 (roughly 20 pages in length); see [42].
We also had a similar trade-off between keeping the arguments simple, and attempting to
optimize the growth of constants for NSZ(k, δ) (which by the arguments here could be as
bad as double-Ackermann or even triple-Ackermann growth); since it seems clear that the
arguments here have no chance whatsoever to be competitive with the bounds obtained
by Gowers’ Fourier-analytic proof [20] we have opted strongly in favour of the former.

Remark 1.3. Because our argument uses similar ingredients to the ergodic theory argu-
ments, but in a quantitative finitary setting, it seems likely that one could modify these
arguments relatively easily to obtain quantitative finitary versions of other ergodic theory
recurrence results in the literature, such as those in [12], [13], [14], [3], [5]. In many of
these cases, the ordinary van der Waerden theorem would have to be replaced by a more

3Readers familiar with the Szemerédi regularity lemma may see parallels here with the proof of that
lemma. Indeed one can phrase the proof of this lemma in terms of conditional expectation; see [41].
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general result, but fortunately such generalizations are known to exist (see e.g. [46] for
further discussion). In principle, the quantitative ergodic approach could in fact have a
greater reach than the traditional ergodic approach to these problems; for instance, the
recent establishment in [23] that the primes contained arbitrarily long arithmetic progres-
sions relied heavily on this quantitative ergodic point of view, and does not seem at this
point to have a proof by traditional ergodic methods (or indeed by any of the other meth-
ods available for proving Szemerédi’s theorem, although the recent hypergraph approach
of Gowers [21] and of Rödl-Skokan-Nagle-Schacht [28], [29], [30] seems to have a decent
chance of being “relativized” to pseudorandom sets such as the “almost primes”; see [43]).
Indeed, some of the work used to develop this paper became incorporated into [23], and
conversely some of the progress developed in [23] was needed to conclude this paper.

Remark 1.4. It is certainly possible to avoid using van der Waerden’s theorem explicitly
in our arguments, for instance by incorporating arguments similar to those used in the
proof of this theorem into the main argument4. A decreased reliance on van der Waer-
den’s theorem would almost certainly lead to better bounds for NSZ(k, δ), for instance
the Fourier-analytic arguments of Gowers [19], [20] avoids this theorem completely and
obtains bounds for NSZ(k, δ) which are far better than that obtained by any other argu-
ment, including ours. However this would introduce additional arguments into our proof
which more properly belong to the Ramsey-theoretic circle of ideas surrounding van der
Waerden’s theorem, and so we have elected to proceed by the simpler and “purer” route
of using van der Waerden’s theorem directly. Also, as remarked above, the argument as
presented here seems more able to extend to other recurrence problems.

Remark 1.5. Our proof of Szemerédi’s theorem here is similar in spirit to the proof of
the transference principle developed in [23] by Ben Green and the author which allowed
one to deduce a Szemerédi theorem relative to a pseudorandom measure from the usual
formulation of Szemerédi’s theorem; this transference principle also follows the same basic
scheme used to prove Szemerédi’s theorem (with Szemerédi’s theorem itself taking on the
role of the structured recurrence theorem). Indeed, the two arguments were developed
concurrently (and both were inspired, not only by each other, but by all four of the
existing proofs of Szemerédi’s theorem in the literature, as well as arguments from the
much better understood k = 3, 4 cases); it may also be able to combine the two to give a
more direct proof of Szemerédi’s theorem relative to a pseudorandom measure. There are
two main differences however between our arguments here and those in [23]. Firstly, in
the arguments here no pseudorandom measure is present. Secondly, the role of structure
in [23] was played by the anti-uniform functions, or more precisely a tower of factors
constructed out of basic anti-uniform functions. Our approach uses the same concept,

4This is to some extent done for instance in Furstenberg’s original proof [10], [15]. A key component
of that proof was to show that the multiple recurrence property was preserved under compact extensions.
Although it is not made explicit in those papers, the argument proceeds by “colouring” elements of the
extension on each fiber, and using “colour focusing” arguments closely related to those used to prove
van der Waerden’s theorem. The relevance of van der Waerden’s theorem and its generalizations in the
ergodic theory approach is made more explicit in later papers, see e.g. [16], [3], [5], and also the discussion
in [46]
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but goes further by analyzing the basic anti-uniform functions more carefully, and in fact
concluding that such functions are uniformly almost periodic5 of a certain order k − 2.

Acknowledgements. This work would not have been possible without the benefit of
many discussions with Hillel Furstenberg, Ben Green, Timothy Gowers, Bryna Kra, and
Roman Sasyk for for explaining both the techniques and the intuition behind the various
proofs of Szemerédi’s theorem and related results in the literature, and for drawing the
author’s attention to various simplifications in these arguments. Many of the ideas here
were also developed during the author’s collaboration with Ben Green, and we are partic-
ularly indebted to him for his suggestion of using conditional expectations and an energy
increment argument to prove quantitative Szemerédi-type theorems. We also thank Van
Vu for much encouragement throughout this project, Mathias Schacht for some help with
the references, and Alex Kontorovich for many helpful corrections. The author also thanks
Australian National University and Edinburgh University for their hospitality where this
work was conducted. The author is a Clay Prize Fellow and is supported by a grant from
the Packard Foundation.

2 The finite cyclic group setting

We now begin our new proof of Theorem 1.2. Following the abstract scheme outlined
in the introduction, we should begin by specifying what objects we shall use as proxies
for the set A. The answer shall be that we shall use non-negative bounded functions
f : ZN → R+ on a cyclic group ZN := Z/NZ. In this section we set out some basic
notation for such functions, and reduce Theorem 1.2 to proving a certain quantitative
recurrence property for these functions.

Remark 2.1. The above choice of object of study fits well with the Fourier-based proofs of
Szemerédi’s theorem in [33], [34], [19], [20], at least for the initial stages of the argument.
However in those arguments one eventually passes from ZN to a smaller cyclic group ZN ′

for which one has located a density increment, iterating this process until randomness
has been obtained (or the density becomes so high that finding arithmetic progressions
becomes very easy). In contrast, we shall keep N fixed and use the group ZN throughout
the argument; it will be a certain family of factors which changes instead. This paral-
lels the ergodic theory argument [10], [15], [11], but also certain variants of the Fourier
argument such as [6], [7]. It also fits well with the philosophy of proof of the Szemerédi
regularity lemma.

We now set up some notation. We fix a large prime number N , and fix ZN := Z/NZ
to be the cyclic group of order N . We will assume that N is extremely large; basically,
it will be larger than any quantity depending on any of the other parameters which

5In [23] the only facts required concerning these basic anti-uniform functions were that they were
bounded, and that pseudorandom measures were uniformly distributed with respect to any factor gen-
erated by such functions. This was basically because the argument in [23] invoked Szemerédi’s theorem
as a “black box” to deal with this anti-uniform component, whereas clearly this is not an option for our
current argument.
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appear in the proof. We will write O(X) for a quantity bounded in magnitude by CX
where C is independent of N ; if C depends on some other parameters (e.g. k and δ), we
shall subscript the O(X) notation accordingly (e.g. Ok,δ(X)) to indicate the dependence.
Generally speaking we will order these subscripts so that the extremely large or extremely
small parameters are at the right. We also write X ≪ Y or Y ≫ X as synonymous
with X = O(Y ), again denoting additional dependencies in the implied constant C by
subscripts (e.g. X ≪k,δ Y means that |X| ≤ C(k, δ)Y for some C(k, δ) depending only
on k, δ).

Definition 2.2. If f : X → C is a function6, and A is a finite non-empty subset of X,
we define the expectation of f conditioning on A7

EAf = Ex∈Af(x) :=
1

|A|

∑

x∈A

f(x)

where |A| of course denotes the cardinality of A. If in particular f is an indicator function
f = 1Ω for some Ω ⊆ X, thus f(x) = 1 when x ∈ Ω and f(x) = 0 otherwise, we write

PA(Ω) := EA1Ω = |Ω|/|A|.

Similarly, if P (x) is an event depending on x, we write

PA(P ) := EA1P =
1

|A|
{x ∈ A : P (x) is true},

where 1P (x) = 1 when P (x) is true and 1P (x) := 0 otherwise.

We also adopt the following ergodic theory notation: if f : ZN → R is a function, we
define the integral

∫

ZN

f = EZN
f =

1

N

N
∑

x=1

f(x)

and the shifts T nf : ZN → R for any n ∈ ZN or n ∈ Z by

T nf(x) := f(x− n),

6Strictly speaking, we could give the entire proof of Theorem 1.2 using only real-valued functions
rather than complex-valued, as is done in the ergodic theory proofs, thus making the proof slightly more
elementary and also allowing for some minor simplifications in the notation and arguments. However,
allowing the functions to be complex valued allows us to draw more parallels with Fourier analysis, and
in particular to discuss such interesting examples of functions as (1).

7We have deliberately chosen this notation to coincide with the usual notations of probability P (Ω) and
expectation E(f) for random variables to emphasize the probabilistic nature of many of our arguments,
and indeed we will also combine this notation with the probabilistic one (and take advantage of the fact
that both forms of expectation commute with each other). Note that one can think of Ex∈Af(x) = EAf

as the conditional expectation of f(x), where x is a random variable with the uniform distribution on X ,
conditioning on the event x ∈ A.
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and similarly define T nΩ for any Ω ⊂ ZN by T nΩ := Ω + n, thus T n1Ω = 1T nΩ. Clearly
these maps are algebra homomorphisms (thus T n(fg) = (T nf)(T ng) and T n(f + g) =
T nf + T ng), preserve constant functions, and are integral-preserving (thus

∫

ZN
T nf =

∫

ZN
f). They also form a group, thus T n+m = T nTm and T 0 is the identity, and are

unitary with respect to the usual inner product 〈f, g〉 :=
∫

ZN
fg. We shall also rely

frequently8 on the Banach algebra norm

‖f‖L∞ := sup
x∈ZN

|f(x)|

and the Hilbert space structure

〈f, g〉 :=

∫

ZN

fg; ‖f‖L2 := 〈f, f〉1/2 = (

∫

ZN

|f |2)1/2;

later on we shall also introduce a number of other useful norms, in particular the Gowers
uniformity norms Uk−1 and the uniform almost periodicity norms UAP k−2.

To prove Theorem 1.2, it will suffice to prove the following quantitative recurrence
version of that theorem.

Definition 2.3. A function f : ZN → C is said to be bounded if we have ‖f‖L∞ ≤ 1.

Theorem 2.4 (Quantitative recurrence form of Szemerédi’s theorem). For any
integer k ≥ 1, any large prime integer N ≥ 1, any 0 < δ ≤ 1, and any non-negative
bounded function f : ZN → R+ with

∫

ZN

f ≥ δ (2)

we have

Er∈ZN

∫

ZN

k−1
∏

j=0

T jrf ≫k,δ 1. (3)

Remark 2.5. This is the form of Szemerédi’s theorem required in [23]. This result was
then generalized in [23] (introducing a small error ok,δ(1)) by replacing the hypothesis
that f was bounded by the more general hypothesis that f was pointwise dominated
by a pseudorandom measure. This generalization was crucial to obtain arbitrarily long
progressions in the primes. We will not seek such generalizations here, although we do
remark that the arguments in [23] closely parallel to the ones here.

We now show how the above theorem implies Theorem 1.2.

8Of course, since the space of functions on ZN is finite-dimensional, all norms are equivalent up to
factors depending on N . However in line with our philosophy that we only wish to consider quantities
which are bounded uniformly in N , we think of these norms as being genuinely distinct.
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Proof of Theorem 1.2 assuming Theorem 2.4. Fix k, δ. Let N ≥ 1 be large, and suppose
that A ⊂ {1, . . . , N} has cardinality |A| ≥ δN . By Bertrand’s postulate, we can find a
large prime number N ′ between kN and 2kN . We embed {1, . . . , N} in ZN ′ in the usual
manner, and let A′ be the image of A under this embedding. Then we have

∫

ZN
1A′ ≥ δ/2k,

and hence by (3)

Er∈ZN′

∫

ZN′

k−1
∏

j=0

T jr1A′ ≫k,δ 1,

or equivalently

|{(x, r) ∈ ZN ′ : x, x− r, . . . , x− (k − 1)r ∈ A′}| ≫k,δ (N ′)2.

Since N ′ ≥ kN and A′ ⊂ {1, . . . , N}, we see that 1 ≤ x ≤ N and −N ≤ r ≤ N in the
above set. Also we may remove the r = 0 component of this set since this contributes at
most N to the above sum. If N is large enough, the right-hand side is still positive, and
this implies that A contains a progression x, x− r, . . . , x− (k − 1)r, as desired.

Remark 2.6. One can easily reverse this implication and deduce Theorem 2.4 from The-
orem 1.2; the relevant argument was first worked out by Varnavides [45]. In the ergodic
theory proofs, Szemerédi’s theorem is also stated in a form similar to (3), but with ZN

replaced by an arbitrary measure-preserving system (and r averaged over some interval
{1, . . . , N} going to infinity), and the left-hand side was then shown to have positive limit
inferior, rather than being bounded from below by some explicit constant. However these
changes are minor, and again it is easy to pass from one statement to the other, at least
with the aid of the axiom of choice (see [15], [4] for some further discussion on this issue).

It remains to deduce Theorem 2.4. This task shall occupy the remainder of the paper.

3 Overview of proof

We shall begin by presenting the high-level proof of Theorem 2.4, implementing the ab-
stract scheme outlined in the introduction.

One of the first tasks is to define measures of randomness and structure in the function
f . We shall do this by means of two families of norms9: the Gowers uniformity norms

‖f‖U0 ≤ ‖f‖U1 ≤ . . . ≤ ‖f‖Uk−1 ≤ . . . ≤ ‖f‖L∞

introduced in [20] (and studied further in [26], [23]) and a new family of norms, the
uniform almost periodicity norms

‖f‖UAP 0 ≥ ‖f‖UAP 1 ≥ . . . ≥ ‖f‖UAP k−2 ≥ . . . ≥ ‖f‖L∞

9Strictly speaking, the U 0 and U1 norms are not actually norms, and the UAP 0 norm can be infinite
when f is non-constant. However, these issues will be irrelevant for our proof, and in the most interesting
case k ≥ 3 there are no such degeneracies.
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which turn out to be somewhat dual to the Gowers uniformity norms. We shall mainly
rely on the Uk−1 and UAP k−2 norms; the other norms in the family are required only for
mathematical induction purposes. We shall define the Gowers uniformity and uniform
almost periodicity norms rigorously in Sections 4 and 5 respectively. For now, we shall
simply give a very informal (and only partially accurate) heuristic: a function bounded
in UAP k−2 will typically look something like the polynomially quasiperiodic function (1)
where all the polynomials have degree at most k− 2, whereas a function small in U k−1 is
something like a function which is “orthogonal” to all such quasiperiodic functions (1).

Next, we state the three main (and independent) sub-theorems which we shall use to
deduce Theorem 2.4. The first sub-theorem, which is rather standard (and the easiest of
the three to prove), asserts that Gowers-uniform functions (i.e. functions with small U k−1

norm) are negligible for the purposes of computing (3); it will be proven in Section 4.

Theorem 3.1 (Generalized von Neumann theorem). [20] Let k ≥ 2, and let
λ0, . . . , λk−1 be distinct elements of ZN . Then for any bounded functions f0, . . . , fk−1 :
ZN → C we have

∣

∣

∣

∣

∣

Er∈ZN

∫

ZN

k−1
∏

j=0

T λjrfj

∣

∣

∣

∣

∣

≤ min
1≤j≤k

‖fj‖Uk−1.

Remark 3.2. As indicated, this part of the argument is based on the arguments of Gowers
[20]; however it is purely combinatorial, relying on the Cauchy-Schwarz inequality rather
than on Fourier analytic techniques (which occupy other parts of the argument in [20]).
Variants of this theorem go back at least as far as Furstenberg [10]; see also [23], [26] for
some variants of this theorem. We remark that the linear shifts λjr can be replaced by
more general objects such as polynomial shifts, after replacing the U k−1 norm by a higher
Gowers uniformity norm; this is implicit for instance in [3].

The second sub-theorem is a special case of the main theorem, and addresses the com-
plementary situation to Theorem 3.1, where f is now uniformly almost periodic instead
of Gowers-uniform; it will be proven in Section 10.

Theorem 3.3 (Almost periodic functions are recurrent). Let d ≥ 0 and k ≥ 1
be integers, and let fU⊥, fUAP be non-negative bounded functions such that we have the
estimates

‖fU⊥ − fUAP‖L2 ≤
δ2

1024k
(4)

∫

ZN

fU⊥ ≥ δ (5)

‖fUAP‖UAP d < M (6)

for some 0 < δ,M <∞. Then we have

E0≤r≤N1

∫

ZN

k−1
∏

j=0

T µjrfU⊥(x)≫d,k,δ,M 1 (7)

for all µ ∈ ZN and N1 ≥ 1.
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Remark 3.4. This argument is a quantitative version of certain ergodic theory arguments
by Furstenberg and later authors, and is the only place where the van der Waerden
theorem (Theorem 1.1) is required. It is by far the hardest component of the argument.
In principle, the argument gives explicit bounds for the implied constant in (7) but they
rely (repeatedly) on Theorem 1.1 and are thus quite weak. As mentioned earlier, we need
this theorem only when d = k − 2, but allowing d to be arbitrary is convenient for the
purposes of proving this theorem by induction. It is important that the quantity δ2

1024k

used in the right-hand side of (4) does not depend on M . This significantly complicates
the task of proving this theorem when M is large, of course, since the error between fU⊥

and fUAP may seem to dominate whatever gain one can obtain from (6). Nevertheless,
one can cope with such large errors by means of the machinery of factors and conditional
expectation. This ability to tolerate reasonably large L2 errors in this recurrence result
is also crucially exploited in the “Zorn’s lemma” step in the ergodic theory arguments, in
which one shows that the limit of a chain of extensions with the recurrence property is also
recurrent. The parameters µ,N1 are technical and are needed to facilitate the inductive
argument used to prove this Theorem; ultimately we shall take µ := 1 and N1 := N − 1.

Finally, we need a structure theorem, proven in Section 8, that splits an arbitrary
function into a Gowers-uniform component and an uniformly almost periodic component
(plus an error).

Theorem 3.5 (Structure theorem). Let k ≥ 3, and let f be a non-negative bounded
function obeying (2) for some δ > 0. Let F : R+ → R+ be an arbitrary function (which
may depend on k and δ). Then we can find a positive number M = Ok,δ,F (1), a bounded
function fU , and non-negative bounded functions fU⊥, fUAP such that we have the splitting

f = fU + fU⊥

and the estimates (4), (5), (6) with d := k − 2, as well as the uniformity estimate

‖fU‖Uk−1 ≤
1

F (M)
. (8)

Remark 3.6. The subscripts U and U⊥ stand for Gowers uniform and Gowers anti-uniform
respectively. Thus this theorem asserts that while a general function f need not have
any uniformity properties whatsoever, it can be decomposed into pieces which are either
uniform in the sense of Gowers, or are instead uniformly almost periodic, or are simply
small in L2. This theorem is something of a hybrid between the Furstenberg structure
theorem [15] and the Szemerédi regularity lemma [40]. A similar structure theorem was
a key component to [23]. The fact that the error tolerance in (4) does not go to zero as
M → ∞ is crucial in order to obtain this insensitivity to the choice of right-hand side
of (8).

Remark 3.7. Each of the above three theorems have strong parallels in the genuinely
ergodic theory setting. For instance, the analogues of the U d norms in that setting
were worked out by Host and Kra [26], where the analogue of Theorem 3.1 was also
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(essentially) proven. The structure theorem seems to correspond to the existence of a
universal characteristic factor for Szemerédi-type recurrence properties (see e.g. [26], [47]
for a discussion), although unlike the papers in [26], [47] we do not attempt to characterise
this factor in terms of nilflows here. The recurrence theorem is very similar in spirit to k−2
iterations of the basic fact, established in [15], that recurrence properties are preserved
under compact extensions (although our proof is not based on that argument, but instead
on later colouring arguments such as the one in [3]). One can also extend the definition
of the Banach algebra UAP d defined below to the ergodic theory setting. It seems of
interest to pursue these connections further, and in particular to rigorously pin down the
relationship between almost periodicity of order k − 2 and k − 2-step nilsystems.

Assuming these three theorems, we can now quickly conclude Theorem 2.4.

Proof of Theorem 2.4. Let f, k, δ be as in Theorem 2.4. We may take k ≥ 3 since the
cases k = 1, 2 are trivial. Let F : R+ → R+ be a growth function to be chosen later.
Let M , fU , fU⊥, fUAP be as in Theorem 3.5. We can then split the left-hand side of (3)
as the sum of 2k terms of the form Er∈ZN

∫

ZN

∏k−1
j=0 T

jrfj , where each of the functions
f0, . . . , fk−1 are equal to either fU or fU⊥. The term in which all the fj are equal to fU⊥ is
≫k,δ,M 1 by Theorem 3.3 (taking µ := 1 and N1 := N − 1). The other 2k − 1 terms have
magnitude at most ‖fU‖Uk−1 ≤ 1/F (M) thanks to Theorem 3.1. Adding all this together,
and taking F (M) to be sufficiently rapidly growing function of M (and also depending
on k, δ) we see that

Er∈ZN

∫

ZN

k−1
∏

j=0

T jrf ≫k,δ,M 1.

Since M = Ok,δ,F (1) = Ok,δ(1) the claim (3) follows.

It remains to define the Uk−1 and UAP k−2 norms properly, and prove Theorems 3.1,
3.3, 3.5. This shall occupy the remainder of the paper.

4 Uniformity norms, and the generalized von Neu-

mann theorem

In this section we define the Gowers uniformity norms U d properly, and then prove The-
orem 3.1. The motivation for these norms comes from the van der Corput lemma, which
is very simple in the context of the cyclic group ZN :

Lemma 4.1 (Van der Corput Lemma). For any function f ∈ ZN → C, we have

|

∫

ZN

f |2 = Eh∈ZN

∫

ZN

fT hf.

Proof. Expanding both sides the identity becomes

Ex,y∈ZN
f(x)f(y) = Ex,h∈ZN

f(x)f(x+ h)

and the claim follows by the substitution y = x+ h.
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Motivated by this lemma, we define

Definition 4.2 (Gowers uniformity norms). [20] Let f : ZN → C be a function. We
define the dth Gowers uniformity norm ‖f‖Ud recursively by

‖f‖U0 :=

∫

ZN

f (9)

and
‖f‖Ud := (Eh∈ZN

‖fT hf‖2
d−1

Ud−1)
1/2d

(10)

for all d ≥ 1.

Example 4.3. From Lemma 4.1, (9), (10) we obtain the explicit formula

‖f‖U1 = |

∫

ZN

f |. (11)

In particular, the U1 norm (and hence all higher norms) are always non-negative. The
U2 norm can also be interpreted as the l4 norm of the Fourier coefficients of f via the
identity

‖f‖U2 = (
∑

ξ∈ZN

|Ex∈ZN
f(x)e(−xξ/N)|4)1/4, (12)

though we will not need this fact here. The higher U d norms do not seem have any par-
ticularly useful Fourier-type representations, however by expanding (10) out recursively
one can write the Ud norm as a sum of f over d-dimensional cubes (see [20], [23], [26] for
further discussion of this).

Remark 4.4. The U0 and U1 norms are not, strictly speaking, norms; the latter is merely a
semi-norm, and the former is not a norm at all. However, the higher norms U d, d ≥ 2 are
indeed norms (they are homogeneous, non-degenerate, and obey the triangle inequality),
and are also related to a certain 2d-linear inner product; see [20], [23], or [26] for a proof
of these facts (which we will not need here), with the d = 2 case following directly from
inspection of (12). Also one can show the inequality ‖f‖Ud ≤ ‖f‖Ud+1 for any d ≥ 0.
Thus for k ≥ 2, we have a rather interesting nested sequence of Banach spaces U k−1 of
functions f : ZN → C, equipped with the Uk−1 norm; these Banach spaces and their
duals (Uk−1)∗ were explored to a limited extent in [23], and we shall continue their study
later in this paper. Functions which are small in U 2 norm are termed linearly uniform
or Gowers-uniform of order 1, and thus have small Fourier coefficients by (12); functions
small in U3 norm are quadratically uniform or Gowers-uniform of order 2, and so forth.
The terminology here is partly explained by the next example; again, see [20], [23], or [26]
for further discussion.

Example 4.5. By induction10 we see that ‖f‖Ud ≤ ‖f‖L∞ for all d; in particular we have
‖f‖Ud ≤ 1 when f is bounded. We now present an example (which is, in fact, the only

10Actually, more is true: the Ud norms of f increase monotonically and converge to ‖f‖L∞ as d → ∞,
although the convergence can be quite slow and depends on N . We will not prove this fact here.
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example up to scalar multiplication) in which equality holds. Let P : ZN → ZN be a
polynomial with coefficients in ZN , and let f(x) := e(P (x)/N). Then one can show that
‖f‖Ud = 1 when d ≥ deg(P ), and ‖f‖Ud = odeg P (1) when d < deg(P ); the former fact can
be proven by induction and the trivial observation that for each fixed h, the polynomial
P (x + h) − P (x) has degree at most deg(P ) − 1, while the latter fact also follows from
induction, the above observation, and Lemma 4.1; we omit the details. In fact one can
improve the odeg P (1) bound to Odeg P (N−1/2d+1

), by using the famous Weil estimates.
By using the triangle inequality for U d (see e.g. [20], [23]) one can also deduce similar
statements for the polynomially quasiperiodic functions (1).

One can easily verify by induction that the U d norms are invariant under shifts, thus
‖T nf‖Ud = ‖f‖Ud, and also invariant under dilations, thus if λ ∈ ZN\0 and fλ(x) :=
f(x/λ) then ‖fλ‖Ud = ‖f‖Ud.

We can now prove the generalized von Neumann theorem.

Proof of Theorem 3.1. We induct on k. When k = 2 we use the fact that (x, r) 7→
(x + λ1r, x + λ2r) is a bijection from Z2

N to Z2
N (recalling that N is prime) to conclude

that

Er∈ZN

∫

ZN

1
∏

j=0

T λjrfj =

(
∫

ZN

f0

)

×

(
∫

ZN

f1

)

and the claim then follows easily from (11) and the boundedness of f0, f1. Now suppose
that k > 2 and the claim has already been proven for k − 1. By permuting the λj if
necessary we may assume that the minimum of the ‖fj‖Uk−1 is attained when j = 0. By
making the scaling r 7→ λ0r if necessary we may assume that λ0 = 1. By applying the
expectation-preserving map T−λk−1r (i.e. by subtracting λk−1 from each of the λj) we
may assume that λk−1 is zero. The claim can now be written as

∣

∣

∣

∣

∣

∫

ZN

fk−1Er∈ZN
(

k−2
∏

j=0

T λjrfj)

∣

∣

∣

∣

∣

≤ ‖f0‖Uk−1 .

By the Cauchy-Schwarz inequality and the boundedness of fk−1, it suffices to prove that

∫

ZN

|Er∈ZN

k−2
∏

j=0

T λjrfj|
2 ≤ ‖f0‖

2
Uk−1 .

But from Lemma 4.1 (and the fact that h 7→ λjh is a bijection on ZN ) we have

∫

ZN

|Er∈ZN

k−2
∏

j=0

T λjrfj |
2 = Eh,r∈ZN

∫

ZN





k−2
∏

j=0

T λjrfj





(

k−2
∏

j=0

T λj(r+h)fj

)

= Eh∈ZN
Er∈ZN

∫

ZN

k−2
∏

j=0

T λjr
(

fjT
λjhfj

)

.
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On the other hand, from the induction hypothesis and the reduction to the case λ0 = 1
we have

∣

∣

∣

∣

∣

Er∈ZN

∫

ZN

k−2
∏

j=0

T λjr(fjT
λjhfj)

∣

∣

∣

∣

∣

≤ ‖f0T
hf0‖Uk−2

for all h ∈ ZN . Combining these two facts together, we obtain

∫

ZN

|Er∈ZN

k−2
∏

j=0

T λjrfj |
2 ≤ Eh∈ZN

‖f0T
hf0‖Uk−2

and the claim follows from (10) and Hölder’s inequality.

Remark 4.6. The notion of Gowers uniformity considered here, namely that the U k−1

norm is small, generalizes the concept of pseudorandomness or linear uniformity in the
k = 3 case, which amounts to the assertion that all the Fourier coefficients of f (except
possibly for the zero coefficient) are small; this is the notion used for instance in [33], [6],
[25], [7]. This notion is essentially equivalent to the pair correlations of all the shifts T nf
to be small on the average. For higher k, this notion is insufficient to obtain theorem such
as Theorem 3.1, see [19], [20] for further discussion. In Szemerédi’s original arguments
[38], [39], the appropriate concept of uniformity is provided by the notion of ε-regularity,
which roughly corresponds to controlling all the U d norms for d = Oε(1), while in the
ergodic theory arguments of Furstenberg and later authors, the notion of uniformity used
is that of weak mixing, which roughly corresponds to controlling the U d norms for all d.
Thus these notions of uniformity are significantly stronger than the one considered here,
which fixes d at k−1. There is of course a cost to using such a strong notion of uniformity,
and it is that one has to make the tower of structures extremely large in order to eventually
attain such uniformity. In Szemerédi’s regularity lemma, for instance, one is forced to lose
constants which are of tower-exponential type in the regularity parameter ε; see [18]. In
the ergodic theory arguments, the situation is even worse; the tower of invariant factors
given by Furstenberg’s structure theorem (the ergodic theory analogue of Szemerédi’s
regularity lemma) can be as tall as any countable ordinal, but no taller; see [2].

Remark 4.7. In the ergodic theory setting, one can also define analogues of the U k−1

norms, giving rise to the concept of invariant factors whose complement consists entirely
of functions which are Gowers-uniform of order k − 2; using this notion (which is much
weaker than weak mixing) it is possible to obtain a version of Furstenberg’s structure
theorem using only a tower of height k−2 (in particular, a tower of finite height). Indeed,
it was the author’s discovery of this fact which led eventually to the quantitative proof
presented here; we have since learnt that this fact is essentially implicit in the work of
Host and Kra [26] and Ziegler [47].

5 Almost periodic functions

Having defined the Gowers uniformity norms U k−1 used for the generalized Von Neumann
theorem, we now turn to defining the dual concept of the uniform almost periodicity norms
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UAP k−2 which we will need for both the recurrence theorem and structure theorems.
Roughly speaking, if a function F has a bounded UAP k−2 norm, then it should resemble
a function of the form (1), which we shall loosely refer to as a quasiperiodic function of
order k − 2. To quantify this we make the following observation: if F is of the form (1),
then

T nF = Ej∈Jcn,jgj, (13)

where gj is the bounded function gj(x) := e(Pj(x)/N), and cn,j(x) is the cn,j(x) =
e((Pj(x + n) − Pj(x))/N). The point here is that the dependence on n on the right-
hand side only arises through the functions cn,j, and those functions are of the form (1)
but with degree k − 3 instead of k − 2. Thus, the shifts of an quasiperiodic functions of
order k − 2 can be written as linear combinations of fixed bounded functions gj, where
the coefficients cn,j are not constant, but are instead quasiperiodic functions of one lower
order11. We can pursue the same idea to define the UAP d norms recursively as follows.

Definition 5.1 (Banach algebras). A space A of functions on ZN , equipped with a
norm ‖‖A : A → R+, is said to be a Banach algebra if A is a vector space, ‖‖A is a
norm (i.e. it is homogeneous, non-degenerate, and verifies the triangle inequality) which
is invariant under conjugation f 7→ f , and A is closed under pointwise product with
‖fg‖A ≤ ‖f‖A‖g‖A for all f, g ∈ A. We also assume that

‖F‖L∞ ≤ ‖F‖A (14)

for all F ∈ A (actually this property can be deduced from the pointwise product property
and the finite-dimensionality of A). We adopt the convention that ‖f‖A = ∞ if f 6∈ A.
We say that A is shift-invariant if ‖f‖A = ‖T nf‖A for all n, and scale-invariant if
‖fλ‖A = ‖f‖A for all λ ∈ ZN\{0}.

Definition 5.2 (Uniform almost periodicity norms). If A is a shift-invariant Banach
algebra of functions on ZN , we define the space UAP [A] to be the space of all functions
F for which the orbit {T nF : n ∈ Z} has a representation of the form

T nF = ME(cn,hgh) for all n ∈ ZN (15)

where M ≥ 0, H is a finite non-empty set, g = (gh)h∈H is a collection of bounded
functions, c = (cn,h)n∈ZN ,h∈H is a collection of functions in A with ‖cn,h‖A ≤ 1, and h is
a random variable taking values in H . We define the norm ‖F‖UAP [A] to be the infimum
of M over all possible representations of this form.

Remark 5.3. Note that we are not imposing any size constraints on H ; in fact one could
allow H to be infinite, so that h becomes a continuous random variable rather than a
discrete one, without actually affecting this definition. It turns out however that we will
not need any information about H , or more generally about the probability distribution
of the random variable h. The key point is that the Volterra operator (ch)h∈H 7→ E(chgh)
will be a “compact” operator uniformly in choice of h and (gh)h∈H .

11This observation was motivated by the use of relatively almost periodic functions in the ergodic theory
arguments of Furstenberg [10], [15], [11] and later authors.
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We first observe that the construction A 7→ UAP [A] maps shift-invariant Banach
algebras to shift-invariant Banach algebras:

Proposition 5.4. If A is a shift-invariant Banach algebra, then so is UAP [A]. Fur-
thermore UAP [A] contains A, and ‖f‖UAP [A] ≤ ‖f‖A for all f ∈ A. Finally, if A is
scale-invariant then so is UAP [A].

Remark 5.5. This is a quantitative analogue of the well known fact in ergodic theory that
the almost periodic functions form a shift-invariant algebra.

Proof. It is easy to see that UAP [A] is shift-invariant, conjugation-invariant, closed un-
der scalar multiplication, preserves scale-invariance, and that the UAP [A] norm is non-
negative and homogeneous. From (14) and (15) we see that ‖f‖L∞ ≤ ‖f‖UAP [A] for all
f ∈ UAP [A], from which we deduce that the UAP [A] norm is non-degenerate. Also
we easily verify that UAP [A] contains A with ‖f‖UAP [A] ≤ ‖f‖A for all f ∈ A. Next,
we show that UAP [A] is closed under addition and that the UAP d norm enjoys the tri-
angle inequality. By homogeneity and nondegeneracy it suffices to show that the unit
ball is convex, i.e. if F, F ′ ∈ UAP [A] are such that ‖F‖UAP [A], ‖F

′‖UAP [A] < 1 then
(1 − θ)F + θF ′ ∈ UAP [A] with ‖(1 − θ)F + θF ′‖UAP [A] < 1 for all 0 ≤ θ ≤ 1. By
Definition 5.2 we can find non-empty finite sets H,H ′, bounded functions (gh)h∈H and
(g′h′)h′∈H′, and functions (cn,h)n∈ZN ,h∈H and (c′n,h′)n∈ZN ,h′∈H′ in A and random variables
h, h′ taking values in H and H ′ respectively such that we have the representations

T nF = E(cn,hgh); T nF ′ = E(c′n,h′g′h′) for all n ∈ ZN (16)

and the estimates

‖cn,h‖A, ‖c
′
n,h′‖A ≤ 1 for all n ∈ ZN , h ∈ H, h

′ ∈ H ′.

Also, by relabeling H ′ if necessary we may assume that H and H ′ are disjoint. In
such a case we can concatenate (cn,h)n∈ZN ,h∈H and (c′n,h′)n∈ZN ,h′∈H′ to a single function
(c̃n,h̃)n∈ZN ,h̃∈H∪H′ and similarly concatenate the g functions to (g̃n,h̃)h̃∈H∪H′ . If one then

defines the random variable h̃ to equal h with probability (1− θ) and h′ with probability
θ (or more precisely, the probability distribution of h̃ is 1− θ times that of h plus θ times
that of h′) then one sees from linearity of expectation that

T n(F + F ′) = E(c̃n,h̃g̃h̃) for all n ∈ ZN

and the claim follows.
Next, we establish the algebra property. By homogeneity and nondegeneracy again

it suffices to show that the unit ball is closed under multiplication. To see this, start
with (16). Without loss of generality we may assume that the random variables h, h′ are
independent (because it is only their individual distributions which matter for (16), not
their joint distribution). But in that case we have

T n(FF ′) = E(cn,h,h′gh,h′) for all n ∈ ZN

where cn,h,h′ := cn,hcn,h′ and gh,h′ := ghgh′. Since the product of two bounded functions is
a bounded function, the claim follows from the algebra property of A.
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Thanks to this proposition, we can define the UAP d norms recursively for d ≥ 0, by
setting UAP 0 to be the trivial Banach algebra of all constant functions (equipped with
the L∞ norm), and then setting UAP d := UAP [UAP d−1] for all d ≥ 1. Thus UAP d is a
shift-invariant, scale-invariant Banach algebra for all d ≥ 0.

In the case d = 3, it was observed by Ben Green (private communication) the UAP 1

norm was in fact equivalent to the Wiener norm. We present the elegant proof here.

Proposition 5.6. For any f : ZN → C we have

‖F‖UAP 1 =
∑

ξ∈ZN

|Ex∈ZN
F (x)e(−xξ/N)|.

Proof. One can prove by direct computation that each character e(xξ/N) has a UAP 1

norm of at most 1. From the Fourier inversion formula and the triangle inequality for
UAP 1 we thus obtain the upper bound

‖F‖UAP 1 ≤
∑

ξ∈ZN

|Ex∈ZN
F (x)e(−xξ/N)|.

Now we prove the lower bound; it suffices to show that if ‖F‖UAP 1 < 1 then

∑

ξ∈ZN

|Ex∈ZN
F (x)e(−xξ/N)| ≤ 1.

By Definition 5.2, we have a representation

T nF (x) = E(cn,hgh(x))

for all n ∈ ZN , where the cn,h are constants bounded in magnitude by 1 and the gh are
bounded functions. Since

Ex∈ZN
F (x)e(−xξ/N) = En,x∈ZN

T nF (x)e(−xξ/N)e(nξ/N)

we conclude that

∑

ξ∈ZN

|Ex∈ZN
F (x)e(−xξ/N)| ≤ E

∑

ξ∈ZN

|En,x∈ZN
cn,hgh(x)e(−xξ/N)e(nξ/N)|.

Separating the x and n averages and applying Cauchy-Schwarz, we can bound the right-
hand side by

E(
∑

ξ∈ZN

|En∈ZN
cn,he(nξ/N)|2)1/2(

∑

ξ∈ZN

|Ex∈ZN
gh(x)e(−xξ/N)|2)1/2.

Applying Plancherel’s theorem and the bounds on cn,h and gh we obtain a bound of 1 as
desired.
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Example 5.7. If F is of the form (1), then one can verify by (13) and induction that
F ∈ UAP k−2 with ‖F‖UAP k−2 ≤ 1 (here h is an element of {1, . . . , J} chosen uniformly at
random). In particular, as observed above, UAP 1 contains the Wiener algebra of functions
with absolutely convergent Fourier series. In our finitary setting of ZN , this implies that
every function lies in UAP 1 and hence in all higher UAP d norms, though the norm may
grow with N and thus be very large. Note that the property of being in the Wiener
algebra is substantially stronger than being almost periodic, which is roughly equivalent
to asking that the Fourier coefficients are summable in l2−ε for some ε > 0 rather than
being summable in l1. For further comparison, the property of being bounded in (U 2)∗, as
discussed in [23], is stronger than being almost periodic but weaker than being bounded
in UAP 1; it is equivalent to asking for the Fourier coefficients to be summable in l4/3. See
[23] for further discussion.

Example 5.8. There are more subtle examples of almost periodic functions than the
quasiperiodic ones. One example is the function

f(x) := e(⌊
ax

N
⌋
b

N
)ψ(

ax

N
mod 1)ψ(

x

N
mod 1)

for some fixed 1 ≤ a, b ≤ N , where x is thought of as an integer from 1 to N , ⌊x⌋ denotes
the integer part of x and ψ(x) is a smooth cutoff to the interval [0.4, 0.6] (say).. This
function has an UAP 1 norm of O(1) uniformly in a, b, N , but the required representation
of the form (15) is not particularly obvious (for instance one can set gh to be various
translations and modulations of f , and then T nf can be decomposed as an absolutely
summable combination of the gh using smooth partitions of unity and Fourier series). In
this case, one can eventually work out that f also has an absolutely convergent Fourier
series; however things are even less clear for the function

f(x) := e(⌊ax/N⌋
bx

N
)ψ(

ax

N
mod 1)ψ(

x

N
mod 1), (17)

which has an UAP 2 norm of O(1) but seems to have no particular resemblance with any
quadratic phase function. These “generalized quadratic phase functions” are related to
2-step nilsystems, which are known to not always admit quadratic eigenfunctions; see e.g.
[16] for further discussion. Intriguingly, hints of this “generalized quadratic” structure
also emerge in the work of Gowers [19]. For further discussion see [24].

The structure theorem, Theorem 3.5, can be viewed as some sort of duality relationship
between UAP k−2 and Uk−1. We now provide two demonstrations of this duality. The first
such demonstration is rather simple, but is not actually used in the proof of Szemerédi’s
theorem; the second demonstration will be to some extent a converse of the first and is
one of the key components used to prove Theorem 3.5.

Proposition 5.9 (Uniformity is orthogonal to almost periodicity). Let k ≥ 2. For
any functions f, F with F ∈ UAP k−2, we have

|〈f, F 〉| ≤ ‖f‖Uk−1‖F‖UAP k−2.
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Proof. We induct on k. When k = 2 the claim follows from (11) and the fact that F is
necessarily constant. Now suppose that k ≥ 3 and the claim has already been proven for
k−1. By homogeneity it suffices to show that if ‖f‖Uk−1, ‖F‖UAP k−2 < 1 then |〈f, F 〉| < 1.

By Definition 5.2 we can find H , g, c, h with the representation (15), with gh bounded
and ‖cn,h‖AP k−3 ≤ 1 for all n ∈ ZN , h ∈ H . Next, we use (15) the unitary nature of T n

to write

〈f, F 〉 = 〈T nf, T nF 〉 =

∫

ZN

T nfE(cn,hgh);

averaging over n and rearranging we thus have

〈f, F 〉 = E

∫

ZN

En∈ZN
(T nfcn,h)gh.

By the Cauchy-Schwarz inequality and the boundedness of the gh, we thus have

|〈f, F 〉| ≤

(

E

∫

ZN

|En∈ZN
(T nfcn,h)|

2

)1/2

.

But from Lemma 4.1 we have the pointwise identity

|En∈ZN
(T nfcn,h)|

2 = En,r∈ZN
(T n(fT rf)cn,hcn+r,h)

whence
|〈f, F 〉| ≤

(

EEn,r∈ZN
〈fT rf, T−n(cn,hcn+r,h)〉

)1/2
.

Since UAP k−3 is a shift-invariant Banach algebra we have ‖T−n(cn,hcn+r,h)‖UAP k−3 ≤ 1.
By the inductive hypothesis we thus have

|〈fT rf, T−n(cn,hcn+r,h)〉| ≤ ‖fT
rf‖Uk−2,

whence
|〈f, F 〉| ≤ E(En,r∈ZN

‖fT rf‖Uk−2)1/2.

The outer expectation can be discarded since the quantity inside the expectation is de-
terministic. We may similarly discard the redundant n average. Using Cauchy-Schwarz
and (10), we thus obtain

|〈f, F 〉| ≤ ‖f‖Uk−1 < 1

as desired.

Remark 5.10. One can use this Proposition to give an alternate proof of Theorem 3.1,
based on the observation (easily verified by induction) that if f1, . . . , fk−1 are bounded
functions and λ1, . . . , λk−1 are disjoint non-zero elements of ZN , then Er∈ZN

∏k−1
j=1 T

λjrfj

lies in UAP k−2 with norm at most 1.

Remark 5.11. In the notation of [23], this shows that the UAP k−2 norm is larger than or
equal to the (Uk−1)∗ norm. However, the UAP k−2 norm is strictly stronger. For instance,
as observed in [23] the (U 2)∗ norm is the l4/3 norm of the Fourier coefficients, which by
Proposition 5.6 is a strictly weaker norm than the UAP 1 norm.
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We now give a partial converse to Proposition 5.9, which is the key to Theorem 3.5.

Lemma 5.12 (Lack of Gowers-uniformity implies correlation with a UAP func-
tion). [23] Let f be a bounded function such that ‖f‖Uk−1 ≥ ε for some k ≥ 3 and
ε > 0. Then there exists a bounded function F ∈ UAP k−2 with ‖F‖UAP k−2 ≤ 1 such that
|〈f, F 〉| ≥ ε2k−1

.

Proof. We need the concept of a dual function from [23]; the ergodic theory analogue of
such functions have also been recently studied in [26], [1]. For any function f : ZN → C
and any d ≥ 0, we define the dual function of order d of f , denoted Dd(f), by the recursive
formula

D0(f) := 1 (18)

(i.e. D0(f) is just the constant function 1) and

Dd(f) := Eh∈ZN
Dd−1(fT hf)T hf (19)

for all d ≥ 1.
We now claim the identity

〈f,Dd(f)〉 = ‖f‖2
d

Ud

for all d ≥ 0. When d = 0 the claim follows from (18) and (9). Now suppose inductively
that d ≥ 1 and the claim has already been proven for d− 1. By (19) (and the definition
of the inner product) we have

〈f,Dd(f)〉 = Eh∈ZN
〈Dd−1(fT

hf), fT hf〉,

and the claim now follows from the inductive hypothesis and (10).
We thus set F := Dk−1(f). It is clear from induction that F is bounded; it remains

to show that F has UAP k−2 norm less than 1. Indeed, we make the more general claim
that

‖Dd(f)‖UAP d−1 ≤ 1 for all bounded f and all d ≥ 1.

When d = 1 this is clear since Dd(f) is just the constant function E(f) in this case. Now
suppose inductively that d ≥ 2 and the claim has already been proven for d−1. Applying
T n to both sides of (19) and making the change of variables h← n+ h we obtain

T nDd(f) := Eh∈ZN
cn,hgh, where cn,h := T nDd−1(fT h−nf) and gh := T hf.

The functions gh are clearly bounded. Since UAP d−2 is a shift-invariant Banach algebra,
we see from inductive hypothesis that the functions cn,h lie in UAP d−2 with norm at
most 1, and the claim follows (thinking of h as an element of ZN chosen uniformly at
random).
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6 Factors of almost periodic functions

To prove both the recurrence theorem (Theorem 3.3) or the structure theorem (Theorem
3.5) it is convenient not just to work with almost periodic functions, but also with certain
factors (or σ-algebras) generated by them (in analogy with the ergodic theory arguments).
Thus in this section we develop the theory of such factors.

We begin by recalling the definition of a factor (not necessarily associated with an
almost periodic function). Here we shall identify factors with the σ-algebras that they
generate. This latter concept is of course equivalent in the finitary setting of ZN to the
more familiar notion of a partition of ZN , but we will retain the language of probability
theory in order to maintain the analogy with the ergodic theory arguments, and in order
to benefit from such useful concepts as conditional expectation, orthogonality, measura-
bility, energy, and so forth. See [41] for a further discussion of the connection between
the Szemerédi regularity lemma, partitions, and conditional expectation with respect to
factor.

Definition 6.1 (Factors). A factor B in ZN is any collection of subsets of ZN which
contains the empty set ∅ and the full set ZN , and is closed under complementation, unions
and intersections. We define the atoms of a factor to be the minimal non-empty elements
of B (with respect to set inclusion); it is clear that the atoms in B form a partition of
ZN , and B consists precisely of arbitrary unions of its atoms (including the empty union
∅); thus there is a one-to-one correspondence between factors and partitions of ZN . A
function f : ZN → C is said to be measurable with respect to a factor B if all the level
sets of f lie in B, or equivalently if f is constant on each of the atoms of B.

We define L2(B) ⊆ L2(ZN ) to be the closed subspace of the Hilbert space L2(ZN )
consisting of B-measurable functions. We can then define the conditional expectation
operator f 7→ E(f |B) to be the orthogonal projection of L2(ZN ) to L2(B). An equivalent
definition of conditional expectation is

E(f |B)(x) := EB(x)f

for all x ∈ ZN , where B(x) is the unique atom in B which contains x. It is clear that
conditional expectation is a linear self-adjoint orthogonal projection on L2(ZN ), preserves
non-negativity, expectation, and constant functions. In particular it maps bounded func-
tions to bounded functions. If E(f |B) is zero we say that f is orthogonal to B.

If B, B′ are two factors, we use B∨B′ to denote the factor generated by B and B′ (i.e.
the factor whose atoms are the intersections of atoms in B with atoms in B′).

Observe that when B is the trivial factor {∅,ZN} then the conditional expectation
E(f |B) is just the constant function equal to the integral

∫

ZN
f . Every factor induces

a unique orthogonal decomposition f = E(f |B) + (f − E(f |B)) of a function f into
the component E(f |B) measurable with respect to B, and the component f − E(f |B)
orthogonal to B. More generally, if B is a subalgebra of B′ (thus B′ is finer than B, or B
is coarser than B′) then we can orthogonally decompose the finer expectation E(f |B′) =
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E(f |B) + (E(f |B′)−E(f |B)) into the coarser expectation, and a component measurable
in B′ but orthogonal to B.

We now show that each almost periodic function generates a well-behaved factor at
every scale ε.

Proposition 6.2 (UAP functions generate a compact factor). Let d ≥ 0, let
G ∈ UAP d be such that ‖G‖UAP d ≤M for some M > 0, and let ε > 0. Then there exists
a factor Bε(G) = Bε(G, d) consisting of at most OM,ε(1) atoms, such that we have the
following two properties:

• (G lies in its own factor) We have the approximation property

‖G−E(G|Bε(G) ∨ B)‖L∞ ≪ ε (20)

for any factor B.

• (Approximation by almost periodic functions) For any bounded non-negative func-
tion f which is measurable in Bε(G), and any δ > 0, there exists a bounded non-
negative function fUAP ∈ UAP

d such that

‖f − fUAP‖L2 ≤ δ (21)

and
‖fUAP‖UAP d ≪M,ε,δ 1. (22)

Remark 6.3. As the proof shows, the above Proposition in fact holds if UAP d is replaced
by any other Banach algebra.

Proof. We shall prove this by constructing Bε(G) using randomized level sets (or “general-
ized Bohr sets” of G), using some ideas from [23]. Let S := {z ∈ C : −1/2 ≤ ℜ(z),ℑ(z) <
1/2} be the standard unit square in the complex plane, and let Z[i] := {a+ bi : a, b ∈ Z}
denote the Gaussian integers. Let α ∈ S be a complex number chosen uniformly at ran-
dom from S. We can then define the factor Bε,α(G) to be the algebra whose atoms are the
sets {G−1(ε(S + ζ + α)) : ζ ∈ Z[i]}. It will suffice to show that with positive probability
this algebra Bε,α(G) is a candidate for Bε(G) (with the bounds in (20), (28) uniform in α).

The bound (20) is clear sinceG is constrained to lie in a square of diameter O(ε) on each
atom of Bε (and hence on each atom of any finer factor). Since ‖G‖L∞ ≤ ‖G‖UAP d ≤M ,
G takes values in a ball of radius O(M), and thus the number of atoms in Bε is indeed
OM,ε(1) as claimed. Now we turn to the approximation property. It will suffice to prove
that for each δ > 0 and every η > 0, the approximation property is true (with the bound
in (28) allowed to depend on η) with probability at least 1 − η, since one can then set
δ := 2−n and η := δ/2 for n = 1, 2, . . . (for instance) and conclude the claim is true for all
δ with positive probability.

Now fix δ, η. Since every bounded non-negative functions f is a convex combination of
indicator functions of the form 1Ω where Ω ∈ Bε,α(G), and the number of such functions
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is OM,ε(1) (since Bε,α(G) only OM,ε(1) atoms), it suffices (after shrinking η appropriately)
to prove the claim for a single indicator function f := 1Ω.

Fix Ω; we can then write

f = 1Ω = 1W (ε−1G− α)

where W ⊂ C is some union of OX(1) translates of the unit cube S.
Let 0 < σ ≪ 1 be a small number (it will eventually be much smaller than δ, η, or

ε) to be chosen later. Let ∂Wσ be the σ-neighbourhood of the boundary ∂W of W . By
Urysohn’s lemma combined with the Weierstrass approximation theorem (and the fact
that G = O(M)) we can write

f = P (ε−1G− α, ε−1G− α) +O(σ) +O(1∂Wσ
(ε−1G− α)) (23)

for some polynomial P = PW,M,ε,σ of two complex variables. Denote the first term on
the right-hand side of (23) by fUAP , then from UAP d hypothesis on G and the Banach
algebra nature of UAP d we have

‖fUAP‖UAP d = OM,P (1) = OM,ε,σ(1), (24)

which will give (22) once σ is selected properly at the end of the argument.
Now consider the third term on the right-hand side of (23). Observe that

‖1∂Wσ
(εG− α)‖2L2 = Px∈ZN

(ε−1G(x)− α ∈ ∂Wσ)

≤ Px∈ZN
(ε−1G(x)− α ∈ ∂Sσ + ζ for some ζ ∈ Z[i])

where ∂Sσ is the σ-neighbourhood of the boundary ∂S of the unit square. Observe that
as α varies over S, the event

ε−1G(x)− α ∈ ∂Sσ + ζ for some ζ ∈ Z[i]

has probability O(σ) regardless of what ε−1G(x) is. We thus have

E(‖1∂Wσ
(εG− α)‖2L2)≪ σ.

By Markov’s inequality, we thus see that the expression inside the expectation is Oη(σ)
with probability at least 1− η. Inserting this into (23) we obtain

‖f − fUAP‖L2 ≪δ σ + σ1/2

and the claim (21) follows by setting σ sufficiently small depending on δ (and then (22)
will hold by (24)).

Henceforth we shall fix an assignment of a factor Bε(G) = Bε(G, d) with the above
properties for each almost periodic function G ∈ UAP d and each ε > 0. Note that while
we did use a randomization argument here, it is possible to make such an assignment
constructive, for instance by well-ordering all the factors of ZN in some constructive way
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and then choosing the minimal algebra which obeys the above properties (with the exact
choice of bounds in (28), etc. held fixed). Thus we do not require the axiom of choice
at this step (or indeed at any step in this argument). For similar reasons we may ensure
that this procedure is shift-invariant, in the sense that

T nBε(G) = Bε(T
nG) for all n ∈ ZN , (25)

where T nB := {T nΩ : Ω ∈ B} is the factor B shifted by n. This shift invariance amounts
to making sure the same α is chosen for all the shifts T nG of a fixed function G, which
is easy enough to ensure since the constraints needed for α are independent of the choice
of n.

The above proposition pertained to a factor generated by a single almost periodic
function, but we can easily extend it to algebras generated by multiple functions as follows.

Definition 6.4 (Compact factors). Let d ≥ 0 and X ≥ 0. A factor B is said to be
compact of order d and complexity at most X if it has the form

B = Bε1(G1) ∨ . . . ∨ BεK
(GK) (26)

for some 0 ≤ K ≤ X, some ε1, . . . , εK ≥
1

X+1
, and some G1, . . . , GK ∈ UAP

d−1 with norm
‖Gj‖UAP d ≤ X for all 1 ≤ j ≤ K. We define the d-complexity (or simply complexity) of a
factor to be the minimal X for which one has the above representation, or ∞ if no such
representation exists. In particular, the trivial factor B = {∅,ZN} is compact of order d
with complexity 0.

Remark 6.5. The terminology is motivated here by ergodic theory, see e.g. [15]; a compact
factor of order d here corresponds in the ergodic setting, roughly speaking, to a tower of
height d of compact extensions of the trivial algebra. The complexity X is a rather
artificial quantity which we use as a proxy for keeping all the quantities used to define B
under control.

The key property we need concerning these factors is that the measurable functions of
factors which are compact of order d are well approximated by almost periodic functions
of order d:

Proposition 6.6 (UAP functions are dense in compact factors). Let d ≥ 0, X ≥ 0,
and let B be a factor which is compact of order d and complexity at most X. Let f be a
bounded non-negative function which is measurable with respect to B, and let δ > 0. Then
we can find a bounded non-negative fUAP ∈ UAP

d such that

‖f − fUAP‖L2 ≤ δ (27)

and
‖fUAP‖UAP d ≪d,δ,X 1. (28)
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Proof. We first verify the claim when f is the indicator function 1A of an atom A of
B. From Definition 6.4 we can expand B in the form (26), and hence we can write
A = A1 ∩ . . . ∩ AK where each Aj is an atom in Bεj

(Gj). From Proposition 6.2 and
the bounds on εj , Gj , K coming from Definition 6.4, we can find bounded non-negative
functions fUAP,j ∈ UAP

d for all 1 ≤ j ≤ K such that

‖1Aj
− fUAP,j‖L2 ≤ δ/K

and
‖fUAP,j‖UAP d = Od,δ/K,εj,X(1) = Od,δ,X(1).

Since 1Aj
and fUAP,j are both bounded and non-negative we have the elementary pointwise

inequality

|
K
∏

j=1

1Aj
−

K
∏

j=1

fUAP,j| ≤
K
∑

j=1

|1Aj
− fUAP,j|

and hence if we set fUAP :=
∏K

j=1 fUAP,j then (27) follows from the triangle inequality,

and (28) follows the Banach algebra nature of UAP d. Since fUAP is clearly bounded and
non-negative, the claim follows.

Now suppose f is an arbitrary bounded non-negative function measurable with respect
to B. Then we can write f =

∑

A cA1A where A ranges over the atoms of B and 0 ≤ cA ≤ 1
are constants. Let σ = σ(d, δ,X) > 0 be a small number to be chosen later, then by the
preceding discussion we can find bounded non-negative fUAP,A ∈ UAP d for all A such
that

‖1A − fUAP,A‖L2 ≤ σ

and
‖fUAP,A‖UAP d ≪d,X,σ 1.

If we then set f̃UAP :=
∑

A cAfUAP,A and observe from Proposition 6.2 that B contains at
most Od,X(1) atoms, we thus have

‖f − f̃UAP‖L2 ≪d,X σ

and
‖f̃UAP‖UAP d ≪d,X,σ 1.

We are however not done yet, because while fUAP is non-negative, it is not bounded by
1; instead we have a bound of the form 0 ≤ fUAP (x) ≪d,X 1. To fix this we need a
real-valued polynomial P (x) = Pd,δ,X(x) such that

|P (x)−max(x, 1)| ≤ δ/2 and 0 ≤ P (x) ≤ 1 for all x in the range of fUAP ;

such a polynomial exists by the Weierstrass approximation theorem. If we then set
fUAP := P (f̃UAP ), then fUAP is bounded and non-negative, and we have

‖fUAP −max(f̃UAP , 1)‖L2 ≤ δ/2
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and (since UAP d is a Banach algebra)

‖fUAP‖UAP d ≪d,δ,X,σ 1.

On the other hand, since f is bounded above by 1, we have

‖f −max(f̃UAP , 1)‖L2 ≤ ‖f − f̃UAP‖L2 ≪d,X σ,

and the claims then follow from the triangle inequality if σ is chosen sufficiently small
depending on d, δ, X.

7 The energy incrementation argument

The proof of the recurrence theorem (Theorem 3.3) and the structure theorem (Theorem
3.5) relies not only on factors of almost periodic functions, which we constructed in the
previous section, but also on the notion of the energy of a factor with respect to a collection
of functions, and of the recursive energy incrementation argument which we will need to
prove both the recurrence theorem and the structure theorem. This energy incrementation
argument, which was inspired by the proof of the Szemerédi regularity lemma (see e.g.
[40]), is perhaps one of the most important aspects of our proof of Szemerédi’s theorem,
but unfortunately is also the one which causes the Ackermann-type (or worse) blowup of
bounds. It is the counterpart of the more well-known density incrementation argument
which appears in several proofs of Szemerédi’s theorem (starting with Roth’s original
argument [33], but see also [19], [20], [25], [7], [38], [34], [39]). In that strategy one passes
from the original set {1, . . . , N} to a decreasing sequence of similarly structured subsets
(e.g. arithmetic progressions or Bohr sets) while forcing the density δ of the set A to
increase as one progresses along the sequence; eventually one finds enough “randomness”
to obtain an arithmetic progression. The hope is to show this algorithm terminates
successfully by using the trivial fact that the density is always bounded above by 1. To
do this, it is important that the density increment depend only on δ, and not on other
parameters such as N or the complexity of the structured subset. This rather stringent
requirement on the density increment is one cause of technical complexity and length in
several of the arguments mentioned above.

In our situation, the role of “structured subset” will be played by a factor generated
by almost periodic functions, and the role of density played by the energy of that factor.
This energy will automatically increase as the factor gets finer, and is also automatically
bounded. Once again, however, the energy increment may be very small, depending for
instance on the complexity of the factor, and this algorithm may once again fail to ter-
minate. This problem also appears in the ergodic theory setting, in the context of an
infinite tower of factor extensions; to resolve this one must show that the supremum of
any tower of extensions with the recurrence property also has the recurrence property.
This appears difficult since the factors in this tower may become arbitrarily complex, and
the lower bound obtained by the recurrence property may go to zero as one approaches
the supremum of the tower. Nevertheless, one can conclude the argument, basically by
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observing that any measurable function in the supremum of the tower can be approxi-
mated in L2 norm (say) by a measurable function in some finite component of this tower,
and a simple argument then allows one to deduce recurrence for the former function from
recurrence from the latter function regardless of how small the recurrence bound is for
the latter; see e.g. [15] for an example of this. This may serve to explain why we have
the error tolerance (4) in the recurrence theorem.

We begin by defining the energy of a factor (relative to some fixed collection of func-
tions); this can be thought of as somewhat analogous to the more standard notion of the
entropy of an algebra in both information theory and ergodic theory, but the energy will
be adapted to a specific fixed collection of functions f1, . . . , fm, whereas the entropy is in
some sense concerned with all possible functions at once.

Definition 7.1 (Energy). Given a m-tuple f = (f1, . . . , fm) of functions fj : ZN → C
of functions and a factor B, we define the energy Ef(B) to be the quantity

Ef(B) :=

m
∑

j=1

‖E(fj|B)‖2L2. (29)

In practice m will be very small (either 1 or 3, in fact). Observe that we have the
trivial bounds

0 ≤ Ef(B) ≤
m
∑

j=1

‖fj‖
2
L2 . (30)

Also from Pythagoras’s theorem and the orthogonality considerations discussed above we
see that if B′ is finer than B, then

m
∑

j=1

‖E(fj|B
′)−E(fj |B)‖2L2 = Ef(B

′)− Ef(B). (31)

In particular, the energy of B′ is larger than or equal to B.
We now describe, in abstract terms, the idea of the energy increment strategy. Suppose

one is trying to prove a statement P (M) involving some large parameter M > 0 which
one hopes to keep under control; for instance, one may be trying to bound some fixed
expression E from above by M or from below by 1/M . To begin with, this statement
does not depend on any factors. But now we introduce a factor B, which we initialize to
be the trivial algebra B = {∅,ZN}, and try to prove P (M) using an argument which is
in some sense “relative to B” (in particular, the bound M may depend on some measure
of how “complex” B is). Either this argument works, or it encounters some obstruction.
The idea is then to show that the obstruction forces the existence of a new factor B′ which
is finer than B (and typically more complex than B) and has slightly more energy. One
then replaces B by B′ and then repeats the above strategy, hoping to use the trivial bound
(30) to show that the argument must eventually work relative to some factor.

The difficulty with this strategy is that the energy increment obtained by this method
typically depends on the complexity of the factor B, which tends to grow rather quickly.
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As such it is possible for this method to get bogged down at some intermediate energy
in the range (30) and not terminate in any controlled amount of time. To get around
this, it turns out that instead of just using a pair B ⊂ B′ of factors, it is better to use
a triplet B ⊂ B′ ⊂ B′′ of factors, with the energy gap between B and B′ allowed to be
moderately large (bounded by a quantity that does not depend on the complexity of any
of these algebras). The idea is then to try to prove P (M) relative to the pair (B,B′), but
using bounds which depend only on the complexity of B and not on B′. If the argument
encounters an obstruction, then one can replace B′ by a more complex B′′, with an energy
increment again depending only on the complexity of B; thus this energy increment will
not go to zero as B′ becomes more complex. There is now a second obstruction when
the energy gap B′ and B becomes too large, but then one replaces B by B′; this can only
occur a finite number of times because we do not allow the bounds for this energy gap to
depend on the complexity and thus the energy increment here is bounded from below by
a fixed constant.

To make this argument more precise we encapsulate it in the following abstract lemma
(which has a certain resemblance to Zorn’s lemma, and can be in fact thought of as
a “quantitative” version of that lemma; it also resembles the proof of the Szemerédi
regularity lemma). We are indebted to Ben Green for suggesting the use of this type
of energy incrementation argument, which is for instance used in our joint paper [23] to
establish arbitrarily long arithmetic progressions in the primes.

Lemma 7.2 (Abstract energy incrementation argument). Suppose there is a prop-
erty P (M) which can depend on some parameter M > 0. Let d ≥ 0, and let f =
(f1, . . . , fm) be a collection of m bounded functions.

Suppose also that we have an τ > 0 for which the following dichotomy holds: for any
X,X ′ > 0, and given any factor B which is compact of order d with complexity at most
X, and any factor B′ which is finer than B and also compact of order d with complexity
at most X ′, then if the energy gap condition

Ef(B
′)− Ef(B) ≤ τ 2, (32)

holds, then either P (M) is true for some M = Od,τ,X,X′(1), or we can find a factor B′′

finer than B′ which is compact of order d with complexity at most Od,τ,X,X′(1) such that
we have the energy increment property

Ef(B
′′)− Ef(B

′)≫d,τ,X 1 (33)

(note that the implied constant does not depend on X ′).
Then P (M) is true for some M = Om,d,τ (1).

Remark 7.3. The point of this lemma is that it reduces the task of proving some property
P (M) to the easier task of proving a dichotomy ; either P can be proven, or we can
increment the energy of a certain factor while keeping the complexity under control. It is
crucial that τ does not depend on the complexities X,X ′, and that the energy increment in
(33) depends only on the lower complexity X and not the higher complexity X ′, otherwise
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this lemma fails. Note that no quantitative knowledge on the growth of this complexity
on of the energy increment bound is necessary, although of course the explicit form of
the final bound Om,d,τ (1) on M will depend quite heavily on those growth rates. This
argument proceeds by a double iteration and thus typically produces bounds which are
of Ackermann type or worse, but in principle they are computable.

Proof. The proof proceeds by running the following double iteration algorithm, construct-
ing a pair of factors B and B′, both compact of order d and with B′ finer than B, as follows.

Step 1 Initialize B to the trivial algebra B := {∅,ZN}.

Step 2 Initialize B′ to equal B (thus trivially verifying the energy gap condition (32)).
Let X denote the complexity of B.

Step 3 Let X ′ denote the complexity of B′. If P (M) is true for some M = Od,τ,X,X′(1)
then we halt the algorithm. Otherwise, we must by hypothesis be able to locate a
factor B′′ which is compact of order d with complexity at most Od,τ,X,X′(1) with the
energy increment property (33), and we continue on to Step 4.

Step 4 If Ef(B
′′) − Ef(B) ≤ τ 2, then we replace B′ by B′′ (thus preserving (32)) and

return to Step 3. Otherwise, we replace B by B′′ and return to Step 2.

Observe that for each fixed B of complexity X, the algorithm can only iterate for at
most Od,τ,X(1) times before changing B. This is because every time B′ is changed, the
energy Ef(B

′) increases by at least ≫d,τ,X 1, but if the energy ever exceeds Ef(B) + τ 2

then we must change B. Note that it is crucial here that the energy increment in (33)
not depend on the complexity X ′ of B′, which may be growing quite rapidly during this
iteration process. In particular, if B finally does change, its complexity will increase from
X to at most Od,τ,X(1). Next, observe that B can only be changed at most Om,τ (1) times,
because each time we change B, the energy Ef(B) increases by at least τ 2, but the energy
is always non-negative and is bounded by m. Combining these two observations we see
that the entire algorithm must halt in Om,d,τ (1) steps and all factors constructed by the
algorithm have complexity at most Om,d,τ (1). The claim follows.

8 Proof of the structure theorem

We now prove the structure theorem, Theorem 3.5. Naively, the idea would be to take
B to be the factor formed by all the UAP d−1 functions, and then take fU = f − E(f |B)
and fU⊥ = E(f |B) to conclude the result (the uniformity of fU arising from Proposition
5.12, and Proposition 6.6 being used to locate fUAP ); this would be the exact analogue
of how one would proceed in the genuinely ergodic setting when the underlying space is
infinite and one does not care about quantitative control on the complexity of the factor.
Unfortunately this approach does not work because there are far too many UAP d−1

functions available, and the complexity of B would explode with N (indeed, it is likely
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that B would simply be the total factor consisting of arbitrary subsets of ZN ). Thus, in
the quantitative setting, one must be substantially more “choosy” about which UAP d−1

functions to admit into the algebra B - they should only be the ones which have a good
reason for being there, such as having a non-trivial correlation with the function f . It turns
out that the best framework for doing this is given by the abstract energy incrementation
argument given in the previous section, exploiting the fact that each function that one
adds to the σ algebra increases the energy of that algebra, especially if there is a correlation
with f .

In view of the energy incrementation argument, it suffices to prove the following di-
chotomy:

Lemma 8.1 (Structure theorem dichotomy). Let k ≥ 3, and let f be a non-negative
bounded function obeying (2) for some δ > 0. Let F : R+ → R+ be a function. Let B ⊂ B′

be factors which are compact of order k − 2 with complexity at most X, X ′ respectively,
and and obey the energy gap condition (32) with τ := δ2

5000k
. Then at least one of the

following must be true:

• (Success) We can find a positive number M = Ok,δ,X(1) a bounded function fU ,
and non-negative bounded functions fU⊥, fUAP such that we have the splitting f =
fU + fU⊥ and the estimates (4), (5), (6) with d := k − 2, as well as the Gowers
uniformity estimate (8).

• (Energy increment) We can find a factor B′′ finer than B′ which is compact of order
k − 2 and complexity Ok,δ,X,X′(1) such that

Ef(B
′′)− Ef(B

′)≫k,δ,X,F 1. (34)

Indeed, Theorem 3.5 follows immediately by applying Lemma 8.1 to Lemma 7.2 (using
m = 1 and using the bounded function f , and τ := δ2

5000k
).

Proof of Lemma 8.1. Fix B, B′. Since E(f |B) is non-negative and bounded, and B is
compact of order k − 2 with complexity O(X), We may apply Proposition 6.6 to find a
non-negative bounded function fUAP such that

‖E(f |B)− fUAP‖L2 ≤
δ2

5000k
(35)

and
‖fUAP‖UAP k−2 < M

for some M = Ok,δ,X(1), which we now fix. From (35) and Cauchy-Schwarz we observe
that

|

∫

ZN

f −

∫

ZN

fUAP | = |

∫

ZN

E(f |B)− fUAP | ≤
δ2

5000k

and in particular (by (2))
∫

ZN

fUAP ≥ δ/2.
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Now split f = fU + fU⊥, where fU⊥ := E(f |B′) and fU := f − E(f |B′). We have already
proven the estimates (5), (6), while (4) follows from (32) (recall τ = δ2

5000k
), (31), (35),

and the triangle inequality. If the estimate (8) held then we would now be done (in the
“Success” half of the dichotomy), so suppose instead that

‖fU‖Uk−1 ≥ 1/F (M).

By Lemma 5.12, we can thus find a function G ∈ UAP k−2 with ‖G‖UAP k−2 ≤ 1 such that

|〈fU , G〉| ≫k,δ,M,F 1. (36)

Now write B′′ := B′ ∨ Bε(G), where ε = ε(k, δ,M) > 0 is to be chosen later. We thus
split fU = (f − E(f |B′′)) + (E(f |B′′)− E(f |B′)) and G = (G − E(G|B′′))− (E(G|B′′) −
E(G|B′)) + E(G|B′). The first terms in both expansions are orthogonal to B′′ (and thus
to B′), while the second terms are measurable in B′′ and orthogonal to B′, while the third
term of G is measurable in B′. Thus

〈fU , G〉 = 〈f − E(f |B′′), G− E(G|B′′)〉+ 〈E(f |B′′)− E(f |B′),E(G|B′′)− E(G|B′)〉.

From (20) and the boundedness of f we have

|〈f −E(f |B′′), G−E(G|B′′)〉| ≪ ε.

Thus if we choose ε sufficiently small depending on k, δ, M , we see from (36) that

|〈E(f |B′′)− E(f |B′),E(G|B′′)− E(G|B′)〉| ≫k,δ,M,F 1.

Since G is bounded, we thus see from Cauchy-Schwarz that

‖E(f |B′′)−E(f |B′)‖L2 ≫k,δ,M,F 1.

But then (34) follows from (31). Finally, the complexity bound on B′′ follows from Def-
inition 6.4, the complexity bound on B′, and the choice of ε and M . We are thus in the
“Energy increment” half of the dichotomy, and the lemma follows.

The proof of the structure theorem is now complete.

Remark 8.2. It may be possible to prove this structure theorem more directly, without
explicitly invoking factors, for instance by setting up a extremization problem such as that
of minimizing the Uk−1 norm of fU subject to the constraints (4), (5), (6), the splitting
f = fU +fU⊥, and the bounded non-negativity of fUAP and fU⊥ . We were unable however
to achieve this in a clean way, especially when it came to maintaining the boundedness
and non-negativity conditions, whereas the conditional expectation method achieves this
more painlessly.

the electronic journal of combinatorics 13 (2006), #R99 33



9 Compactness on atoms, and an application of van

der Waerden’s theorem

To prove Szemerédi’s theorem, the only thing that now remains is to prove the recurrence
theorem for almost periodic functions, Theorem 3.3. In this section we present a key
Proposition, which illustrates the applicability of van der Waerden’s theorem (Theorem
1.1) to the problem of obtaining recurrence for a function f whose shifts T nf enjoy a
representation such as (15). The key idea is that the functions on the right-hand side of
(15) live in a sufficiently “compact” space of functions that they can be “finitely coloured”,
at which point van der Waerden’s theorem can be used to establish recurrence12. As we
show at the end of this section, we can quickly use this Proposition to deduce the d = 1
case (as well as the rather trivial d = 0 case) of Theorem 3.3 as a corollary.

Proposition 9.1 (Recurrence for conditionally UAP functions). Let B be a factor,
let M > 0, let H be a finite non-empty set, and let for each n ∈ ZN and h ∈ H let cn,h

be a bounded B-measurable function and let gh be a bounded function. Let h be a random
variable taking values in H, and define the functions Fn for all n ∈ ZN by the formula

Fn := ME(cn,hgh) (37)

(compare with (15)). Let fU⊥ be a bounded non-negative function, and for any δ > 0,
n ∈ ZN , and k, k∗ ∈ Z+ let En(k, δ, k∗,B) ∈ B be the set

En(k, δ, k∗,B) := {x ∈ ZN : E(T nfU⊥ |B)(x) ≥
δ

2
and

E(|T nfU⊥ − Fn||B)(x) ≤
δ

8k
}.

(38)

Then for every δ > 0 and k ∈ Z+ there exists k∗ = k∗(k, δ,M) such that

E1≤r≤N0

∫

ZN

k−1
∏

j=0

T µjrfU⊥

≫k,δ,M E1≤λ≤N0/k∗
PZN

k∗
⋂

m=1

Eµλm(k, δ, k∗,B)

(39)

for all µ ∈ ZN and N0 ≥ k∗.

Remark 9.2. The point is that this theorem reduces the task of establishing lower bounds
for recurrence expressions involving fU⊥, to that of establishing lower bounds for the

12This argument was inspired, not by the original ergodic theory arguments of Furstenberg, but of the
later colouring-based arguments, for instance in [3]. It may be possible to adapt the older arguments in,
say, [15] instead here, which have the advantage of using the same length k for the progression throughout
the argument, instead of replacing k by a considerably larger k∗ as is done here. This might ultimately
lead to somewhat better final bounds, although it still seems that one would still get Ackermann-type
dependence or worse on the constants.
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recurrence behaviour of B-measurable sets Eµλm(k, δ, k∗,B). This is advantageous if B is
“simpler” than the original function fU⊥; in practice, fU⊥ will be approximately an almost
periodic function of order d, and B will be a compact σ algebra of order d− 1, and thus
functions measurable in B can be approximated by almost periodic functions of one lower
order than d. This is the key to the proof of Theorem 3.3 we give in the next section,
which proceeds by induction on d. On the other hand, the bounds on k∗ given by our
proof involve van der Waerden numbers, which will cause Ackermann type growth rates
or worse in our final bound.

Proof of Proposition 9.1. To prove (39) it suffices to prove the “localized” version

E1≤a,s≤k∗/k

∫

ZN

k−1
∏

j=0

T µλ(a+js)fU⊥ ≫δ,k,k∗
PZN

k∗
⋂

m=1

Eµλm(k, δ, k∗,B) (40)

for each 1 ≤ λ ≤ N0/k∗. Indeed, if (40) held then upon averaging in λ we obtain

E1≤λ≤N0/k∗;1≤a,s≤k∗/k

∫

ZN

k−1
∏

j=0

T µλ(a+js)fU⊥

≫δ,k,k∗
E1≤λ≤N0/k∗

PZN

k∗
⋂

m=1

Eµλm(k, δ, k∗,B).

The T µλa can be factored out of the product and makes no difference to the expectation,
thus it can be discarded. The a averaging then becomes redundant, and we obtain

E1≤λ≤N0/k∗;1≤s≤k∗/k

∫

ZN

k−1
∏

j=0

T µλjsfU⊥

≫δ,k,k∗
E1≤λ≤N0/k∗

PZN

k∗
⋂

m=1

Eµλm(k, δ, k∗,B).

The claim (39) then follows by observing that every 1 ≤ r ≤ N0 has at most Ok∗,k(1)
representations of the form r = λ(a+ js) with 1 ≤ λ ≤ N0/k∗ and 1 ≤ a, s ≤ k∗/k. (The
dependence of k∗ is ultimately irrelevant since k∗ itself will ultimately depend on δ, k,M).

It remains to prove (40). Fix µ, λ. By absorbing µ into λ we may take µ = 1 (we will
not use the upper or lower bound on λ). Since

⋂k∗

m=1 Eλm(k, δ, k∗,B) is measurable in B,
it is the union of atoms A ∈ B. It will suffice to prove the pointwise estimate

E1≤a,s≤k∗/kEA

k−1
∏

j=0

T λ(a+js)fU⊥ ≫δ,k,k∗
1

for each such atom, as the claim then follows by multiplying this formula by PZN
A and

summing over all atoms in Eλ(k, δ, k∗,B).
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Now fix the atom A. Since the number of pairs (a, s) is Ok,k∗
(1), it suffices to locate

a single pair (a, s) with 1 ≤ a, s ≤ k∗/k such that

EA

k−1
∏

j=0

T λ(a+js)fU⊥ ≫δ,k 1. (41)

We now pass from the shifts T λ(a+js)fU⊥ to the functions Fλ(a+js). We claim that to
prove (41) it would suffice to prove that

‖Fλ(a+js) − Fλa‖L2(A) ≤
δ

8k
for all 0 ≤ j ≤ k − 1, (42)

where L2(A) is the Hilbert space given by the norm ‖F‖L2(A) := (EA|F |
2)1/2. To see this

claim, observe from Cauchy-Schwarz that (42) implies

EA|Fλ(a+js) − Fλa| ≤
δ

8k
for all 0 ≤ j ≤ k − 1.

But by (38) and the choice of A, we also have

EA|Fλ(a+js) − T
λ(a+js)fU⊥| ≤

δ

8k
for all 0 ≤ j ≤ k − 1.

From the triangle inequality we thus have

EA|T
λ(a+js)f − T λafU⊥ | ≤

3δ

8k
for all 0 ≤ j ≤ k − 1.

This in particular implies

EA1|T λ(a+js)f
U⊥−T λaf

U⊥ |> 4
5
T λafT

λaf ≤
15δ

32k
for all 0 ≤ j ≤ k − 1.

On the other hand, by (38) again we have

EAT
λafU⊥ ≥ δ/2.

Thus

EA1
|T λ(a+js)f

U⊥−T λaf
U⊥ |≤ 4

5
T λaf for all 0≤j≤k−1

T λafU⊥ ≥
δ

32k
.

By Hölder’s inequality and the non-negativity of fU⊥ this implies that

EA1
|T λ(a+js)f

U⊥−T λaf
U⊥ |≤ 4

5
T λaf

U⊥ for all 0≤j≤k−1
(T λafU⊥)k ≥ (

δ

32k
)k.

The claim (41) then follows from the elementary pointwise inequality

k−1
∏

j=0

T λ(a+js)fU⊥ ≥
1

5k
1
|T λ(a+js)f

U⊥−T λaf
U⊥ |≤ 4

5
T λaf

U⊥ for all 0≤j≤k−1
(T λafU⊥)k.
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It remains to find a pair (a, s) obeying (42). Using (37) it suffices to find an (a, s)
such that

‖E(cλ(a+js),hgh)−E(cλa,hgh)‖L2(A) ≤
δ

8Mk
for all 0 ≤ j ≤ k − 1. (43)

Note that as the cn,h are measurable with respect to B, they are constant on A, and so
without loss of generality we can treat them just as bounded complex numbers (this is the
whole point of working on individual atoms in the first place). The gh are not constant,
but we can think of them as bounded functions on A.

To proceed further we need the following compactness property of averages of the form
E(chgh) in L2(A).

Lemma 9.3 (Total boundedness property). There exists integers 1 ≤ m1, . . . , mL ≤
k∗ for some L≪k,M,δ 1 such that

inf
1≤l≤L

‖E(cλm,hgh)−E(cλml,hgh)‖L2(A) ≤
δ

16Mk
for all 1 ≤ m ≤ k∗.

Remark 9.4. The key point here is that the bound on L does not depend on the size of H ,
A, or N . This is a quantitative analogue of the basic result (used in the ergodic theory
proofs, see e.g. [15]) that a Volterra integral operator from one finite measure space to
another is necessarily a compact operator in L2, and thus the range of any bounded set
can be covered by a finite number of δ-balls in L2.

Proof. Let us write fm := E(cm,hgh)|A. We construct an orthonormal system of functions
v1, v2, . . . , vJ in L2(A) by performing the following algorithm, which can be viewed as
a rudimentary version of the energy increment algorithm discussed in previous sections
(with the role of factors replaced by the simpler notion of finite-dimensional subspaces of
a Hilbert space).

Step 0 Initialize J = 0.

Step 1 Let V ⊂ L2(A) be the subspace spanned by the v1, . . . , vJ (so initially this will
be the trivial space {0}).

Step 2 If there exists a 1 ≤ m ≤ k∗ such that distL2(A)(fm, V ) ≥ δ/64Mk, then by Hilbert
space geometry we can find a unit vector vJ+1 orthogonal to V (and thus to all the
v1, . . . , vJ) such that |〈fm, vJ+1〉L2(A)| ≥ δ/64Mk. In such a case, we choose13 such
a vJ+1, increment J , and return to Step 1. Otherwise, we terminate the algorithm.

We claim that this algorithm terminates in Ok,M,δ(1) steps. Indeed, for each vj gen-
erated by this algorithm, we see from construction that there exists an m = m(j) ∈ ZN

such that
|E(cλm,h〈gh, vj〉L2(A))| = |〈fm, vj〉L2(A)| ≥ δ/64Mk.

13Note that since m ranges over a finite set, the axiom of choice is not needed here, since ZN is
clearly well-ordered. Because we are always in a finite (or at least finite dimensional) setting, similar
considerations apply to other parts of the argument in which an arbitrary choice has to be made.
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Here we have crucially taken advantage of the fact that cλm,h is constant on A. Since
cλm,h is bounded, we thus see from the Cauchy-Schwarz inequality that

E(|〈gh, vj〉L2(A)|
2) ≥ (

δ

64Mk
)2.

Summing this in j, we obtain

E(

J
∑

j=1

|〈gh, vj〉L2(A)|
2) ≥ (

δ

64Mk
)2J.

But from the boundedness of the gh, the orthonormality of the vj , and Bessel’s inequality,
the left-hand side is at most 1. Thus J ≤ ( 64Mk

δ
)2 = Ok,M,δ(1) as claimed.

Now observe from the construction of the algorithm that all the functions fm will
lie within δ/64Mk (in the L2(A) metric) of the J-dimensional space V . In particu-
lar, we see from the triangle inequality, the crude bound ‖fm‖L2(A) ≤ 1 arising from
our bounds on cn,h and gh, and finite-dimensional geometry that there can be at most
Ok,δ,J(1) = Ok,M,δ(1) functions fm1 , . . . , fmL

which are all separated from each other by
at least δ/16Mk in the L2(A) metric. The claim now follows by the usual greedy algo-
rithm.

Using this lemma, we can introduce a colouring function c : {1, . . . , k∗} → {1, . . . , L}
by

c(m) := inf{1 ≤ l ≤ L : ‖E(cλm,hgh)−E(cλml,hgh)‖L2(A) ≤ δ/16Mk}.

By van der Waerden’s theorem, if k∗ = k∗(k, L) = k∗(k, δ,M) is chosen sufficiently large,
then we can find 1 ≤ a, s ≤ k∗/k such that the progression a, a + s, . . . , a + (k − 1)s is
monochromatic. The claim (43) now follows from the triangle inequality. This concludes
the proof of Proposition 9.1.

As a quick corollary of this Proposition we can now prove the d = 1 case, at least, of
Theorem 3.3.

Proof of Theorem 3.3 when d = 1. Let fU⊥, fUAP , k, M , δ, ǫ be as in the Theorem. From
(6) and Definition 5.2 we can find a finite non-empty set H , a collection of bounded
constants (cn,h)n∈ZN ;h∈H, and bounded functions (gh)h∈H , and a random variable h taking
values in H such that we have the representation (37), where Fn := T nfUAP . We thus
apply Proposition 9.1 with N0 := N1 and B set equal to the trivial factor B = {∅,ZN},
since the cn,h are all almost periodic of order 0 and hence constant. But by (38), we see
that Eλm(k, δ, k∗,B) is either the empty set or all of ZN , with the latter occuring if

∫

ZN

T λmfU⊥ ≥ δ/2 and

∫

ZN

|T λmf − Fλm| ≤
δ

8k
.

But the latter condition is automatic from (5), while the latter follows from (4), Cauchy-
Schwarz, and the choice of ǫ; note that the shift T λm has no effect on the integral

∫

ZN
.

Thus Eλm(k, δ, k∗,B) = ZN for all λ, and the claim (7) follows from (39).
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Remark 9.5. As we shall see, the d > 1 case is somewhat more complicated, the problem
being that one has to somehow “quotient out” the effect of a very large number of almost
periodic functions of order d− 1 before the property of being almost periodic of order d
emerges as a usable property. This appears to unfortunately be rather necessary, even
when d = 2, at least with the arguments currently available; the author would consider this
issue one of the least well understood components of the theory. Consider for instance
a function fAP of the form fAP (x) = ψ(x2/N), where ψ : R/Z → [0, 1] is a smooth
bounded non-negative function which is periodic with period 1, which equals 1 on the
interval [−δ, δ], and vanishes outside [−2δ, 2δ]. This function can be shown to be almost
periodic of order 2 with an UAP 2 norm of Oδ(1). Thus Theorem 3.3 should allow us
to locate a large number of arithmetic progressions of length k in the support of ψ, for
reasonably large values of k (e.g. k = 5). To actually establish even this special case,
however, seems rather difficult, the simplest proof probably being the ergodic theory
proof that lifts this problem up to establishing recurrence for the skew shift on the two-
dimensional torus. Similarly for more complicated examples such as (17) (now the ergodic
system is a two-step nilsystem, formed by quotienting the unipotent upper triangular 3×3
matrices by the subgroup of matrices with integer coefficients). In [20] this precise problem
was encountered, and solved by using very directly the number-theoretic structure of
x2/N (and similarly polynomial objects), in particular a quantitative version of Weyl’s
theorem on the uniform distribution of polynomials. The problem of having to deal with
generalized polynomials instead of polynomials was avoided by working on relatively short
arithmetic progressions, in which one could approximate the former by the latter.

10 Recurrence for almost periodic functions

We now conclude the proof of Theorem 3.3, and thus of Theorem 1.2. We have already
handled the d = 1 case. The case d = 0 can either be deduced from the d = 1 case, or can
be worked out directly by an easy argument which we leave to the reader (the point being
that fUAP is now constant and fU⊥ and its shifts will have to be larger than, say, δ/2 with
very high probability, say at least 1− 1/2k). Thus it remains to handle the d > 1 cases.
We may assume as an inductive hypothesis that d is fixed and the claim has already been
proven for d− 1.

When µ = 0 the claim follows easily from (5) and the boundedness of fU⊥, so we may
take µ 6= 0. But then we may rescale by µ and set µ = 1.

We would like to apply Proposition 9.1 as we did in the d = 1 case. The difficulty
now is that the functions cn,h generated by Definition 5.2 are no longer constant, but are
themselves almost periodic of one lower order, d − 1. The strategy is then to locate a
factor B generated by such functions (and hence compact of order d − 1) with respect
to which the cn,h are close to being measurable (i.e. close to constant on most atoms).
Proposition 9.1 then allows us to reduce the problem of establishing recurrence for fU⊥ to
one of establishing a property very similar to recurrence for certain subsets of B, which
we can handle by combining the induction hypothesis with Proposition 6.6. As with the
structure theorem, one would naively want to take B to be the factor generated by all

the electronic journal of combinatorics 13 (2006), #R99 39



the cn,h (and this is indeed what one does in the genuinely ergodic setting), but again
we lose control of the complexity this way. Instead we must be much more selective with
which cn,h we admit. Again, the easiest framework to implement this idea is given by
the abstract energy increment lemma, Lemma 7.2. The point is that it may happen that
the cn,h are refusing to be close to measurable on B, or that other problems arise such as
B failing to be sufficiently “shift-invariant” (this issue arose in the d = 1 case when one
needed to eliminate the T λm shift, although in that case the resolution to the problem
was trivial). In that case, however, the simplest solution is to replace B by a larger factor
B′, to which one adds in all the obstructions (or at least a representative sample thereof)
which one encountered in closing the argument, thus increasing the energy of B.

We turn to the details. It will suffice to establish

Proposition 10.1 (Recurrence theorem dichotomy). Let d ≥ 2, and suppose that
Theorem 3.3 has already been proven for d− 1. Let k ≥ 1 be integers, and let M, δ > 0.
All quantities in what follows can depend on d, δ, k, M (including the implicit bounds
in O() notation), and we omit future dependence on these parameters. let fU⊥, fUAP be
non-negative bounded functions obeying the bounds (4), (5), (6). Write f := (fU⊥, |fU⊥ −
fUAP |, |fU⊥ − fUAP |

2). Let B ⊂ B′ be factors which are compact of order k − 2 with
complexity at most X, X ′ respectively, and such that (32) holds for some small τ > 0
independent of X, X ′ to be chosen later. Then at least one of the following must be true:

• (Success) We have

E0≤r≤N1

∫

ZN

k−1
∏

j=0

T jrfU⊥ ≫τ,X 1 (44)

for all N1 ≥ 0.

• (Energy increment) We can find a factor B′′ finer than B′ which is compact of order
d and complexity Oτ,X,X′(1) such that

Ef(B
′′)− Ef(B

′)≫τ,X 1. (45)

Note that the implied constant in (45) is independent of X ′.

Indeed, Theorem 3.3 will follow from this Lemma and Lemma 7.2 (setting m = 3).
It remains to prove Proposition 10.1. We will aim towards applying Proposition 9.1,

by locating a large subset of B′ where fU⊥ (and several of its shifts) are large on average,
fUAP is close to fU⊥ on average (as are various shifts of these functions), and the cn,h

are close to constant, and then using the induction hypothesis to obtain lower bounds on
the sets Eλµ obtained this way. There may be some obstructions to implementing this
strategy, but when they arise we will convert those obstructions to an energy increment,
establishing (45) instead of (44).

Proof of Lemma 10.1. By (6) and Definition 5.2 we can find a finite non-empty set H ,
a collection of bounded functions (cn,h)n∈ZN ;h∈H in UAP d−1 with ‖cn,h‖UAP d−1 ≤ 1, and
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bounded functions (gh)h∈H , and a random variable h taking values in H such that we
have the representation

T nfUAP = ME(cn,hgh) (46)

for all n ∈ ZN . We cannot yet apply Proposition 9.1 since the cn,h are not necessarily
measurable with respect to B′; indeed there are too many of the cn,h to safely add all of
them to B′, which needs to have bounded complexity. Instead, we shall work using much
smaller batches of cn,h and then average at the end.

We will need a large integer N0 = N0(τ,X) > 1 to be chosen later14. If N1 ≤ N0

then the claim (44) follows easily from (5) just by considering the r = 0 component of
the left-hand side, so we will assume N1 > N0. We then observe that

E0≤r≤N1

∫

ZN

k−1
∏

j=0

T jrfU⊥ ≫N0 E1≤µ≤N1/N0E1≤r≤N0

∫

ZN

k−1
∏

j=0

T µjrfU⊥ (47)

because each 0 ≤ r ≤ N0 has at most ON0(1) representations of the form r = µr′ where
1 ≤ r′ ≤ N0 and 1 ≤ µ ≤ N1/N0.

Now fix a single 1 ≤ µ ≤ N1/N0, and consider the expression

E1≤r≤N0

∫

ZN

k−1
∏

j=0

T µjrfU⊥. (48)

Observe that the exponents µjr now range in the relatively small set µ · {0, . . . , (k −
1)N0}. This has localized the “n” index in (46) to a reasonably bounded set (one which
is independent of N), but the “h” parameter is still ranging over a potentially unbounded
set H . To resolve this we need the following variant of Lemma 9.3.

Lemma 10.2 (Finite-rank approximation). Let µ ∈ ZN . We can find h1, . . . , hN100
0
∈

H (not necessarily distinct, and depending on µ) such that

‖E(cµm,hgh)− E1≤j≤D(cµm,hj
ghj

)‖L2 ≪ N−40
0 (49)

for all 0 ≤ m ≤ (k − 1)N0.

Proof. We use the second moment method. Set D := N 100
0 , Gh := cµm,hgh, F := E(Gh),

and let h1, . . . , hD be D independent samples of the random variable h. We will show
that

P(‖F −E1≤j≤DGhj
‖L2 >

(kN0)
1/2

N50
0

) ≤
1

kN0
,

14There are a number of parameters involved here, which are at several different scales. In order to
have some idea of what parameters should be large and what parameters should be small, we suggest
using the hierarchy

d, k,
1

δ
, M, k∗ ≪

1

τ
≪ X ≪ N0 ≪ X ′ ≪ N1, N, |H |

which is a very typical arrangement of the parameters. The key points are that the energy gap τ does not
depend on the large parameters X, N0, X

′, N1, N, |H |, that the energy increment in (34) does not depend
on the very large parameters X ′, N1, N, |H |, and the remaining bounds do not depend on the extremely
large parameters N1, N, |H |.
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which implies the claim with probability at least 1− (k−1)N0+1
kN0

> 0.
By Chebyshev’s inequality, it will suffice to show that

E(‖F −E1≤j≤DGhj
‖2L2) ≤ 1/D.

The left-hand side can be expanded as

E(

∫

ZN

|F (x)|2 − 2ℜE1≤j≤D(FGhj
) + |E1≤j≤DGhj

|2)

which we expand and rearrange further as

‖F‖2L2 − 2ℜE1≤j≤D

∫

ZN

FE(Ghj
) + E1≤j,j′≤D

∫

ZN

E(Ghj′
Ghj

). (50)

Since hj , hj′ were chosen with the same distribution as h, and are independent when
j 6= j ′, we have the pointwise identities

E(Ghj
) = E(Gh) = F

and
E(Ghj′

Ghj
) = E(Gh′)E(Gh) = |F |2 when j 6= j ′.

We thus can rewrite (50) as

‖F‖2L2 − 2‖F‖2L2 + ‖F‖2L2 + E1≤j,j′≤Dδj,j′

∫

ZN

(Ghj′
Ghj
− |F |2)

where δj,j′ is the Kronecker delta. When j = j ′, we have

E(Ghj′
Ghj

)− |F |2 = E(|Gh(x)|
2|h ∈ H)− |E(Gh(x)|h ∈ H)|2

which is at most 1 since Gh is bounded (in fact one can sharpen this to 1
4
, but we will not

need this). The claim follows.

Let h1, . . . , hN100
0

be as in the above Lemma. Then from (49) and (46) we see that

‖T µmfUAP −ME(cµm,hj
ghj
|1 ≤ j ≤ N100

0 )‖L2 ≪ N−40
0 for all 0 ≤ m ≤ (k − 1)N0. (51)

We have now modeled a reasonably large number of shifts of our almost periodic function
fUAP in terms of a controlled number of functions cµm,hj

. Next, we define a new factor
B′′ finer than B′ (and depending on µ, h1, . . . , hN100

0
) by

B′′ := (
∨

−(k−1)N0≤m≤(k−1)N0

T µmB′) ∨ (
∨

0≤m≤(k−1)N0;1≤j≤N100
0

BN−100
0

(cµm,hj
))

where Bε(G) are the factors constructed by Proposition 6.2. Since the cµm,hj
are in

UAP d−1 with norm at most 1, and B′ was compact of order d − 1 and complexity at
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most X ′, we see from (25) and Definition 6.4 that B′′ is also compact of order d− 1 and
complexity at most ON0,X′(1). Also, from (20) we have

‖cµm,hj
− E(cµm,hj

|B′′)‖L∞ ≪ N−100
0 for all 0 ≤ m ≤ (k − 1)N0

and hence (since the ghj
are bounded)

‖ME1≤j≤D(cµm,hj
ghj

)−ME(E(cµm,hj
|B′′)ghj

|1 ≤ j ≤ D)‖L2 ≪ N−100
0 .

Combining this with (51) we see that

‖T µmfUAP − Fµm‖L2 ≪M N−40
0 for all 0 ≤ m ≤ (k − 1)N0, (52)

where Fn is defined for n ∈ ZN by the formula

Fn := ME1≤j≤DE(cn,hj
|B′′)ghj

. (53)

We may then apply Proposition 9.1 (with B replaced by B′′) to estimate the quantity (48)
as

(48)≫ E1≤λ≤N0/k∗
PZN

k∗
⋂

m=1

Eµλ (54)

where k∗ = O(1) and Eµλm = Eµλm(k, δ, k∗,B
′′) was defined in that Proposition; recall

that we are suppressing all dependence on the quantities d, k, δ, M .
Our attention thus turns to obtaining lower bounds for the size of Eµλ. We first use

(52) to pass from Fµm back to T µmfUAP (modulo errors that can be made small by making
D large). From (52) and Cauchy-Schwarz we have
∫

ZN

E(|T µmfUAP − Fµm||B
′′) =

∫

X

|T µmfUAP − Fµm| ≪ N−40
0 for all 0 ≤ m ≤ (k − 1)N0,

so by Markov’s inequality

PZN
(E(|T µmfUAP − Fµm||B

′′) ≥
δ

16k
)≪ N−40

0 for all 0 ≤ m ≤ (k − 1)N0.

In particular, from (38) and the triangle inequality we see (since k∗ = O(1)) that

PZN

k∗
⋂

m=1

Eµλm ≥ PZN

k∗
⋂

m=1

E ′
µλm −O(N−30

0 ), (55)

where

E ′
n := {x ∈ ZN : E(T nfU⊥|B′′)(x) ≥ δ/2 and

E(|T nfU⊥ − T nfUAP ||B
′′)(x) ≤

δ

16k
}.

The next step is to pull the shifts T n out of the B′′ expectations. To do this we use the
following observation.
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Lemma 10.3 (Effective shift invariance of B′′). Suppose that −(k − 1)N0 ≤ m ≤
(k − 1)N0 is such that

‖E(T µmfU⊥|B′′)− T µmE(fU⊥|B′′)‖L2 ≥ N−100
0

or
‖E(T µm|fU⊥ − fUAP |

2|B′′)− T µmE(|fU⊥ − fUAP |
2|B′′)‖L2 ≥ N−100

0 .

Then we are in the energy increment half of the dichotomy of Proposition 10.1.

Proof. We prove the first claim, as the second is analogous. Observe that E(T µmfU⊥|B′′) =
T µmE(fU⊥|T−µmB′′), and so

‖E(fU⊥|T−µmB′′)−E(fU⊥|B′′)‖L2 ≥ N−100
0 .

By the triangle inequality, we thus have either

‖E(fU⊥|T−µmB′′)− E(fU⊥|B′)‖L2 ≥
1

2
N−100

0

or

‖E(fU⊥|B′′)− E(fU⊥|B′)‖L2 ≥
1

2
N−100

0 .

But in either case we can use (31) (observing that B′′ and T−µmB′′ are both finer than B′,
by construction of B′′) to obtain an energy increment (45), as desired. Similarly for the
second claim (which uses the second component of f = (fU⊥ , |fU⊥−fUAP |, |fU⊥−fUAP |

2)
rather than the first).

In light of this lemma, we may assume that

‖E(T nfU⊥|B′′)− T nE(fU⊥|B′′)‖L2,

‖E(T n|fU⊥ − fUAP |
2|B′′)− T nE(|fU⊥ − fUAP |

2|B′′)‖L2 ≤ N−100
0

for all n ∈ ZN . In particular we have

PZN
(|E(T µmfU⊥|B′′)− T µmE(fU⊥|B′′)| ≥ δ/4)≪ N−100

0

and

PZN
(|E(|T µmfU⊥ − T µmfUAP ||B

′′)− T µmE(|fU⊥ − fUAP ||B
′′)| ≥

δ

32k
)≪ N−50

0

for all 0 ≤ m ≤ (k − 1)N0. This allows us to estimate (since k∗ = O(1))

PZN

k∗
⋂

m=1

E ′
µλm ≥ PZN

k∗
⋂

m=1

E ′′
µλm −O(N−50

0 ), (56)

where

E ′′
n := {x ∈ ZN : T nE(fU⊥|B′′)(x) ≥ 3δ/4 and T nE(|fU⊥ − fUAP ||B

′′)(x) ≤
δ

32k
}.
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Observe that E ′′
n = T nE ′′

0 . Combining this with (56), (55), (54) we obtain

(48)≫ E1≤λ≤N0/k∗

∫

X

k∗
∏

m=1

T µλm1E′′

0
−O(N−30

0 ). (57)

The function 1E′′

0
is measurable in B′′, which is a compact factor of order d − 1. At

this point it it is tempting to apply the induction hypothesis (Theorem 3.3 for d − 1)
to 1E′′

0
(using Proposition 6.6) to obtain lower bounds for the right-hand side of (57).

Unfortunately the problem is that the complexity of B′′ depends on X ′, whereas the
range N0/k∗ of the variable λ is only allowed to depend on X, and so we cannot ensure
that this expectation is even positive. To resolve this we must descend from the set
E ′′

0 ∈ B
′′ to the slightly modified set E ′′

0 ∩ Ẽ, where

Ẽ := {E(fU⊥|B) ≥
7δ

8
and E(|fU⊥ − fUAP ||B) ≤

δ

64k
}.

Lemma 10.4. Either we have

PZN
(Ẽ\E ′′)≪ τ 2) and PZN

(E ′′
0 ∩ Ẽ) ≥ δ/32

or we are in the energy increment half of the dichotomy.

Proof. We may assume without loss of generality that

Ef(B
′′)− Ef(B

′) ≤ τ 2

since otherwise we would be in the energy increment half of the dichotomy. From (32) we
thus have

Ef(B
′′)− Ef(B) ≤ 2τ 2,

which implies from (31) and definition of f that

∫

ZN

|E(fU⊥|B′′)−

∫

ZN

fU⊥|B′)|2 ≤ 2τ 2

and
∫

ZN

|E(|fU⊥ − fUAP ||B
′′)−E(|fU⊥ − fUAP ||B

′)|2 ≤ 2τ 2

In particular by Chebyshev’s inequality we have

PZN
(|E(fU⊥|B′′)− E(fU⊥|B′)| ≥

δ

8
)≪ τ 2

and

PZN
(|E(|fU⊥ − fUAP ||B

′′)−E(|fU⊥ − fUAP ||B
′)| ≥

δ

64k
)≪ τ 2

and the first claim follows from the definitions of E ′′
0 and Ẽ.

the electronic journal of combinatorics 13 (2006), #R99 45



Now we prove the second claim. From (5) we have

∫

ZN

E(fU⊥|B) =

∫

ZN

fU⊥ ≥ δ

and hence (by the boundedness of E(fU⊥|B′′))

PZN
(E(fU⊥|B) ≥ 7δ/8 ≥ δ/8

while from (4) and Cauchy-Schwarz we have

∫

ZN

E(|fU⊥ − fUAP ||B
′′)| =

∫

ZN

|fU⊥ − fUAP | ≤ ‖fU⊥ − fUAP‖L2 ≤
δ2

1024k

and hence by Chebyshev’s inequality

PZN
(E(|fU⊥ − fUAP ||B

′′) >
δ

64k
) ≤ δ/16.

By definition of E ′′
0 , we thus have PZN

(E ′′
0 ) ≥ δ/16, and the second claim of the lemma

thus follows from the first if τ is chosen sufficiently small.

We may of course assume that we are not in the energy increment half of the dichotomy,
in which case Lemma 10.4 implies that

‖1E′′

0 ∩Ẽ − 1Ẽ‖L2 ≪ τ.

Now observe that Ẽ ∈ B and B is compact of order d − 1 and complexity at most X.
Thus by Proposition 6.6 we can find a bounded nonnegative function f̃UAP ∈ UAP d−1

with
‖1Ẽ − f̃UAP‖L2 ≪ τ

and
‖f̃UAP‖UAP d−1 ≪X,τ 1.

In view of Lemma 10.4, we can thus apply the induction hypothesis of Theorem 10.4 with
fU⊥ replaced by 1E′′

0 ∩Ẽ , provided that τ is chosen sufficiently small. We conclude that

E1≤λ≤N0/k∗
EZN

k∗
∏

m=1

T µλm1E0 ≫τ,X 1

and so if we choose N0 sufficiently large depending on τ,X, we see from (57) that

(48)≫τ,X 1.

The claim (44) now follows from (47), and the proof of the Proposition is complete.

The proof of Szemerédi’s theorem is now complete.
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[8] P. Erdős, P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936),
261–264.
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and Computing 13 (2004), 263–267.
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