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Introduction. Let 4 be an irreducible stochastic matrix of order n. It follows from
the theory of nonnegative matrices that —1 cannot be a proper value of 4 unless the
imprimitivity index [2] of Ais even. If the index of imprimitivity of A4 is even, there
exists a subset M of the set N = {1, 2,00, n} such that a; = O forie M, ke M and
for ie N\ M, ke N\ M. In other words the matrix can be brought (by the same

permutation of rows and columns) to a block diagonal form of the following type:

RS

Therefore — 1 is not a proper value of 4 if 4 cannot be brought to the aforementioned
form. It is to be expected that a quantitative refinement of this statement can be
obtained: if we introduce a characteristic measuring how far the given matrix is from
matrices of the above form (1) then it is conceivable that the distance of all eigenvalues
of A from —1 would be bounded from below by a number depending on that
characteristic. It is the purpose of the present paper to estimate the distance of the
proper values of 4 from — 1 in terms of two numbers p and o the first being a measure
of irreducibility, the second a number measuring how close the given matrix is to
matrices of the form (1). The measure of irreducibility has been used in [1].

1. PRELIMINARIES

Notation. Let n be a natural number, n > 2. We shall denote by & the set of all
symmetric stochastic matrices of order n. The letter N will stand for the set of all
natural numbers <n. A matrix is a mapping from N x N into the reals, the value
of the mapping A at the point [i, k] being denoted by a;,. If A and B are two matrices,
we write A = Bif a, = by for all i, k € N. Vectors are column vectors of length n, e
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will be the vector defined by e” = (1, 1,...,1). If 4 is a given nonnegative matrix,
we define

WA)=min{ Y ay MCN,O#M:}:N},
M,N\M
J(A) = min {( Z ay + Z aik); Mc N}
M MM N\M ,N\M
Observe that if S = (s ) is doubly stochastic then for any M

Sik = 2 Sig -
M, N\M NM,M

Given an operator T'in a linear space E, we denote by f%’(T) its range.

Let H be an n-dimensional Hilbert space. If T is a symmetric operator in H, we
shall use the notation

M(T) 2 2(T) 2 ... 2 2,(T)

for the proper values of T arranged in this order.
We shall use the following inequalities between the numbers AE(T).

(1,1) Let H be an n-dimensional Hilbert space and let P be an orthogonal
projector in H such that the dimension of its range is r. Let M, and M, be two
symmetric operators in H such that PMP = PM,P. Then

2(M,) = 2,(M,).
Proof. Denote by &, the set of all r-dimensional subspaces of H. We have then

A(M;)=max min (M;x,x)= min (M;x,x)= min(PMPx, x) =
[x]=1

Eed, xeE,|x|=1 xeR(P),|x|=1
= min (PM,Px,x) = min (M,x, x) = min (M,x, x) = 4,(M,).
Ix]=1 xeR(P),|x}=1 jxf=1

(1,2) Corollary. Let H be an n-dimensional Hilbert space, let My and M, be two
symmetric operators in H the difference of which has rank h. Then

In-n(My) Z 2(M).

Proof. Let P be the orthogonal projector on the space (#(M; — M,))". Apply
the preceding lemma.

2. SYMMETRIC STOCHASTIC MATRICES

(2,1) Lemma. Let S be the matrix of order n defined as

1, 1,1, 1
0,1,1, 1
S§$=10,01, 1
0, 1
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Suppose that A, Be & and that
STAS = S'BS

(the inequality being taken elementwise). Then (Ay, y) = (By, y) for each vector y
such that y. 2 y, 2 ... 2 Y,

Proof. There exists a nonnegative vector w such that y — y,e = Sw. Now
(Ay, ») = (A(Sw + y.e), Sw + y,e) = (ASw, Sw) + (Ay.e, y.) + (ASw, y,e) +
+ (Ay,e, Sw). Since Ae = A"e = e, the last expression becomes (STASw, w) +
+ ny? + y(Sw, ) + y,(e, Sw). Similarly, (By, y) = (STBSw, w) + ny? + 2y,(Sw, e).
Since w is 2 nonnegative vector, we have (STASw, w) = (STBSw, w) whence (4y, y) 2
= (By, y):

(2,2) Lemma. Let A be a doubly stochastic matrix of order n. Let S be the matrix
of order n from lemma (2,1).
Denote by B the matrix STAS. Then for each i, ke N

by = vl v, =i + k — n + wiAw, = }(v] v, + wiAw, + i+ k — n)
where v] = @,...1,0,... 0) the number of ones being i and w; = e — v,.

Proof. Since S = (vy, vy, ..., v,), we have STAS = B = (b,) where b, = v Av;.
Observe now that

viAv, = (e — w]) Ale — w) =

=n—(n—i)—(n—k)+widw, =i+ k—n+ w;Aw,

so that

) by =1i+k—n+ wldw,

as well as

(3) 2by = vidAv, + widAw, +i+k —n.

(2,3) Definition. Let ¢ and p be two positive numbers. Let us denote by (o, 1)
the set of matrices

(o, p) = {Aey; o(A) 2 o, p(4) 2 /1}.

(2,4) Lemma. Suppose that n is even, n = 2m and that ¢ + 2u £ 2. Set

Alo, ) = [Z’ (M(p) - 2) P]

P(M(y) — Z), PZP
where Z, M(1t), P are the following matrices of order m.
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0, 0, O, O
0,00 0 0
Z= ,
0, 00 0 0
[0, 0, O, %o
1 - 117”5 %ﬂy 05 0
1u, 1—p, 3 0
M(ﬂ) - P . ", U ,
LO: %ﬂ, 1_ %ﬂ
[0, 0, 0, 1
po|0 0 L Of
(1,0, 0,0

Then o(A(o, p)) = 0 and p(A(o, ) = p so that Ao, p) e (o, 1) Also,
STAS = S"A(o, 1) S for each Ae (o, ).

Proof. The matrix A(o, i) is symmetric and nonnegative since Z > 0 and M L) —
~Z2z0. Also Ao, u)e = e since P& =& (¢ m-dimensional) and M(u)e = ¢,
Denote, for a moment, 4(c, 1) = Q = (q4). Then

o(Q) =min (Y, qu + Y, qu) =0,
McN ieM iN\M
keM keN\M
since for any M < N we have

—
ZQik'l_ LQikgzqii=a;
ieM ieN\M ieN

keM  keN\M

at the same time, for M, = {1,2, ..., m}, we have

Ydut Y qu=0,
ieMo ieN\Mg
keMo keN\Mgo

Let us show now that u(Q) =, u. Clearly Q is “tridiagonal with respect to the second
diagonal” and has the form

gu =74 if i+k and i+k=n+2 or i+k=n,
gy =30 if 2i=n+4+2 or 2i=mn,

Dum+1 = dme1m = 1 — 300 — 30, _

qo=qu=1—-—p if i+k=n+1, I<i<m,
Gin=qu =1 =31, qu =0 otherwise.
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Thus, for M = {1, n} we have

Y Qi =dip-1F Gup =1
ieM
keN\M

so that
O wQ) = u.
Suppose that there exists a set M < N, @ + M # N such that

(5) y qu < h.
isM
keN\M

Since Q is symmetric, we have

> gu < p as well.
ieM\N
keM
Hence we can assume that 1 e M.

Let s be the minimal integer for which at least one of the integers sand n — s + 1
does not belong to M. Such integer s exists since M + N and 1 < 5 < m. Let us
show that exactly one of the integers s and n — s + 1 belongs to M. This is clear
ifs=1. If s> 1 then s¢ Mand n — s + 1 ¢ M would imply

'El}lqik g qs—l,n—s+1 + qn—s+2,s = '%‘ﬂ + %ﬂ =W,
keM
in contradiction with (5).
Since the renumbering k <> n 4+ 1 — k does not change Q, we can assume that
seM, n— s+ 1¢M. Clearly s < m since otherwise M = N — {m + 1} and

Y 4im+; = 1. Now we intend to prove the following assertion: if s < r < n —
i¥m+1

— s + 1then r belongs to M if and only if » — s is even. The proof will be by induc-
tion with respect to p(r) = min(r —s,n —r — s + 1).

The assertion is true if p = 0. Now let p > 0 and suppose the assertion proved
for p — 1. Let ¢t be the integer defined as follows

t=n—-r+2 if r—-s<n—-r—-s+1,

t=n-—r if r—s>n—r—s+1.
(Since niseven,r —s=n—r —s + 1 is not possible.) Observe that, in the first
case, 2r < n + 1 and that 2r > n + 1 in the second case. It follows that ¢ % r
since ¢t = r implies 2r = n + 2 in the first case and 2r = n in the second case.

We shall show now that the pair 7, t either is contained in M or is disjoint with M.
To see that suppose that re M, re N\ M.
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If s =1, then

Z ‘Iik%‘11n+q.-t=1—%ﬂ+%ﬂ=1%ﬂ’
ieM
ke;\M

in contradiction with (5). If s > 1 then

ZA:I qik g qs—l,n—s+1 + qs,n—s+1 + Qrt = Jinu + 1 - U + %,Ll = 1 ; K,
ksl)s’\M

a contradiction as well. Similarly, the assumption r € N\ M, t € M leads to a contra-
diction in the same manner.

Thus either both r and ¢ belong to M or neither of them belongs to M.

For p(f) we obtain the following estimates:
in the first case

pysn—t—s+1l=r—s—1=p(r) -1

and in the second case

p(t)§t~s;n—r—s=p(r)—1.

According to the induction hypothesis ¢t belongs to M if and only if ¢t — s is even.
Since r — tis even, the same is true for r.

Consequently if m — s is even we have

Z it Z Ds—1n-s+1 T Dsyn-st1 T Dmym+t

b
where the first summand is missing if s = 1; if m — s is odd, the third summmand is
replaced by ¢, 41 m the right-hand side is equalto 1 —4p + 1 —3dp —3p =1 2 p
In both cases we obtain a contradiction which completes the proof of the equality
wQ) = .

To prove the last assertion, consider an arbitrary 4 € &/(o, ) and apply the equal-

ities (2,2) to the matrices C = S"A(o,1) S = (c;) and B = STAS = (by).
It follows easily that

o= 0 if i+k<n,

=4p f-i+k=n, i%k,

&
I

=3 ifi+k=n, i=k,

)
=
I

cp=i+k—-n if i+k>n.
Thus, by, 2 ¢y if i + k < n. If i + k> n, we have, by (2,2)
by=i+k—n+wAw 2i+k—n=cy.

1t remains to prove by = ¢y if i + k = n.
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However, then

2by = v Av, + w] Aw, by (2,2).
If i =k, then i = m, whence

2by = Z ay + Z Ak
ieM ieN\M
keM keN\M

for M = {1, 2,..., m} so that
2bpm = 6(A) 2 0 = 2¢,y -

Now let i < k, so that i < m. Then, A being symmetric,

2b; = U?Aun—i + wiTAwn-i = vlTAvn-i + W,.T—iAWi P
= UiTA(”n—i - Ui) + Wf—iA(wi - Wn—i) = UITA(W:' - wn—i) + WnT—iA(Wi - Wn-i) =
= (] +wi;)Ale — v; — w,_)) =

= Y a, where M={l,...,iin—i+1,..,n}.
peM
geN M

Since = M * N, we have 2b;,_; = p(4) = p = 2¢; ,; and the proof is complete.

(2,5) Lemma. Let m be a natural number and let n = 2m. For each A € (o, p)
the minimal eigenvalue of A(o', 1) does not exceed the minimal eigenvalue of A:

M(A) = A,(A(o, 1)) .

Proof. Let A be the minimal eigenvalue of 4 and let x be a vector such that Ax =
= Ax and (x, x) = 1. Let Q be a permutation matrix such that x = Qy where y, 2
2y, 2 ... 2 y, Wehave then 4 = (4x, x) = (4Qy, Qy) = (QTA4Qy, y). It is easy
to check that QTA4Q e (o, 1) again so that, by lemma (2,4),

STQTAQS = STA(s, 1) S .
It follows from lemma (2,1) that
(Q"4Qy,y) = (A(o, 1) ¥, ¥) .

We have thus 2 2 (4(c, 1) y, y) and (¥, y) = (%, x) = 1. It follows that A cannot be
smaller than the minimum of the quadratic form (A(s, y) y, ) for vectors y with
(v, ¥) = 1, which is, indeed, the minimal eigenvalue of A(s, y).
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(2,6) Lemma. Let m be a natural number, let 0 £ p < 1 and denote by M(y)
the matrix
1 =3, iu,
o 1—p,
M(p) =
I, 1-p, Iu

- %.u’ 1 - %.u

The eigenvalues of the matrix M(u) are p,=1—p + pcos(k — )nfm, k =
=1,...,m. The corresponding eigenvectors are z* = (cos(k — 1)=n[2m,
cos 3(k — 1) n[2m, ..., cos 2m — 1) (k — ) =n[2m)". In particular, p, + p, =
=2(1-p =0

Proof. Write M(u) i in the form
M(p) = (1 ~ y)I + kC '
where C is the following matrix

1L, 1,
L o 1
]3 0> 1!

1, 0, 1
L L, 1

It is easy to verify that the elgenva]ues of C are cos (k — 1) n/m and that the
corresponding eigenvectors are the z*.
(2,7) Lemma. We have
| MG, 1) = 122 — M().

Proof. Consider the matrix U 6f order n = 2m defined by

-2 ]

where I is the unit matrix of order m. It is easy to check that UTU = UUT =1 so
that U is orthogonal and that ‘

UA(o, p) UT = [M(”)’ 0 )]

0, 2Z - Mu

It follows that the minimal eigenvalue -of A(a, u) equals the smaller of the two
numbers 4, (M(n)), ,(2Z — M()). It follows from lemma (2,6) that 1,(M(u)) +
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+ (M(y)) 2 0. Since L, (M(p)) = ~An-i(~=M(n)), we have 2, (M(n) =
2 Ap-y(—M (w)). Denote by P the projection operator given by the matrix

1,
1,

1
0l

Since P M(u) P = P(M(u) — 2Z) P, it follows from lemma (1,1) that 4,,_,(— M(p)) =
2 7u(2Z — M(p)) whence 4,(M(r)) = 1,(2Z — M(u)) so that

(A, 1) = min GaM(a) 127 — MG} = 727 — ().
The proof is complete.

(2.8) Lemma. Let A be a doubly stochastic matrix of order n. Let B = (4 + A”).
Then

#(B) = u(4),
o(B) = o(A).

Each proper value J. of A satisfies the inequality
|4+ 1] 2 4(B) + 1.

Proof. If M = N, we have

Z Ay = 2 Ay
N\M,M

M,N\M
since both sides of the equation are equal to m — z a; where m is the ¢cardinality
MM

of M. It follows that Y by = Y a; whence u(B) = p(A4). Since clearly
M,N\M M,N\M _

z by = z Aig -

MM MM

it follows that

o(B) = o(4)
as well.

Now let y be a unit vector for which Ay = Ay. We have then

Re 1 = Re(4y, y) = (By, y) Z 4(B)
whence : '
A+1=Re(A+1)=Red+121(B)+1

which completes the proof.
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(2,9) Theorem. Let n be an even number, n = 2m > 2. Let u, o be two positive
numbers such that o + 21 < 2. Let A be a doubly stochastic matrix of order n
such that

wA4) = p, a(A)g 0.
Then, for each proper value A of A the distance of ) from —1 is at least sug(2¢/u)
where @ is defined as follows:

@(£) is the minimal eigenvalue of the matrix

1+¢ -1,
-1, 2, -1,
T() =
-1, 2, -1
-1, 1

of order m.

This estimate is sharp in the following sense: for each pair of positive numbers yi, ¢
such that ¢ + 2u < 2 there exists a symmetric matrix A(a, ,u) and a proper value ),
of A(o, p) such that

WA, ) =, o(d(o,p)) =0a, 2+ ‘1 = Jup(20/u) .

The matrix A(a, ,u) may be described as follows:

B u, U — u]

%“a 1 Hr Zﬂ’
1o, 1 — ﬁ Lu
A — 2Y 3 21
(O.’ /’l') %M> 1 - [ia %0’,

1

21, 1- K, %/’ts
,1 - %Hs Jfﬂ,

where i = 3 + }o. The number 1u¢(20/p) may be estimated from below as follows:

»}y(p(2a/u) 2 W:?;—U:IB .

Proof. Denote by B the matrix B = }(4 + A”). It follows from lemma (2,8)
that B e o#(0, p1). Let A be an arbitrary proper value of 4. By (2,8),

A+ 1) = 2(B) + 1.
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It follows from lemma (2,5) and (2,7) that
M(B) z L(A(o, 0)) = 1,(2Z — M(p)).

The matrix 2Z — M(p) may be written in the form

2Z—M(u)=2z-1+-‘2fw= —1+§<5Z+w>

"
where
1, —1,
-1, 2, -1,
W =
-1, 2, -1
-1, 1

Hence 4,(2Z — M(p)) = —1 + (1) 2,((4/r) Z + W)and clearly 1,((4/p) Z + W) =
= L(T(£)) = ¢(¢) for & = 20/p.
If £ > 0, the matrix T(¢) is invertible and its inverse may be computed as follows.
Since
T(¢) = RRT

Ve -1, 1
1, -1,
R =
1, -t

where

1

we have T(¢)™! = (R™")" R™'. Now

Lo
JE Ve \/5]

3

Accordingly, the elements u;, of the matrix T()™! are given by the formulas
uy =min (i, k) — 1 + &7,

It follows that o(£)™* < |T(¢)™! |, and this may be estimated, in its turn, by the norm
of the matrix T(£)™' taken as a linear operator in the n-dimensional affine space
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equipped with the norm |x| = max |x;|. This norm equals the maximal row sum of
the matrix. The maximum is attained in the last row and equals

3n—1n+nit.

Hence ¢(&) 2 2¢/[n((n ~ 1) ¢ + 2)] so that pe(20/n) Z op/[n((n — 1) o + w)].

The proof is complete.

3. MATRICES OF ODD ORDER

In this section we intend to prove analogous results for matrices of odd order.
Here the situation is different in that the characteristic ¢ cannot assume values smaller
than 1. We shall estimate the distance |4 + 1| in terms of the irreducibility charac-
teristic p only.

(3,1) Lemma. Let 4 be a doubly stochastic matrix of order n > 1. If n is odd
then o(4) = 1.

Proof. Let M, M, be a nontrivial decomposition of N so that N = M; u M,
and M, n M, is void. Since n is odd, one of -the two sets has a greater number of
elements than the other. Hence we may suppose that card M; > card M,. If we write

0y, 0,, o respectively for thesums Y, Y , ) of elements of 4, we have
Mi,M: Mz,M2 M M2

oy +0=card M,,

0, + 0 =card M, .

Hence oy + 0, = 0y — 0, = card M; - card M, = 1. Since M,;, M, was an
arbitrary decomposition, we have a(4) = 1.

(3,2) Lemma. Let 0 S p <1 and let () = {Ae %, p(4) 2 p}. Denote by
A(u) the matrix

du, 1 —dp
3w, 1 —p, Su
Alp) =
3, 1 —p, dp,
_1 - %ﬂ’ %ﬂ!

Then A(y)e o#(y) and STAS z ST A(p) S for each A € of(p).

Proof. Denote by ¢ the elements of the matrix A(¢). Obviously, g4 = 0, 2‘1 w=1
so that A(u)e &.
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We shall prove now that u(A(x)) = p. Clearly if M, = {1, n} then

Z Qi =
Mo,N\Mo
so that p(A(r)) £ p. If p = 0 we have p{A4(0)) = 0. Assume thus that x4 > 0 and that
there is a non-void proper subset M of N such that

(6) | Z qix < W

M,N\M
Since A(y) € &, it follows that

Z qix = Z Iy < H
N\M,M M,N\M

as well. Hence we can assume that 3(n + 1) e M. Let s be the minimal index, 1 <
<s =< %(n -+ 1) such that all indices s,s + 1,...,n — s + 1 belong to M. Since
M % N, s Z 2 and exactly one of the indices s — 1, n — s + 2 belongs to M since

otherwise Y Gy = Guosr1s-1F Gonosiz = I 2 contradlctlon Since A(u) remains
MM

unchanged if we perform the renumbering j —» n + 1 — j, we can assume s — 1€ M,
n—s+2¢M. Since then the sum Z gy contains the entries g .40 =
M, N\M

=1 — pand g,,_s+, = %p, we have necessarily, by (6),s —2¢M,n —s + 3e M,
s—3eM, n—s5+4¢M etc. However, q;, =1 — i is then also contained
in the sum which is thus greater than orequalto 1 — g +3p +1 —du=2 - p >
= p, a contradiction with (6). Thus p(4(n)) = .

Denote by C = (c;) the matrix STA(u) S. It is easy to check that

cp=0 if i+k<n,
cp=%u if i+k=mn,
cp=i+k—n if i+k>n, i,k=1..,n.
Let us assume that 4 is a symmetric stochastic matrix such that u(A) = p. Denote
by B = (by) the matrix STAS.
We intend to show that B = C. Clearly by 2 ¢y ifi + k <n. Ifi + k> n, we
have, by (2,2),
bp=i+k—n+wdw Zi+k—n=cy.

Now let i + k = n. Since n is odd, we can assume i < k, so that i < 4(n — 1).
By (2,2) and the symmetry of 4,

2by, = vj Av, + wiAw, = v] Av,_; + w,_Aw; =
= 0] A(v,—; — v;) + Wi Aw; — w,_)) =
= 0] AWy — Wy—i) + Wi AWy — w,_ )= (v] + wi_ l)A(e — U= W,_) =
= Y a, where M={l,...in—i+1,. ,n} o
MM
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Since @ = M # N it follows that
2b; i ZMA) Z =20,
The proof is complete.

(3,3) Lemma. Let n be a natural number. Then the minimal eigenvalue 1,(A)
of any matrix A € o(u) does not exceed 1,{A()).

Proof. Let A be the minimal eigenvalue of 4 and let x be a vector such that Ax =
= Ax and (x, x) = 1. Let Q be a permutation matrix such that x = Qy and

YiZy2Z o Z Vn-
We have then
A= (Ax, x) = (AQy, Qy) = (QTA4Qy, y).

It is easy to check that QTAQ e & and that u(Q"A4Q) = u(4) = p. Hence Q"AQ e
e o(p). It follows from lemmas (3,2) and (2,1) that

(Q74Qy, y) 2 (A(1) v, ¥) .-
We have thus 1 = (4(u) v, ¥) and (y, y) = (x, x) = 1. It follows that 7 2 1,(A(x)).

(3,4) Theorem. Let n be an odd number, n > 1. Let 0 < u < 1. Let A be a doubly
stochastic matrix of order n such that p(A) = p. Then each proper value A of A
satisfies the inequality

|4+ 1] Z u(1 — cos n/n).

This estimate is sharp in the following sense: for each u, 0 < u <1, there
exists a doubly stochastic matrix A(u) with p(A{n)) = u and a proper value 1
of A(u) such that

i+ 1=p(l —cosnfn);

this matrix A(u) is
%/'Q 1 - 0
1 —p, su

JZ‘/‘: 1 - M, Jz‘:u,
L= 3u,

Proof. First of all, it is easy to verify that the number A = —1 + u(1 — cos n/n)
is an eigenvalue of A(y) corresponding to the eigenvector [cos n/2n, cos 3n/2n, ...

.., cos (2n — 1) nf2n].
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Now, let A be an arbitrary doubly stochastic matrix of order n such that p(4) = p.
Let G = 4(A + A"). According to (2,8), u(G) = u(A4) = p and each proper value 1
of A satisfies the inequality

|2+ 1] 2 4(G) + 1.

In order to complete the proof, it suffices to observe that G e «/(u) and to apply
lemma (3,4).
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