
Geophys. J .  R. astr. SOC. (1969) 18,233-249. 

A Quantitative Evaluation of Seismic Signals at 
Teleseismic Dist ances-I 

Radiation from Point Sources 
J. A. Hudson 

(Received 1969 July 16) 

Summary 

The aim of the series of papers to be published under the above title is to 
follow up and improve Carpenter’s (1966) attempt to construct realistic 
pulse shapes for teleseismic body waves from underground explosions. 
The present work deals with both explosions and shallow earthquakes 
and with the radiation of surface waves as well as body waves. 

The extension of Carpenter’s theory to take crustal layering more 
accurately into account involves the matrix theory first introduced by 
Thomson (1950) and developed by Haskell. We shall use the notation 
of Haskell’s (1964) paper in the following analysis and the initial theoretical 
work is concerned with some of the groundwork and one or two results 
which have not been covered by Haskell in his series of papers (1953, 
1962, 1964). 

A point source can be represented either as a system of forces or as a 
discontinuity in the displacement or stress or their derivatives across an 
element of surface. We show here that a general source of either type is 
equivalent in the generation of elastic radiation to a discontinuity across 
a horizontal plane in the displacement and the stress acting on the plane. 
This means that any point source can be put into a form suitable for 
computations based on the Thomson-Haskell theory. 

The theory is applied to the construction of theoretical models of earth- 
quake and explosive sources. Some of the more realistic models so far 
proposed are given in the later section of the paper. 

1. Introduction 

In 1953 Haskell published a corrected version of Thomson’s (1950) theory of 
elastic waves in a layered solid medium, applying it to the calculation of dispersion 
curves of surface waves. Since then, the theory has been developed principally by 
Haskell (1962, 1964) and Harkrider (1964) to deal with the surface wave motion 
caused by a source in a layered half-space and with the disturbance caused by plane 
waves incident from infinity. 

The fundamental mathematical theory behind the method was presented by 
Gilbert & Backus (1966) in their paper on propagator matrices for two-dimensional 
problems (which include dispersion of surface waves and incidence of plane waves). 
The corresponding theory for three-dimensional problems (a point source in a 
layered half-space) is developed here, showing that the propagator matrices, or 

* Received in original form 1969 February 26. 
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234 f. A. Hudsofi 

layer matrices, are the same for two and three dimensions. This leads to a close 
similarity of presentation for both types of problem. 

The notation to be used is principally that of Haskell (1964), except that each of 
his (6 x 6) matrices are divided (in the obvious way) into a (4 x 4) and a (2 x 2) 
matrix corresponding to the first four rows and columns and the last two rows and 
columns respectively of Haskell's matrix. Each 6-vector is divided in the same 
manner into a Cvector and a 2-vector. 

In order to use the matrix theory to calculate the seismic radiation from a source 
of disturbance in a layered medium it is necessary to describe the source as dis- 
continuities in the stress motion vectors across a horizontal plane. (The com- 
ponents of the stress motion vectors are time and space transforms of the dis- 
placements and the three components of stress acting on an element of surface.) 
There is a close connection between the type of source described by a discontinuity 
and the type described by a system of forces Burridge & Knopoff 1964). The reason- 
ing leading to this conclusion can be extended to show that the general source of 
either type can be represented as discontinuities appropriate to the Thomson- 
Haskell theory. 

2. Wave transmission in a medium whose properties vary with depth 

Let u(r, 4, z, t )  be the elastic displacement in an isotropic medium whose Lam6 
parameters 1, p and density p vary with the z-co-ordinate of cylindrical polar co- 
ordinates (r,  4 , ~ ) .  Following Haskell's (1964) notation we define operators 

W (I W 

1 Lnc - = - [ exp (- iwt) dt cos 124 d 4  J,(kr) dk n .  
- m  --x 0 

00 n m 
1 I' 

n k 
L"' 5 - 1 exp (-jot)& f sinn4d4 1 J,(kr)-dk, 

- m  -n 0 

and construct 

au ] , 
( r  ar a4 

I2 = 1, 2, ... i a  
U;(k, n, Z, w )  = -EC - - (ru,)+ - -A 

i a  
U,C(k, 0, Z, w )  = -tCC 

r a4 

Similarly 1 du, 1 a 
U,'(k, P I ,  z ,  w )  5 - - - - - (ri4,)) ( r 84 r dr 

V;(k,  12,  Z, O) = P { k 2  u,} 

U,S(k, n, z, w )  = CS{kZ u,}, 12 = 1, 2, ..., 

I 

with corresponding equations for n = 0. 
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Seismic signals at teleseismic distances4 235 

We operate in a similar manner on the stresses z,, zdr, z,, corresponding to the 
displacements u: 

(2.4) I w2 T,C(k,n,a,w) = - E ' { - - ( ~ T ~ ~ ) + - ~ ]  i a  

w2 T,"(k, n,z,  w) = -C" 

1 a7 

r ar r ad) 
i a  

r ad) 
a,,,) , n = 1,2, ..., 

and so on, defining Tdc, T&', T,' and T," as well. 

relations of perfect elasticity, the stress-motion vectors 
It can be shown that, as a result of the equations of motion and stress-strain 

B ( k ,  ? I ,  2, w )  = and b'(k, n, z, a) = (2 * 5 )  

satisfy the equations 
a a 
az az 
- W = M  and -b '=nb 

for all n: 2 0, where 

N =  0 0 -  
w2  

2 + 2 p  
- P  0 k2 

0 
k2 -A 
3 - P  0 - A + 2 p  

and 

n=(; -P "). 0 

(2 7) I 

The vectors W ( k ,  n, z ,  0) and b"(k, 17, z, o) constructed in the same way, also 
satisfy equations 2.6. 

Exactly the same equations may be obtained for two-dimensional displacements 
u(x,z, 1 )  and stresses (referred to Cartesian co-ordinates ( x , y , z ) )  where k is the 
transform variable connected with x (see Gilbert & Backus 1966). 

Solutions of equations 2.6 can be written in terms of the square matrices 
PB(z, zo) and pb(z, zo) which have the properties 

P&o, 20) = 14, P&o, 20)  = 12, (2.9) 
(zo being any point) where I, is the (n x n) identity matrix. PB and pb are the propa- 
gator matrices. 

In a homogeneous medium 

P&, zo> = exp "(Z-ZO)~, p&, zo) = exp [n(z-zO)l, (2.10) 

where exp denotes the exponential series. 
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236 J. A. Hudson 

A simplified procedure for finding the propagators in this case is given by the 
use of a non-singular transformation which diagonalizes N. The exponential can 
then be found without difficulty. A slightly modified method is suggested by Haskell's 
(1964) work. We define K" and k" by 

(2.11) 
where 

B"(k, n, z, w)  = EK"(k, n, z, w), b'(k, n, z, w )  = ek'(k, n, z, w), 

O ) (2.12) 
-yvp/2k2 

Y-1 

and y = 2 p 2  k2/w2, v, = (k2 - w 2 / ~ 2 ) 3 ,  v, = (k2 -w2/p2)* (CI, p being the wave 
speeds). 

K" and k" satisfy equations like (2 .6 )  with coefficient matrices 

0 -v, 0 0 
E- 'NE= [ -g 0 0  -f 1 and e - l n e  = (-:) -2) (2.13) 

- VP 

respectively. The corresponding propagator matrices are (summing the series) 

cosh v,(z-zo) - sinh v,(z -zo) 0 
- sinh v,(z -zo) cosh v,(z -zo) 0 

0 0 cosh v,(z-zo) - sinh v,(z-zo) 
0 0 -sinh v,(z-zo) cosh vp(z-zo) 

Pk(Z, zo) = 

(2.14) 
i 

coshva(z-zo) -sinhv 
- sinh v,(z-zo) cosh v,(z-z,) 

(2.15) 

The propagator matrices for B" and b" (and similarly Bs and b') are given by 

(2.16) I P,(z, z0) = EP,(z, z0) E- 
and 

respectively. 

geneous medium to be 

P b h  zo) = ep!& zo) e - 

Continuing with Haskell's notation, we define the layer matrices for a homo- 

A(z-zo) = P ~ z ,  zo), Nz-zo) = P~(z,  ZO). (2.17) 

Haskell's source matrices, corresponding to discontinuities in stress and dis- 
placement across a plane of constant z, are given by discontinuities in K', k', etc. 
For a discontinuity across z = zl, 

(2.18) I 
S"" and snS are similarly defined. 

Once solutions for the stress-motion vectors are known, the displacements can 
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Seismic signals at teleseismic distances-I 237 

be found from the inverse transformations 

[ 5 7 (U," cos n 4  + U l  sin n4) Jn(kr)  dk = - f exp ( - i w t ) d o  
I 

2n  
- m  n = O  0 

3. Wave transmission in a fluid overlying a solid medium 

(2.6) becomes null (i.e. b" = bs 3 0). The first equation is modified into 
In an elastic fluid, the modulus of rigidity ,u is zero and the second of equations 

a 
a2 
- b," = by (3.1) 

with the subsidiary conditions 

1 
( 3 . 2 )  u," = - - P T,", T,c = 0, 

where 

and 1 is now the bulk modulus of the fluid. The components U;, U,", etc. obey similar 
equations. 

From the propagator pb(z, zo) of b," and b," we construct a modified propagator 
matrix 

/1 0 0 o\ 

\o 0 0 o/ 
where pi; are the components of pt(z, zo). Pt is not a true propagator but has the 
following properties similar to those of a propagator matrix 

Pb% Zl)  J?bl(z1, zo) = Pbl(Z1, ZO) (3 * 5) 
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238 J. A. Hudson 

/ I  0 0 0\ 

(3.6) 

B'(k, n, Z, W) = P ~ ( z ,  Zo) (3 .7)  

where U,C(z) = U,"(k, n, z ,  a), etc. 
If the top surface of the fluid (z  = 0) is stress-free and there are no discontinuities 

in stress or displacement in the fluid, then, in the medium below a fluid-solid inter- 
face at z = zo, 

B"(k, n, Z, 0) = P,(z, zo) Phl(zg, 0) (3 .8) 

and 

with similar equations for B' and b", where P, and pb are the propagators for the 
solid medium. 

The modified propagator matrix may be used, according to its properties given 
above, in a similar way to the (4x4) propagator matrix for a solid medium. The 
unknowns appearing in equations (3.8) and (3.9) refer to motion at the free sur- 
face and at the fluid-solid interface. 

To find the propagator pi(z,zo) for a homogeneous fluid we make the trans- 
formation 

where 
b,"(k, n, z, w )  = e' kf(k, n, z, w) (3.10) 

(3.11) 

The final result is 

(3.12) 

(3.13) 

This is similar to the modified matrix proposed by Haskell (1953), but the unknowns 
appearing in the equations (3 .8  and 3.9) by this method are more directly useful. 

sF(k, O) = k;(k, ~t, ZO f 0, 0) - k,"(k, 12, 20 - 0, O) (3.14) 

ve 

P 

cosh vu(z-zo) 

cash vb(z-zo) - - sinh vu(z-zo) 

P 
v, 

- - sinh v,(z-zo) 

A'(z-2,) = P~(z, zJ. 

Pb%, ZO) = 

A modified layer matrix may be defined as 

At a discontinuity in the fluid we construct the source vector 

or SF(k,  O) = K,"(k, n,zofO, w)-KK;(k, n,zo-O, W )  

where 

and El is constructed from e' in the same way as P,' from pi .  

B"(k, n, Z, w) = E' KK;(k, n, Z, W) (3.15) 
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Seismic signals at teleseismic distances-I 239 

In a medium where fluid lies below the solid medium the procedure is more 
complicated (see Dorman 1962). 

4. Discontinuities across an element of surface 

Burridge & Knopoff (1964) showed that discontinuities across a surface in dis- 
placement and in the stress acting on the surface can be assigned arbitrary values. 
The discontinuities in the other components of the stress tensor will be specified 
by these. 

Furthermore, it can be shown that discontinuities in the derivatives of the stress 
can also be found from the six discontinuities specified above. To prove this, we 
use the equation of motion 

(where ui is the displacement, zi j  the stress, and p the density). 
Equation (4.1) holds on both sides of the surface of discontinuity. Let us take 

the x3-axis in the direction of the normal to the surface at a given point. Then, 
denoting by square brackets the discontinuity across the surface at that point, we 
have 

The right-hand side is known and so the left-hand side can be calculated. We 
also have 

since each of the derivatives is along a direction tangential to the surface. 
There are three further derivatives: 

where 1 and p are the Lam6 constants. The right-hand sides are known in terms 
of the six basic discontinuities in displacement and stress and so the left-hand sides 
can be calculated. 

Higher derivatives of stress can be treated in the same way. Discontinuities in 
the derivatives of the displacements can be written in terms of the discontinuities in 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/18/3/233/652067 by guest on 21 August 2022



240 J. A. Hudson 

the stress. Hence, the most general discontinuity in stress and displacement, and 
their derivatives, across an arbitrary surface is specified by the discontinuities in 
displacement and in the stress acting on the surface. 

We may represent such discontinuities across an element of surface with normal 
n by 

where ai, bi are functions of time. 
Burridge & Knopoff (1964) have given a formula by which the equivalent body 

force can be calculated (that is, the body force giving rise to the same elastic radia- 
tion). It is 

ei(x, t )  = - J {[up1(59 t )  n q ( ~  c p q i j 6 j ( x ,  5 )  + [Tin1(5, t )  6(x, 5)) d ~ - ,  (4.6) 
I: 

where C- is the surface of discontinuity, cijpq are the elastic coefficients, and 

6) = 6(xl-rl)6(x2-rZ)6(x3-t , )  

Substituting equations (4.5) we find the equivalent body force to be 

e,(x, t )  = -dj(x, 0) { L a p n p B i j ~ ~ ( a i n j + a j n i ) } - ~ ( x ,  O)bi. (4.7) 
Suppose now that the plane x3 = 0 is the horizontal. We choose discontinuities 

[~il(x, t )  = At ~ ( x A  J(x2) 

across the plane x 3  = 0. The equivalent body force is 

e,(x, t )  = -6Jx, 0) (LA, 6 ,  + p(Ai Sj, + A j  ai, + Bij)) -S(x, 0) Bi. (4.9) 
The two sets of discontinuities (2.5) and (2.8) are equivalent if the body forces 

This implies that 
are equal for all x. 

(4.10) 

1 

and all other components of B, are zero. 

a discontinuity across a horizontal plane. 
Thus, an arbitrary discontinuity as given by equations (4.5) can be replaced by 
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Seismic signals at teleseismic distances-I 24 I 

5. Point forces and couples 

We may describe the orientation of a couple by two perpendicular unit vectors 
n and f, where n is normal to, and flies in, the null plane in such a way that the 
direction of the couple is given by n x f. A double couple is composed of two couples, 
one with orientation vectors (n, f) and the other with vectors (f, n). It is uniquely 
defined by the specification of the two vectors without regard to order. 

Burridge & Knopoff (1964) show that a unit discontinuity in tangential dis- 
placement in the direction o f f  across an element of surface with normal n is equiva- 
lent to a double couple with magnitude ,u and orientation vectors n and f. 

A unit discontinuity in normal displacement is equivalent to a dilatational force 
of magnitude A and a dipole of magnitude 2 p  in the direction of n. 

Finally, a unit discontinuity in the stress acting on the fault plane is equivalent 
to a unit body force acting in the opposite direction. 

The problem of a general force system acting at a point in a half-space has been 
dealt with by Chakrabarty (1967) who reformulated the Thomson-Haskell theory 
in terms of body forces rather than discontinuities across horizontal planes. How- 
ever, a general point force system can be represented as a discontinuity across a 
plane as follows. 

A simple body force acting at the point x = 0 can be written as 

e,(x, t )  = di6(x, 0) 

where di is a function of time only and I: is the plane x3 = 0. By equation (4.6) 
it is clear that the body force is equivalent to a discontinuity in stress across C of 

A general point force system can be derived from the simple force by differentia- 
tion. A first derivative, for instance, gives a couple or dipole; 

a 
axj 

e,(x, t )  = di - B(x, 0)  

n 

If j = 1, 2, this can be rearranged to give 

and the couple is equivalent to a discontinuity in stress 

Any number of derivatives with respect to x1 and x2 can be dealt with in this way. 
If j = 3, a rearrangement of the integral in equation 5.3 shows that the couple 
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242 J. A. Hudson 

is equivalent to the more complex discontinuity 

across the plane x3 = 0. 
Higher derivatives of the body force with respect to x, and x2 imply higher deriva- 

tives of the delta-functions in the expressions for the discontinuities. Higher deriva- 
tives with respect to x3 are more difficult to deal with. 

The equations of motion with body force F are 

If we put 

( 5 . 8 )  

where Kis an arbitrary constant and e is given by (5 .  I), then the solution to equation 
(4.7) is u = Ke, with no radiation since e is a point force and is zero outside a restric- 
ted volume. Therefore, a body force a2 e l a ~ , ~  is equivalent to a force F* in elastic 
radiation, where 

( 5 . 9 )  

The right-hand sides of equations (5.9) can be represented in terms of equiva- 
lent discontinuities. Therefore, the left-hand sides have equivalent discontinuities. 

Higher derivatives of e can be dealt with in the same way. Hence, a general body 
force system acting at a point is equivalent to a set of discontinuities in displacement 
and stress across a horizontal surface element. 

Expressions for the source vectors (defined by equations (2.18)) for a unit force, 
a single or double couple, and for a dilatational source have been given by Haskell 
(1964) in terms of the orientation vectors f and n defined earlier in this section. 
The relation between the (x,, x2, XJ axes and the (r, 4, z )  co-ordinates is given by 

x1 = r C O S ~ ,  x2 = r sincp, x3 = z.  (5.10) 

Haskell’s source vectors may be used for the equivalent discontinuities in dis- 
placement and stress. 
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Seismic signals at teleseismic distances4 243 

6. Point sources in a fluid 

In the study of the propagation of sound in a fluid, viscosity is neglected. This 
means that, in a disturbance starting from rest, the motion is irrotational. The 
particle displacement u is therefore the gradient of a scalar function cp(x, t ) ;  

u = -grad cp. (6.1) 

The elastic wave equation for a homogeneous fluid is 

where A is the bulk modulus of the fluid and F is the body force. 
Substituting equation (6. l),  we get 

AVz cp - p  21 = F, 
at 

which implies that the body force must be the gradient of a scalar. This is a direct 
consequence of the impossibility of imposing shear stress on an inviscid fluid. 

We write, therefore, 

F = -grad0 (6.4) 

so that the wave equation becomes 

(Any function of time which may appear in the integration is absorbed into cp.) 
It is clear from this analysis that a point source can be defined either by specifying 

a jump in the value of cp or its derivative of any order across an element of surface, 
or by specifying n(x, t).  

The elementary point force system is given by 

R = r/qx, O), (6.6) 

where d is n function of time only. This corresponds to n dilatational source 

Fi = -dai(x, 0). (6.7) 

More complex force systems are given by derivatives of the dilatational force. 
In order to find the equivalent body forces for a given discontinuity we need to 

write down Green’s formula for the fluid. In an unbounded fluid with a radiation 
condition at infinity it is (Stakgold 1968) 

m 

a 
axi 

- V(X, t )  - G(y, S; X, t )  

where V is the volume of fluid bounded internally by a surface S with outward 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/18/3/233/652067 by guest on 21 August 2022



244 J. A. Hudson 

normal n, and G(x, t ;  y, s) is Green’s function satisfying the equation 

with G = 0 for t < s. 

surface C of discontinuity and rewrite equation (6.9) as 
We now follow Burridge & Knopoff (1964) in taking S to be the two faces of a 

- 0 0  v 

- 1 ~ v i ( [ v l ( ~ ,  t>ai(x, Q+ [y,il(t, t)a(x> 5)) d ~ ]  d~ (6.10) 
z 

where [rp](5, t )  and [rp,i](g, t )  are the discontinuities in rp and arp/axi at a point 
5 of I: measured in the direction of the normal v. 

This means that the discontinuities are equivalent to the body force e(x, t )  with 
potential 

(6.13) 

It is equivalent to the body force given by 

(6.14) 

This expression is in the form of the derivative along the normal direction to 
;I: of a dilatational source (equation (6.7)). We now proceed to find an equivalent 
form of this force. 

a 
ei(X, t )  = -bAV,-6i(X, 0). 

If a body force F were given by 

(6.15) 

where e(x, t )  is a function which is bounded in space, the solution to equation (5.2) 
would be 

u = e  (6.16) 

and there would be no elastic radiation. Therefore, a body force of l a 2  ej/axiaxj 

is equivalent to one of p -  a2 e, 
at2  * 

We now take 
ei = vib6(x, 0) (6.17) 
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Seismic signals at teleseismic distances-I 245 

and so the two body force systems 

(6.18) 

are equivalent. Hence, the equivalent body force to the discontinuity in cp, given in 
equation (6.12), is 

a 2 b  
ei(x, f )  = -p i  - 6(x, 0). 

at2 
(6.19) 

Therefore, comparing this with equation (6.13), we see that a unit discontinuity in 
pressure is equivalent to a unit simple force acting in the direction of the normal 
to the surface of discontinuity. 

This is the same result as achieved in the case of an elastic solid modified to take 
account of the fact that there are no shear stresses in the fluid and so discontinuities 
in the normal component of stress ( - p )  only are allowed. 

A discontinuity in displacement 

(6.20) 
is equivalent to the body force 

ei(x, f )  = - A v k  ak 6i(x, 0). (6.21) 

This is a dilatational source; i.e. the same result as in the case of a solid with 
the shear modulus I( zero. 

It is clear from equation (6.21) that the discontinuity in the normal component 
only of displacement ( v k  ak) contributes to elastic radiation. 

Discontinuities in the higher derivatives of cp across an element of surface are 
specified uniquely by [ c p ]  and [cp, i ] .  This can be shown in the same way as in the 
case of a solid by using the wave equation (6.5) with zero body force. In fact, the 
most general discontinuity is specified when values are given to [cp] (or [p]) and 
[cp,,] (= - [u.v]) since the other components of [Vcp] are given by tangential deriva- 
tives of [cp]. 

The most general point body force is given by derivatives of the dilatational force 
(equation (6.7)). The dilatational source itself is equivalent to a point discontinuity 
in normal displacement across a surface. The derivative of this normal to the surface 
is equivalent to a discontinuity in pressure. 

Other derivatives of the basic point source are given by derivatives tangential to 
the surface of discontinuity, by the use of the equivalence of the two-forces systems 
(6.18). Therefore, they are equivalent to tangential derivatives of the two basic 
discontinuities mentioned above. 

Hence the most general discontinuity and the most general point force system 
can be specified by giving values to [cp] and [cp,,]. 

We shall now show that a set of discontinuities across an element of surface of 
arbitrary orientation is equivalent to discontinuities across a horizontal plane (x3 = 0). 

Discontinuities 

(6.22) 

(6.23) 

CcpKX, t )  = bW,)6(xJ 

E~,vl(x, t) = vj[~,jl(x, t )  

= a6(x,) 6 ( X J  
are equivalent to a body force with potential 

x(x, t )  = - I{bVi di(X, 0) + aqx, O)]. 
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246 J. A. Hudson 

This is equivalent to discontinuities 

across the plane x 3  = 0 if the body force potential 

-A{Bd3(X, 0)+AjSj(X, O)+A6(x, 0)) (6.25) 
is equal to that given by equation (6.23). 

This implies that 
A = a  B = bv3 

A ,  = by1 A2 = bv,. 

Therefore, by this method, we can represent the general point source, body force 
or discontinuity, by equivalent discontinuities in cp and (P,~ across the horizontal 
plane x 3  = 0. 

The discontinuities [U,'] and [ Tzc] in the components of the stress-motion vector 
are found by equations (2.3) and (2.4) in terms of a discontinuity in normal dis- 
placement 

[%I = - [ V D , ~ I  
and normal stress 

[tzzl = - bl 
a2 

= P,,, [cpl 

(6.27) 

(6.28) 

across a horizontal plane. 
The source vector for a dilatational source is the same as that given by Haskell 

(1964) for a solid. The only non-zero source vector for a unit simple force in the 
vertical direction (f = (0, 0, l)), however, is 

(6.29) 

where k and w are the 

7. Source models for an 

transform variables. 

earthquake 

The spatial extent of an earthquake is not in general small compared with other 
typical lengths in the problem (B%th & Duda 1964). Therefore, we must deal with 
sources of finite size rather than point sources. This is most easily done by integrating 
the theoretical results from the Thomson-Haskell theory for a delta-function source. 

Ben Menahem (1961) calculated the radiation from a simple force acting on a 
line of finite length which moved over a rectangle at constant speed. Knopoff & 
Gilbert (1960) extended the idea of a point source to a model where point discon- 
tinuities in displacement and stress moved along a line at constant speed. The 
single and double couple sources of Hirasawa & Stauder (1965) were assumed to 
move across a rectangle in a similar way to Ben Menahem's model. 

With regard to the mechanism of the source, the dislocation or transverse slip 
model has lately aroused the most support. Ben Menahem has preferred the equiva- 
lent force system, the double couple, in his later work (e.g. Ben Menahem, Smith & 
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Teng 1965). It would seem that cracking or slipping along a surface is a probable 
explanation of the majority of shallow earthquakes, if not of deep earthquakes. 

The hydrostatic pressure acting on the rock probably rules out any normal dis- 
placement of the faces of the fault except at the surface itself. Therefore, transverse 
slip or the double couple source seems to be the most likely source of earth tremors. 

The most convincing model of an earthquake is that proposed by Savage (1966). 
Transverse slip is assumed to originate at a point and travel outwards in a plane at 
constant velocity. It is finally arrested at the edge of an ellipse so that the fault, after 
rupture, is elliptic in shape. 

We shall generalize this idea slightly. Consider a fault plane C with normal n. 
We assume that transverse slip occurs on this plane in a uniform direction f(n.f = 0) 
of magnitude F ( t , ,  tz, t ) ,  where (tl, t2) are rectangular co-ordinates in the fault 
plane. 

[Uil  =ft Wt,, t z ,  0. (7 .1)  
The function F will be zero outside an area whose shape may be arbitrary chosen. 

The magnitude of slip as a function of position and time as well as the fault shape 
are subjects which are studied in the theory of cracks and which need a fairly deep 
understanding of the properties of rocks under pressure (see, for instance, Burridge 
1969). 

Therefore, the 
Haskell (1964) source vector may be used in calculating the radiation and the result 
for a point source integrated over the co-ordinates (C1, rz) of points of C. 

The model is equivalent to a double couple of magnitude F .  

8. Source models for explosions 

(a) Underground explosions 
The behaviour of the medium in the neighbourhood of an underground explosion 

can be regarded as perfectly elastic outside a certain sphere surrounding the source. 
If the explosion were contained in an infinite homogeneous medium, the displace- 
ments in the elastic region would be spherically symmetric and would have a radial 
component uR only. 

In order to satisfy the equations of motion, uR takes the form 

where R is the radial distance from the centre of the sphere. Experimental measure- 
ments of the magnitude and shape of the potential function $ for nuclear explosions 
of various yields and in various media are available in the literature (e.g. Werth & 
Herbst 1963). 

The displacement may be thought of as being due to a dilatational point force 
e acting at the centre of the sphere, 

(8.2) e i (x ,  t )  = P(t)dJx, 0) 
where R = ( x ~ ~ $ x ~ ~ + x ~ ~ ) ~  and P is some function of time. 

Alternatively, e may be thought of as having a radial component only 

eR(x, t )  = 

The equations of motion give 
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whose solution in an unbounded medium is (Love 1903) 

(R’)’ dR‘ dR. (8.5) 

The integration covers all points x’ in space (R’ = Ix’l) and dR is an element of 
solid angle. 

Therefore, 
$( t  - R/a)  - - P(t - R/B)  - 

R 47tRuZ p 

or P( t )  = -4za2  p$( t ) .  (8 7) 

This means that if the explosion is approximately spherically symmetric into the 
elastic region we may use the Thomson-Haskell theory for a point dilatational 
source of magnitude -47ta2p$(t) to calculate the radiation. The method will not 
apply if the region in which the laws of infinitesimal perfect elasticity do not hold 
extends into inhomogeneities of structure or to the surface itself. 

(b) Underwater explosions 
If the non-linear region of disturbance due to the explosion does not break 

surface, nor extend into the lower solid region, the analysis used above is applicable. 
We define a potential function (equation (8.1)) 

u = grad ($( t  - R/a) /R}  (8 .8)  

which is related to the magnitude P of the equivalent dilatational source by equation 
(8.7). 

Experimental data is given in terms of the pressure, 

P a2$(t--R14 
atz 

p ( R ,  t )  = - - 
R (8.9) 

If we use data in the form 

P ( t - R / a )  = Rp(R, t )  (8.10) 

then we have the relation 

az * (0 P(t) = - p -  
a t 2  * 

(8.11) 

The magnitude of the dilatational source which represents the explosion is given 
in terms of the data by 

t T‘ 

~ ( t )  = 4na2 1 P ( z )  d~ dz’. (8.12) 
0 0  

(c) Atmospheric explosions 
The effect of an atmospheric explosion on a layered structure below is to create 

a moving pressure pulse which spreads out symmetrically from a point directly 
below the centre of the explosion (see Glasstone 1964). 

Wave propagation in the solid medium will probably be linear so long as the 
fireball does not touch the surface. 
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The pressure pulse may be represented in the Thomson-Haskell theory as a 

[ L l  = -P@, 0 9  (8.13) 

where p is the pressure and r is the radial distance on the surface away from the 
centre of symmetry. 

This is equivalent to a moving normal force (see Section 5) acting in the down- 
ward direction (f = (0, 0, 1)) of magnitude p(r,  t). 

We may use the Thomson-Haskell theory to find the response to such a dis- 
turbance by integrating over the response to a series of point sources. 

moving discontinuity in normal stress acting at zero depth; 

9. Conclusions 
Simple models of earthquake and explosive sources can be represented in terms 

of simple force systems or discontinuities acting at a point or over an extended area. 
Magnitudes of explosive sources can be calculated from experimental data, but 

the details of the earthquake model need further hypotheses concerning the properties 
of the surrounding rock. 
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