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Abstract 
 

The harmonic components of grid voltage result in oscillations of the calculated phase obtained via phase synchronization. This 

affects the security and stability of grid-connected converters. Moving average filter, delayed signal cancellation and their related 

harmonic elimination algorithms are major methods for such issues. However, all of the existing methods have their limitations in 

dealing with multiple harmonics issues. Furthermore, few studies have focused on a comparison and evaluation of these algorithms 

to achieve optimal algorithm selections in specific applications. In this paper, these algorithms are quantitatively analyzed based on 

the derived mathematical models. Moreover, an enhanced moving average filter and enhanced delayed signal cancellation 

algorithms, which are applicable for eliminating a group of selective harmonics with only one calculation block, are proposed. On 

this basis, both a comprehensive comparison and a quantitative evaluation of all of the aforementioned algorithms are made from 

several aspects, including response speed, required data storage size, sensitivity to sampling frequency, and elimination of random 

noise and harmonics. With the conclusions derived in this paper, better overall performance in terms of harmonic elimination can be 

achieved. In addition, experimental results under different conditions demonstrate the validity of this study. 
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I. INTRODUCTION 

The extensive utilization of non-linear power equipment has 

led to severe harmonic pollution in power grids [1]-[3]. When a 

utility signal is seriously distorted by harmonics, it is virtually 

impossible for phase synchronization control to acquire the 

accurate synchronous phase of a power grid. Therefore, the 

security and stability of grid-connected converters cannot be 

ensured [2]-[4]. Consequently, performing accurate phase 

synchronization under distorted grid conditions has become a 

major concern in both industrial applications and in the 

research field [5]-[8].  

Phase synchronization is mainly achieved in the rotational 

d-q frame [9]-[18]. The three phase utility signal in the 

stationary a-b-c frame is converted to a DC component in the 

d-q frame. After this, a proportional-integral (PI) regulator is 

utilized to eliminate the q-axis component through closed-loop 

feedback control. Thus, the synchronous phase is obtained. The 

above method, which employs a PI controller to eliminate the 

steady state error, fails to respond to utility signals with 

harmonic components. In this situation, oscillations are 

imposed on the q-axis DC component. In this case, the exact 

synchronous phase can be obtained by extracting and utilizing 

the DC part of the q-axis component as the input of a PI 

controller, which eliminates the effect of harmonics [10]-[13]. 

The most commonly used method of harmonic attenuation is 

adding a low-pass filter (LPF) in the control loop [9]-[14]. 

However, two contradictory factors, i.e. the harmonic 

attenuation ability and the dynamic response speed, have to be 

taken into account in the design of the LPF parameters [10], 

especially when dealing with a utility signal with a high 

content of low-order harmonics. However, in practice, it is 

difficult to find a compromise. In addition, the effect of a LPF 
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on harmonic attenuation is somewhat limited. 

Complete harmonic elimination can be achieved if the 

periodical and centro-symmetric properties of a harmonic 

signal are utilized. The main methods for doing this are 

Moving Average Filter (MAF) [15], Delayed Signal 

Cancellation (DSC) [16-17] and MAF/DSC based algorithms 

such as Cascaded DSC (CDSC) and Cascaded MAF (CMAF) 

[18]-[21]. The use of MAF is beneficial for filtering out high 

frequency random noise, especially when the noise is 

periodical [15]. An arbitrary harmonic, which can be regarded 

as a periodic noise signal at a certain frequency, can be 

eliminated completely by MAF with a properly designed 

window length. The DSC method with a time delay of a 

quarter grid cycle is proposed in [16] to eliminate the effects of 

the 2nd harmonic in the d-q frame. This improves the accuracy 

of synchronized phase in distorted utilities. Cascaded DSC 

(CDSC) blocks with different time delays [17], which are able 

to eliminate several harmonics, are widely used in areas of 

harmonic detection [18], phase synchronization [19], [20] and 

power quality improvement [21]. 

MAF/DSC based algorithms are the typical methods to 

achieve thorough elimination of harmonics. However, the 

above methods have their own pros and cons in dealing with 

multiple harmonics issues. DSC based algorithms suffer from a 

discretization error. As a result, the high-order harmonics 

cannot be eliminated adequately [22]. The linear interpolation 

method proposed in [16], [17] can partially mitigate the 

discretization error at the cost of increased computational effort. 

The authors of [22] pointed out that DSC based algorithms 

provide higher design flexibility than MAF based algorithms. 

However, MAF based algorithms require minimum 

computational effort for implementation [23]. To eliminate a 

group of specific harmonics, the existing MAF/DSC based 

algorithms cannot achieve the shortest possible response time 

[16], [22]. This issue can be solved by the proposed Enhanced 

MAF (EMAF) and Enhanced DSC (EDSC) algorithms. They 

are applicable for eliminating such harmonics with only one 

calculation block, and they can achieve the shortest possible 

response time in most cases. 

After reviewing the literature, it is clear that a specific 

algorithm, which is always characterized by its own 

superiority/inferiority, should be properly chosen for a 

particular application to avoid unnecessary computational 

effort and to achieve the shortest possible response time in 

specific grid scenarios, particularly when the selective 

cancellation of some specific components is needed. However, 

few papers have presented a comprehensive performance 

comparison and quantitative evaluation of the existing 

MAF/DSC based harmonic elimination algorithms. Therefore, 

optimal algorithm selection and better overall performance of 

harmonic elimination is unavailable. Focusing on such issues, 

this paper presents a detailed analysis, comparison and 

evaluation of the existing MAF/DSC based algorithms in  

different indexes such as response time, data storage size, 

sensitivity to sampling frequency, and elimination of random 

noise and harmonics. 

 

II. PHASE SYNCHRONIZATION SCHEME AND THE 

EFFECTS OF GRID HARMONICS 

A. Phase Synchronization Scheme 

The ideal voltage signal of a three-phase power system can 

be expressed as: 

( )
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where, Um, θ, and ω are the amplitude, initial phase, and 

frequency of the utility signal, respectively. 

In this paper, τ=2π/3. 
Consequently, the synchronous phase can be described as: 

tϕ ω θ= +                  (2) 

Similarly, the relationship between the estimated grid 

phase ϕ  and the estimated initial phase angle θ


, extracted 

by the phase synchronization schemes, can be depicted as: 

tϕ ω θ= +


                 (3) 

The Park transformation is given by: 
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By substituting (1) into (4), the utility signal in d-q frame 

yields: 
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θ θ=


 when the steady state is achieved. A diagram of 

the closed-loop phase synchronization scheme in the d-q 

frame [8] is obtained, and shown in Fig. 1. 

When it is assumed that 0θ =


, (5) can be rewritten as: 
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Substituting (6) into (2), the grid phase can be calculated by: 

( )arctan q d ext U Uϕ ω θ= + +           (7) 

where: 
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Fig. 1. Diagram of closed-loop phase synchronization scheme. 
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Therefore, the open-loop phase synchronization scheme in 

the d-q frame [24], [25] is obtained, as shown in Fig. 2. This 

is characterized by a simple structure, easy implementation, 

strong adaptability and the shortest response time [24], [25]. 

Therefore, the open-loop phase synchronization scheme is 

selected to verify the validity of this study. 

B. Effect of harmonics on phase synchronization 

When harmonic distortion is present, the three-phase grid 

voltage signal can be expressed as: 
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where, n is the harmonic order, and Umn and φn are the 

amplitude and initial phase angle of the n
th
 harmonic, 

respectively. 

By substituting (8) into (4), the distorted signal yields: 
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 (9) 

According to (9), harmonic components, with 1 order 

lower than those in the a-b-c frame, exist in the d-q frame 

when the utility signal is distorted. When the 2
nd

 harmonic is 

present in the grid voltage, a fundamental harmonic is 

imposed on the DC components in the d-q frame [10]. If the 

q-axis component is still controlled to zero through a 

feedback loop, oscillations occur in the output of the phase 

synchronization, leading to phase errors. Moreover, the phase 

errors will be notable when dealing with distorted signals 

with a high content of low-order harmonics. 

The effect of harmonics can be completely eliminated by 

obtaining the DC part of the q-axis component and using this 

signal as the input of the PI regulator. MAF/DSC based 

algorithms are commonly used ways to achieve this. In the 

following sections, a detailed analysis, comparison and 

evaluation of all of the existing MAF/DSC based algorithms 

are performed and the corresponding conclusions can help 

designers select the optimal algorithm and achieve better 

overall performance in terms of harmonics elimination for 

specific applications. 

It should be noted that the nth harmonic in the next parts 

refers to the harmonic in the d-q frame where the harmonic 

elimination algorithm is performed. This component 

corresponds to the (n+1)
th
 harmonic in the a-b-c frame. 

 

III. QUANTITATIVE ANALYSIS OF MAF BASED 

HARMONIC ELIMINATION ALGORITHMS 

A. Conventional MAF Based Algorithms 

MAF is extremely effective in eliminating periodic noise. 

It is obvious that the harmonic can also be eliminated by 

MAF if it is regarded as a periodic noise signal [15]. For the 

convenience of depiction, MAFn is used to denote the MAF 

for eliminating the n
th
 harmonic. 

A mathematical model of the MAFn can be expressed as: 

( ) ( ) ( )1
0

t
n n nt T

n

h t h d t T
nT

τ τ
−

= = ≥∫      (10) 

where, Tn is the period of the n
th
 harmonic (which is also 

selected as the period of the average window).  

Assume the sampling time Ts of the system yields Ts≪Tn. 

Accordingly, (10) can be discretized as: 
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1
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k

n n n
n i k L

h k h i k L
L

n= − +
= = ≥∑     (11) 

where, the window length Ln can be expressed as the ratio 

between Tn and Ts (rounded to the nearest integer), i.e.: 

[ ]n n sL round T T=              (12) 

The results in (11) can be explained by the wave shape of 

the harmonic. The summation of all of the samples in one 

harmonic cycle is zero, since the harmonic is 

centro-symmetrical in a period, and the positive and negative 

samples tend to cancel each other out, leading to remarkable 

performance of the MAF in eliminating harmonics [15]. 

For the n
th
 harmonic, the response time of the MAFn is one 

harmonic period Tn, as shown in Fig. 3. The harmonic is 

attenuated sufficiently during the dynamic process, and will 

be eliminated completely in the steady state. 

 
Fig. 2. Diagram of open-loop phase synchronization scheme. 

 
(a) 

 
(b) 

Fig. 3. Effect of MAF on eliminating a given harmonic in the (a) 

continuous-time domain. (b) discrete-time domain.  
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The Cascaded MAF (CMAF) can be utilized if several 

harmonic components need to be eliminated. The total 

response time of CMAF TCMAF is the summation of all the 

MAFs in the cascade. If harmonic components with orders not 

greater than N are to be eliminated, the response time yields: 

CMAF
1

N

n
n

T T
=

= ∑               (13) 

It can be readily seen that TCMAF becomes longer with 

increased harmonic components. In extreme cases, TCMAF tends 

to infinity when N keeps increasing. Such long time delays and 

huge data sizes are unacceptable in practice. 

B. Proposed EMAF Algorithms 

If the window length of the MAFn is extended to ZnLn (Zn 

= 1, 2, 3⋯), (11) can be rewritten as: 
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According to (14), the n
th
 harmonic can be eliminated if the 

window length of the MAFn is an integer multiple of the 

number of samples per period. Accordingly, the response 

time is extended to ZnLn. By properly choosing the window 

length, one single MAF block can be designed to 

simultaneously eliminate a group of given harmonics. This 

MAF is defined as an Enhanced MAF (EMAF) in this paper.  

The window length of the EMAF, according to (14) and its 

conclusions, yields: 

EMAF: = n nn Z L Z L
+∀ ∈          (15) 

where n is the order of harmonic to be eliminated and Z
+
 is a 

set of positive integers. 

The corresponding relation in the time domain is given by: 

EMAF: = n nn Z T Z T
+∀ ∈          (16) 

where TEMAF is the dynamic response time of the EMAF. 

Obviously, LEMAF and TEMAF are the common multiples of 

the window lengths and response time of the corresponding 

MAF blocks, respectively. In particular, the lowest common 

multiples are chosen to improve the response speed. 

Fig. 4 demonstrates the aforementioned requirements of the 

EMAF by eliminating 5 kinds of harmonics. For Harmonic 1, 8 

harmonic periods are covered by the moving length TEMAF. 

Therefore, it can be filtered out by the EMAF. Similarly, the 

moving length TEMAF of the MAF covers 3 periods of 

Harmonic 3 and one period of Harmonic 5. As a result, they 

can be completely filtered out by the EMAF. However, 

complete cancellation within TEMAF cannot be realized for 

Harmonic 2 or Harmonic 4, as shown in the blank areas 

directed by the red arrows in Fig. 4. Therefore, they cannot be 

filtered out thoroughly. 

Moreover, following rules hold by summarizing the different 

response time with respect to harmonics: 

1) To eliminate all of the even harmonics, TEMAF is T/2; 

2) To eliminate all of the odd harmonics, TEMAF is T; 

3) To thoroughly eliminate all of the even and odd 

harmonics simultaneously, TEMAF is T. 

In order to illustrate how the EMAF is operated in the d-q 

frame, (9) is discretized as: 
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Performing the EMAF algorithm on both sides of (17) 

yields: 
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LEMAF in (18) can be calculated by: 

[ ]EMAF sL round T T=            (19) 

By employing the conclusions of (14) and (15), (18) can be 

simplified as: 
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Fig. 4. Effect of EMAF in filtering out a specific harmonic. 
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It should be noted that the response times of the EMAF 

and CMAF are usually different for a given combination of 

harmonics, leading to different algorithm choices. 

Some examples are: 

1) To eliminate the 5
th
 and 7

th
 harmonics, the minimum 

TEMAF is T, while TCMAF is 12T/35. Therefore, the CMAF is 

better; 

2) To eliminate the 2
nd

, 4
th
, and 6

th
 harmonics thoroughly, 

the minimum TEMAF is T/2, while TCMAF is 11T/12. Therefore, 

the EMAF should be chosen; 

3) To eliminate the 3
rd

, 6
th
, 9

th
, and 12

th
 harmonics 

thoroughly, the minimum TEMAF is T/3, while TCMAF is 

25T/36. Therefore, the EMAF is better and. 

Generally, the higher the content of low-order harmonics, 

the more advantage the EMAF has in terms of response speed, 

and vice versa.  

The EMAF algorithm is applicable for eliminating multiple 

specific harmonics with only one calculation block and can 

achieve the shortest possible response time in most cases. 

 

IV. QUANTITATIVE ANALYSIS OF DSC BASED 

HARMONIC ELIMINATION ALGORITHMS 

A. Conventional DSC Based Algorithms 

DSC is another typical harmonic elimination method that is 

only effective for periodical signals with centro-symmetry. 

The harmonics in a utility signal are typical periodical signals 

with centro-symmetry. This property is utilized in the design 

of the DSC blocks when harmonics are to be eliminated [16]. 

Similarly, the DSCn is utilized to designate the DSC block 

for eliminating the nth harmonic. The DSCn can be expressed 

in both the continuous and discrete-time domains as [17]: 

( ) ( )1
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2 2 2

n n
n n n

T T
h t h t +h t t

    = − = ≥    
    

     (23) 
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2 2 2

n n
n n n
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h k h k +h k k

    = − = ≥    
    

     (24) 

where the relationship between Tn and Ln yields (12). 

Obviously, the response time of the DSCn is Tn/2 (in the 

discrete time domain the delay length is Ln/2), as shown in 

Fig. 5. The harmonic is sufficiently attenuated during the 

transient, and is almost totally cancelled by the DSCn in the 

steady state. 

Like the CMAF, the Cascaded DSC (CDSC) can be 

utilized if several harmonics are to be eliminated. In this case, 

the overall response time TCDSC is a summation of all of the 

cascaded DSC blocks. If all of the harmonics with orders not 

more than N are to be eliminated, TCDSC is only half of TCMAF. 

In addition, where there are more harmonics, the longer 

response times and larger data sizes are needed, which will 

become a bottleneck for practical use. 

B. Proposed EDSC Algorithms 

If the delay length of the DSCn is increased by (Zn−1)Ln, 

(24) can be rewritten as: 

( ) ( )

( )

1
+

2 2

1
+ 0

2 2

n
n n n n n

n
n n

L
h k h k h k Z L

L
h k h k
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       (25) 

where k≫(2Zn−1)Ln/2. 

According to (25), the n
th
 harmonic can be eliminated 

when the delay length of the DSCn block is (2Zn−1)Ln/2. 

Consequently, the response time of the DSCn is extended to 

(2Zn−1)Tn/2. 

By properly designing the delay length, several harmonics 

can be eliminated simultaneously using a single DSC block. 

This is defined as Enhanced DSC (EDSC).  

According to the conclusions of (25), the delay length of 

the EDSC LEDSC and the response time TEDSC can be 

calculated as: 

( )EDSC: 2 = 2 1+∀ ∈ −n nn Z L Z L          (26) 

( )EDSC: 2 = 2 1+∀ ∈ −n nn Z T Z T           (27) 

Obviously, 2LEDSC and 2TEDSC are common multiples of 

the delay lengths and response times of the DSCn blocks, 

respectively. Moreover, the ratio of 2LEDSC to Ln, i.e. (2Zn−1), 

is an odd number for each n, as is the ratio between 2TEDSC 

and Tn. To improve the response speed, 2LEDSC should be 

chosen as the minimum common multiple.  

If no 2LEDSC can agree with (26) for a group of given 

harmonics, these harmonics must be divided into several 

sub-groups, and each sub-group must have a 2LEDSC that 

agrees with (26). Every sub-group share an EDSC block and 

all of the EDSC blocks in cascade, which can eliminate the 

above group of harmonics. Some examples are: 

1) To eliminate the 3
rd

 and 5
th
 harmonics thoroughly, TEDSC 

is chosen as half a grid cycle T/2, and the corresponding 

 
(a) 

 
(b) 

Fig. 5. Effect of DSC on eliminating a given harmonic in the (a) 

continuous-time domain. (b) discrete-time domain.  
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ratios are 3 and 5 which are both odd numbers. The dynamic 

response time of the EDSC is T/2 in this case. 

2) To eliminate the 2
nd

, 4
th
, 6

th
, 10

th
, 12

th
, and 20

th
 

harmonics thoroughly, they must be divided into two 

sub-groups, and two EDSC blocks in cascade are utilized: 

one with a delay T/4 for eliminating the 2
nd

, 6
th
, and 10

th
 

harmonics, and the other with a delay T/8 for eliminating 

other harmonic components. The corresponding ratios are 1, 

3, and 5 for both of the EDSC blocks. The total response time 

is the sum of the two blocks, i.e. 3T/8. 

For the EDSC, it holds that [21]: 1) by delaying T/2, all of 

the odd harmonics can be eliminated simultaneously; and 2) 

by delaying T/2
(k+1)

 (k=1, 2, 3 ⋯), all of the even harmonics 

with the order n=i×2
k
 (i=1, 3, 5⋯) can be eliminated 

simultaneously. 

Consequently, the total response time of the EDSC TEDSC, 

considering the elimination of all the arbitrary harmonics, is: 

EDSC 1
12 2

∞

+
=

= + =∑ k
k

T T
T T          (28) 

It is evident from (28) that the arbitrary orders of the 

harmonics can be eliminated by delaying a grid cycle T with 

the EDSC blocks.  

Generally, odd harmonics are most common in power grids. 

In the a-b-c frame, by delaying T/4, all of the odd harmonics 

with the order n=2i +1 (i=1, 3, 5 ⋯) can be eliminated, i.e. 

the 3
rd

, 7
th
, 11

th
, 15

th
, and 19

th
 harmonics and so on. Similarly, 

by delaying T/8, the odd harmonics with the order n=4i+1 are 

eliminated, i.e. the 5
th
, 13

th
, and 21

st
 components and so on. 

By delaying T/16, the odd harmonics with the order n=8i+1 

can be eliminated, i.e. 9
th
 and 25

th
, etc. Therefore, an effective 

harmonic suppression strategy, i.e. cascading the 

aforementioned EDSC blocks and using an extra LPF, is 

obtained. With a delay of 7T/16 (which is less than half a grid 

cycle), all of the odd harmonics with an order of not more 

than 15 are eliminated by the above EDSC blocks. The 

higher-order harmonics can be sufficiently suppressed by the 

application of a LPF. 

In practice, selection between the EDSC and the CDSC 

depends on the harmonics to be eliminated.  

Some examples are: 

1) To eliminate the 3
rd

 and 5
th
 harmonics thoroughly, the 

response times for the EDSC and CDSC are T/2 and 4T/15, 

respectively. Hence, the CDSC should be chosen. 

2) To eliminate the 1
st
, 3

rd
, and 5

th
 harmonics thoroughly, 

the response times for the EDSC and CDSC are T/2 and 

23T/30, respectively. Hence, the EDSC is better. 

3) To eliminate the 2
nd

, 4
th
, 6

th
, 10

th
, and 12

th
 harmonics 

thoroughly, the response times for the EDSC and CDSC are 

3T/8 and 11T/20, respectively. Hence, the EDSC should be 

chosen. 

Generally, the EDSC scheme is better for processing 

distorted signals with a high content of low-order harmonics, 

and vice versa. 

 

V. COMPARISON AND EVALUATION OF MAF/DSC 

BASED ALGORITHMS 
 

The five aspects of dynamic response time, required data 

storage size, attenuation rate of the harmonic amplitude, 

sensitivity to sampling frequency, ability of harmonic and 

noise elimination, are considered in the comprehensive 

comparisons and quantitative evaluations of the MAF/DSC 

based harmonic elimination algorithms, i.e. CMAF, CDSC, 

EMAF, and EDSC. 

A. Dynamic Response Time and Data Storage Size 

It can be readily seen from (12) that the required data 

storage size L is proportional to the transient time. Hence, the 

analysis results of the response time also apply to the data 

storage size. 

To evaluate the response time, an application scenario is 

assumed where the orders of the harmonics to be eliminated 

are not bigger than 30. Fig. 6 demonstrates the results of the 

dynamic response time using the different algorithms. The 

horizontal axis represents the orders of the harmonics which 

are to be eliminated, and the vertical axis is the ratio of the 

response time to the grid cycle. Fig. 6 (a), (b), and (c) refer to 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Response times in eliminating. (a) all harmonics. (b) all 

odd harmonics. (c) all even harmonics.  
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the cases of eliminating all of the harmonics, all of the odd 

harmonics, and all of the even harmonics, respectively. 

By evaluating the response times in various scenarios, 

following conclusions can be obtained: 

1) TMAF is twice TDSC for eliminating a specific harmonic; 

2) TCMAF is twice TCDSC in all of the cases; 

3) The response speed of the EDSC is quicker than that of 

the EMAF, especially with few low-order harmonics. When 

the number of harmonics to be eliminated increases, the 

response speeds of the EMAF and EDSC tend to be closer. 

When all of the odd harmonics are to be eliminated, the 

response speed of the EDSC is twice that of the EMAF; 

4) To eliminate all of the harmonics or all of the even 

harmonics, the response speed of the EDSC is slightly faster 

than that of the EMAF. The EMAF is easier in terms of 

implementation. However, the EDSC blocks can be utilized 

in cascade; 

5) To eliminate all of the odd harmonics, the response 

speed of the EDSC is dominant over the EMAF. Therefore, 

the EDSC is better; 

6) The response speeds of the EMAF and EDSC are 

quicker than those of the CMAF and CDSC, in general; 

7) To eliminate all of the harmonics, the limit of the 

transient time for the filtering algorithm is a grid cycle T. 

Based on the above conclusions, the response times of the 

open-loop and closed-loop phase synchronization schemes 

have the following rules: 

1) The dynamic of open-loop phase synchronization only 

consists of harmonic elimination and noise suppression. The 

response time of the LPF for filtering out high frequency 

noise is usually short. Hence, the response time of the 

harmonic elimination is dominant in the overall transient time 

of open-loop phase synchronization. 

2) However, the transient of closed-loop phase 

synchronization mainly depends on the closed-loop regulator, 

which in turn interferes with the dynamic behaviors of the 

harmonic and noise elimination. This results in complexity in 

estimating the total transient time. Experimental results 

indicate that the EMAF and EDSC have proximate transient 

times, which depend mainly on the closed-loop regulator. 

Considering that the EMAF is easier to realize, and that the 

output phase is more stable owing to a smaller oscillation 

amplitude compared with the EDSC, it is more suitable to 

utilize the EMAF in closed-loop phase synchronization. 

B. Attenuation Rate of Harmonic Amplitude 

Based on (8), the n
th
 harmonic can be expressed as: 

( ) sin( )n mn nh t U n tω ϕ= +          (29) 

To evaluate the harmonic amplitude attenuation rate in the 

transient and steady state, both the DSC and MAF are 

studied. 

Case 1: DSC based algorithms 

During the transient, t < Tn /2 and k < Ln/2. Therefore, 

hn(k- Ln/2)=0 and: 

( ) ( ) ( )1 1

2 2 2

n
n n n n

L
h k h k +h k h k

  = − =  
  

     (30) 

The m
th
 (m ≠ n) harmonics, which cannot be eliminated 

by the DSC based algorithms, also satisfy (30). Hence, for all 

of the harmonics processed by the DSC based algorithms, the 

amplitudes can be reduced by 50% during the transients. 

In the steady state, t > Tn /2 and k > Ln/2. Therefore, for 

the n
th
 harmonics, hn(t)=0. For the m

th
 (m ≠ n) harmonics, it 

holds that: 

( ) ( )

DSC

sin +sin
2 2

2
1 cos sin( )

2

ω ϕ ω ϕ

π ω ϕ ϕ

   = + − +   
   

 = + + + 
 

mm n
m m m

mm m

U T
h t m t m t

m
U m t

n

 (31) 

where: 

( )
( )DSC

sin
arctan

1+cos

π
ϕ

π
 

= −  
  

m n

m n
 

Moreover, it holds that: 

2
n

T
T

n n

π
ω

= =                (32) 

Let Umm be the base value. Then the per-unit amplitude 

value of the m
th
 harmonics in the steady state can be obtained 

as: 

( )DSC
2

, 1 cos
2

m
f m n

n
π = +  

 
      (33) 

To evaluate the harmonic amplitude attenuation rate of the 

DSC algorithm in the steady state, an application scenario is 

assumed where the orders of the harmonics to be eliminated 

are not bigger than 30. Fig. 7 demonstrates the harmonic 

amplitude rate using the DSC algorithm. The horizontal axis 

m represents the orders of harmonics to be eliminated by the 

DSCn, and the vertical axis is the amplitude attenuation rate 

of the m
th
 harmonic. 

From Fig. 7 and (33), it is evident that the harmonics with 

the order m= (2k+1)n (k=0, 1, 2 ⋯) can be attenuated to 0 in 

the steady state, and that the harmonics with the order m=2kn 

(k=0, 1, 2 ⋯) cannot be attenuated at all. It is also apparent 

that the harmonic with an order close to (2k+1)n will tend to 

 
Fig. 7. Harmonic amplitude with DSC in steady state. 
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be eliminated, while in another case the harmonic will be 

virtually unaffected with an order of approximately 2kn. 

Case 2: MAF based algorithms 

During the transient, it holds that t<Tn. Therefore, 

hn(t-Tn)=0 and: 

( ) ( )

( )

0
sin

cos cos
2

ωτ ϕ τ

ω ϕ ϕ
π

= +

 = − + − 

∫
tmn

n n
n

mn
n n

U
h t n d

T

U
n t

       (34) 

The m
th
 (m ≠ n) harmonics, which cannot be eliminated 

by the DSC based algorithms, also satisfy hm(t-Tn)=0. Hence: 

( ) ( )

( )

0
sin

cos cos
2

ω ϕ

ω ϕ ϕ
π

= +

 = − + − 

∫
tmm

n m
n

mm
m m

U
h t m t dt

T

nU
m t

m

     (35) 

Fig. 8 demonstrates the harmonic amplitude during 

transients using the MAF algorithm. The DSC can only 

reduce the harmonic amplitude to 0.5 p.u. (see the purple 

line) while the MAF can make the harmonic amplitude lower 

than 0.159 p.u. (see the yellow line) in most cases. Obviously, 

the general harmonic amplitude attenuation rate of the MAF 

is much bigger than that of the DSC. This figure also shows 

that the larger n is, the better the performance the MAF 

algorithm becomes. 

In the steady state, t > Tn and k > Ln. Therefore, for the n
th
 

harmonics, hn(t)=0. For the m
th
 (m ≠ n) harmonics, it holds 

that: 

( ) ( ){ }

( )MAF

cos cos[ ( ) ]
2

2 2
1 cos cos

2

ω ϕ ω ϕ
π

π ω ϕ ϕ
π

= − + − − +

 = − − + + 
 

mm
m m n m

mm m

U
h t m t m t T

m
U m t

n

(36) 

where: 

( )
( )MAF

sin 2
arctan

1 cos 2

π
ϕ

π
 

=  
−  

m n

m n
 

Choose Umm as the base value. Then the per-unit amplitude 

value of the m
th
 harmonic in the steady state can be obtained 

as: 

( )MAF
2 2

, 1 cos
2

m
f m n

n

π
π

 = −  
 

      (37) 

Fig. 9 demonstrates the harmonic amplitude with the MAF 

algorithm. It is evident that the harmonics with the order m= 

kn (k=0, 1, 2 ⋯) can be attenuated to 0 in the steady state, and 

that all of the other harmonics can be attenuated sufficiently. 

It is apparent that the harmonics with an order closer to kn 

tend to be eliminated more adequately. 

Case 3: Comparison of amplitude attenuation rate 

Fig. 7 illustrates a comparison of the amplitude attenuation 

rate in the transient state. The performance of the MAF based 

algorithms is far better than that of the DSC based algorithms 

under most conditions. 

To compare the amplitude attenuation rate in the steady 

state, the corresponding attenuation indicator F is first 

defined as: 

( )
( )

( )
( )

1 cos,

, 1 cos 2

π π

π

+
= =

−
DSC

MAF

m nf m n
F

f m n m n
      (38) 

Obviously, F>1 means that the MAF based algorithm is 

better than the DSC based algorithm in terms of steady-state 

performance, and vice versa. Fig. 10 demonstrates the 

attenuation indicator F, which is also a comparison of 

amplitude attenuation rate in the steady state. The numerical 

calculation result illustrates that F ≥1. Therefore, the ability 

of the MAF based algorithms to fully attenuate the harmonic 

amplitude is generally far stronger than that of the DSC based 

algorithms. From this perspective, the MAF based algorithms 

should be selected first. 

C. Sensitivity to Sampling Frequency 

Usually, the MAF is implemented by a digital controller in 

the discrete-time domain. A problem arises when the 

harmonic’s period Tn is not divisible by the sample period Ts. 

In practical applications, the sampling frequency fs is usually 

determined by other control requirements, such as the losses 

or the size of power-electronic converters. In this situation, 

the nearest sample point is usually used to approximate 

 
Fig. 8. Harmonic amplitude with MAF in transient. 

 
Fig. 9. Harmonic amplitude with MAF in steady state. 

 
Fig. 10. Attenuation indicator in steady state. 
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accurate values, as illustrated in (12) and Fig. 11. 

The sampling error caused by (12) can be expressed as: 

n s nL T T T= + ∆               (39) 

where, ∆T ∈ (-0.5Ts, 0.5Ts] is the time discretization error. 

Therefore, a discretization error between the continuous 

mode and the discrete mode is inevitable and thorough 

harmonic elimination cannot be achieved. To evaluate the 

sensitivity of the DSC/MAF based algorithms to sampling 

frequency this paper first derives the general expression of 

the detection error introduced by the non-ideal discrete time. 

Based on (8) and (29), the n
th
 harmonic, which can be 

thoroughly eliminated in theory, is rewritten in phasor form 

as: 

( ) ( )
sin( )

j n t
n mn n mn

nh t U n t U e
ω ϕω ϕ += + ⇒     (40) 

Substitute (39) into (23), and it holds that: 

2 2sin
2

π πω ϕπ
∆ + − + 

 ∆ =  
 

n T
j n t

T
n mn

nn T
h U e

T
     (41) 

Hence, the per-unit amplitude value of the n
th
 harmonic 

eliminated by the DSC based algorithms in the steady state is 

given as: 

( )_ DSC , sin
2

π
∆

∆ ∆ =  
 

T

n T
f T n

T
       (42) 

Similarly, substitute (39) into (10), and it holds that: 

( )

( )
( )

( ) ( ) ( )1

1
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π

ω

π
π

− +∆
+

− + ∆

−
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+ ∆

=  + ∆  + ∆

jn T T
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n mn
n

j n T Tmn

n
ne

h U e
jn T T

U
n T T e

n T T

    (43) 

Hence, the per-unit amplitude value of the n
th
 harmonic 

eliminated by the MAF based algorithms in the steady state is 

given as: 

( ) ( ) ( )_ MAF
1

, sin 1
1

π
π∆ ∆ =  + ∆  + ∆Tf T n n T T

n T T
 (44) 

To evaluate the discretization error and sensitivity to the 

sampling frequency in the steady state, the maximum 

possible error (∆T=0.5Ts) is considered. The application 

scenario where the orders of the harmonics to be eliminated 

are not bigger than 30 is assumed. Fig. 12 and Fig. 13 

demonstrate the per-unit amplitude values of the n
th
 

harmonics, which are caused by the discretization error of the 

DSC/MAF based algorithms. The horizontal axis represents 

the sampling frequency, and the vertical axis is the per-unit 

amplitude value of the n
th
 harmonics. 

Fig. 12 and Fig. 13 illustrate the comparison result of the 

amplitude error in the steady state. The larger the sampling 

frequency is and the lower the harmonic order, the smaller 

the amplitude error becomes. The performance of the MAF 

based algorithms is generally better than that of the DSC 

based algorithms under most conditions. 

To compare the sensitivity of the DSC/MAF based 

algorithms to the sampling frequency in the steady state, the 

corresponding sensitivity indicator K is first defined as: 

( )
( ) ( )

_

_

1 sin
, 2

, sin 1

ππ

π
∆

∆

∆ ∆   +   ∆    = =
∆  + ∆  

T DSC

T MAF

n T n T

f T n T T
K

f T n n T T
    (45) 

Obviously, K >1 means that the MAF based algorithm is 

better than the DSC based algorithm in the steady-state 

performance in terms of sensitivity to the sampling frequency, 

and vice versa. 

 
(a) 

 
(b) 

Fig. 11. Discretization time error between continuous mode and 

discrete mode. (a) Ceiling rounding. (b) Floor rounding.  

 
Fig. 12. Harmonic amplitude error with DSC in steady state. 

 

 
Fig. 13. Harmonic amplitude error with MAF in steady state. 

 

 
Fig. 14. Sensitivity indicator in steady state. 
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Fig. 14 demonstrates the sensitivity indicator K, which is 

also the comparison result of the sensitivity to the sampling 

frequency in the steady state. The numerical calculation result 

illustrates that K≥1. Therefore, the sensitivity of the MAF to 

the sampling frequency is generally far weaker than that of 

the DSC based algorithms. Therefore, the MAF based 

algorithms should be selected first to achieve thorough 

harmonic elimination. 

Fig. 15 gives an example which shows the sensitivity with 

respect to the harmonic order and sampling frequency. The 

harmonic orders are 3 and 7, and the sampling frequencies 

are 5 kHz and 2.5 kHz, respectively. The MAF is able to 

eliminate the harmonics completely in both cases, while 

results of the DSC contain a certain amount of errors, which 

will be larger with a higher order and a lower sampling 

frequency. 

D. Ability of Random Noise Suppression 

High-frequency random noise σ(i) agrees with: 

( )
1

lim 0
k

k i

iσ
→∞ =

=∑               (46) 

To evaluate the ability of the DSC/MAF based algorithms 

to eliminate random noise in the steady state, (11) and (24) 

are first rewritten as: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0.5 2 2

0.5 2

σ σ

σ σ

∗  = + + − + − 
 = + + − ≠ 
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     (48) 

It is evident that the MAF based algorithms are able to 

average the random noise signal in the whole average 

window, effectively suppressing the high-frequency random 

noise. However, the DSC based algorithms have no effect on 

noise suppression (in some cases noise is amplified). Fig. 16 

demonstrates the simulation results of noise suppression with 

the two methods. The output signal of the MAF is almost 

zeroed, while severe noise distortion is present with the DSC 

algorithm. 

It is evident that compared with the MAF based algorithms, 

an extra LPF is necessary for eliminating random noise with 

the DSC based algorithms. 

 

VI. EXPERIMENTAL VERIFICATION 
 

Experiments are performed to verify the aforementioned 

analysis and the proposed algorithms. The sampling 

frequency is set to be 25 kHz. Since the response time of the 

CDSC is always half that of the CMAF in eliminating several 

harmonics, only the experimental results of the CDSC are 

given in this paper. The signal being sampled stays in the 

a-b-c frame. Hence, the harmonic order refers to that in the 

a-b-c frame. In addition, all of the experiments are performed 

using the open-loop phase synchronization scheme except for 

Experiment E, in which the closed-loop phase 

synchronization scheme is utilized. 

A. Elimination of a Given Harmonic 

The results are the same for the MAF, CMAF, and EMAF 

when eliminating a given harmonic, since the CMAF and 

EMAF degenerate to the MAF in this case. Similar results 

hold true for the DSC based algorithms. Fig. 17 shows the 

results of eliminating the 3
rd

 harmonic with the MAF and 

DSC. The transient time is 10 ms and 5 ms, respectively. 

These results show good agreement with the theoretical 

analysis. The transient time of the DSC is only half that of the 

 
Fig. 17. Eliminating the 3rd harmonic via MAF and DSC. 

 

 
Fig. 16. Noise suppression with MAF/DSC. 

 
(a) 

 
(b) 

Fig. 15. Sensitivity to harmonic order and sampling frequency. 

(a) Low order and high fs. (b) High order and low fs.  
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MAF, while the oscillation amplitude is 2.5 times. This 

results in larger phase oscillations in this case.  

B. Elimination of Several Even Harmonics 

Fig. 18 gives the results of eliminating the 2
nd

 and 4
th

 

harmonics with the CDSC, EMAF, and EDSC. The response 

times are 13.3 ms, 20 ms, and 10 ms, respectively. Fig. 19 

displays the results of simultaneously eliminating the 2
nd

, 4
th
, 

6
th
, and 8

th
 harmonics, and the corresponding transient times 

are 16.8 ms, 20 ms, and 10 ms, respectively, as expected.  

The experimental results indicate that the response times 

for the EMAF and EDSC are 1 grid cycle and 0.5 cycles, 

respectively, in eliminating arbitrary numbers of odd 

harmonics. Phase oscillations are more obvious when the 

EDSC is utilized. The transient time of the CDSC increases 

with the number of harmonics to be eliminated. The response 

time of the EDSC is shorter than that of the CDSC. However, 

it has greater phase oscillations. 

To summarize, the dynamic response speed is almost same 

for the CDSC and EMAF, and is the fastest for the EDSC. 

The EMAF is the easiest to implement, and it has the lowest 

phase oscillations. 

C. Elimination of Several Odd Harmonics 

Fig. 20 illustrates the results of eliminating the 3
rd

, 5
th
, and 

7
t h

 harmonics with the CDSC, EMAF, and EDSC. The 

 

                  (a)                                  (b)                                 (c) 

Fig. 18. Elimination of the 2rd and 4th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 

 

 

(a)                                  (b)                                 (c) 

Fig. 19. Elimination of the 2nd, 4th, 6th and 8th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 

 

 

(a)                                  (b)                                 (c) 

Fig. 20. Elimination of the 3rd, 5th and 7th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 

 

 

(a)                                  (b)                                 (c) 

Fig. 21. Elimination of the 3rd, 5th, 7th and 9th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 
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response times are 9.2 ms, 10 ms, and 7.5 ms, respectively. 

Fig. 21 shows the results of eliminating the 3
rd

, 5
th
, 7

th
, and 

9
th
 harmonics, and the response time is 10.4 ms, 10 ms and 

8.8 ms, respectively. This is also in agreement with the above 

analysis. It is evident from the results that only half a grid 

cycle is required for eliminating all of the odd harmonics with 

the EMAF. However, the transient times for the CDSC and 

EDSC increase with the number of odd harmonics to be 

cancelled. The transient of the EDSC is faster than the CDSC. 

However, it has larger phase oscillations. 

In summary, the CDSC, EMAF and EDSC are comparable 

in terms of dynamic response speed. Among them the EDSC 

is slightly faster. The EMAF is the easiest one to carry out 

with only slight oscillations. Hence it is the most suitable in 

this case. 

D. Elimination of Odd and Even Harmonics 

Fig. 22 gives the results for eliminating all of the 

harmonics within order 8. The transient times for the CDSC, 

EMAF, and EDSC are 26 ms, 20 ms, and 17.5 ms, 

respectively. In this case, only one EMAF block is needed, 

while several blocks of CDSC and EDSC are cascaded when 

utilizing the DSC based algorithms. It can be seen that the 

response time increases with the number of harmonics. The 

response speed of the EDSC is faster than the CDSC, yet the 

phase oscillation is more severe.  

In summary, the response speed is virtually same for the 

three algorithms. Among them the EDSC is slightly quicker, 

and the output phase of the EMAF and CDSC are less 

affected by harmonics. Considering that the EMAF is also the 

easiest one to realize, it should be the best solution in this 

case. 

E. Performance in Closed-Loop Phase Synchronization 

Fig. 23 shows the experimental results for eliminating all 

of the harmonics within order 4 with the CDSC, EMAF, and 

EDSC, utilizing the closed-loop phase synchronization 

scheme. These three algorithms have roughly the same 

response times, at about 30 ms. The results suggest that the 

transient time for the CDSC, EMAF, and EDSC are nearly 

the same in the closed-loop phase synchronization, while the 

amplitudes of the oscillations are different (see Fig. 24). The 

oscillation is the most severe in the output q-axis component 

signal Uq and the phase signal utilizing the EDSC, while the 

EMAF possesses the smoothest transient. 

Obviously, the dynamic response is in close relation to the 

applied closed-loop controller. Therefore, it is unlikely to 

give an empirical expression of the transient time based 

merely on the type of harmonic elimination scheme. In 

general, the EMAF is the most suitable due to the fact that it 

has the lightest effect from harmonics on the output phase. Its 

suitability is also due to its simplicity in terms of 

implementation. 

 

VII. CONCLUSION 

The MAF/DSC based harmonic elimination algorithms 

(CMAF, EMAF, CDSC, and EDSC) have different behaviors 

in terms of dynamic response speed, steady-state performance, 

 

(a)                                  (b)                                 (c) 

Fig. 22. Elimination of all harmonics within order 8 with (a) CDSC. (b) EMAF. (c) EDSC. 

 

 

(a)                                  (b)                                 (c) 

Fig. 23. Performances of CDSC, EMAF and EDSC under closed-loop control. (a) CDSC. (b) EMAF. (c) EDSC. 

 

 
Fig. 24. Uq of different schemes in closed-loop control. 
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required data storage size, sensitivity to sampling frequency 

and the ability to eliminating harmonics and noise. Therefore, 

designers should consider multiple factors simultaneously 

and select the optimal algorithm to avoid unnecessary 

computational effort and to achieve the shortest possible 

response time in a specific application, particularly in the 

case of the selective cancellation of specific harmonics.  

Generally, the DSC based algorithms have a quicker 

dynamic response speed and have more advantages in terms 

of design flexibility when dealing with several given 

harmonics, especially for several odd harmonics. However, 

the amplitude attenuation is not sufficient for harmonics that 

are not configured to be eliminated. Therefore, the phase 

oscillations during the transient are more severe for DSC 

based algorithms. In the steady state, they are more sensitive 

to the sampling frequency. In addition, an additional LPF is 

required to attenuate high-frequency random noise.  

The MAF based algorithms are characterized by sufficient 

attenuation of harmonics/noise and easy implementation. 

Their harmonic elimination ability is far stronger than that of 

the DSC based algorithms, especially for systems with a low 

sampling frequency and for eliminating high-order harmonics. 

If arbitrary harmonics need to be eliminated, the EMAF and 

EDSC have the same theoretical response time. However, the 

EMAF with a one grid cycle window length is much better in 

terms of digital implementation and comprehensive 

performance. The dynamic response speeds of the EMAF and 

EDSC are roughly same in closed-loop phase synchronization 

systems, while the EMAF is bounded to a smoother output 

phase and an easier implementation. The experimental results 

prove the correctness of the analysis.  

The conclusions of this study can be utilized for selecting 

the most suitable harmonic elimination algorithm and for 

achieving better overall performance. In addition, the 

improved schemes, EMAF and EDSC, can also be applied for 

detecting selective harmonics, phase-sequence separation, 

and power quality improvement. 
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