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ARTICLE

A quantitative framework reveals ecological drivers
of grassland microbial community assembly
in response to warming
Daliang Ning 1,2, Mengting Yuan 1,3, Linwei Wu 1, Ya Zhang1, Xue Guo 1,2, Xishu Zhou1,4,

Yunfeng Yang 2, Adam P. Arkin5,6, Mary K. Firestone3,7 & Jizhong Zhou 1,2,7,8✉

Unraveling the drivers controlling community assembly is a central issue in ecology. Although

it is generally accepted that selection, dispersal, diversification and drift are major community

assembly processes, defining their relative importance is very challenging. Here, we present

a framework to quantitatively infer community assembly mechanisms by phylogenetic bin-

based null model analysis (iCAMP). iCAMP shows high accuracy (0.93–0.99), precision

(0.80–0.94), sensitivity (0.82–0.94), and specificity (0.95–0.98) on simulated communities,

which are 10–160% higher than those from the entire community-based approach.

Application of iCAMP to grassland microbial communities in response to experimental

warming reveals dominant roles of homogeneous selection (38%) and ‘drift’ (59%).

Interestingly, warming decreases ‘drift’ over time, and enhances homogeneous selection

which is primarily imposed on Bacillales. In addition, homogeneous selection has higher

correlations with drought and plant productivity under warming than control. iCAMP pro-

vides an effective and robust tool to quantify microbial assembly processes, and should also

be useful for plant and animal ecology.
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M
icroorganisms are the most diverse groups of life pre-
sently known, inhabiting almost every imaginable envir-
onment on the Earth, and they typically form complex

communities whose structure, functions, interactions, and dynamics
are critical to ecosystem functioning and service. However, char-
acterizing such complex communities, quantifying the accom-
panying ecological processes, and dissecting the mechanisms
controlling biodiversity and community composition are extremely
challenging1. With the rapid development of high-throughput
metagenomic technologies1, large experimental data on community
structure can be rapidly obtained. However, analyzing such massive
data to address fundamental ecological questions, such as com-
munity assembly mechanisms is challenging due to various issues
associated with detection specificity, sensitivity, quantification,
reproducibility, and taxonomic resolution1.

Understanding community assembly rules is a longstanding
issue of ecologists2,3. Niche-based theory asserts that determi-
nistic processes, including environmental filtering (e.g., pH,
temperature, moisture, and salinity) and various biological
interactions (e.g., competition, facilitation, mutualisms, and pre-
dation), largely control the patterns of species composition,
abundance, and distributions4,5. By contrast, neutral theory
assumes that all species are ecologically equivalent, and species
dynamics are largely controlled by stochastic processes of birth/
death, speciation/extinction, and immigration4,6. After intensive
debates in 2000s6–8, it is generally accepted that both determi-
nistic and stochastic processes operate simultaneously in the
assembly of local communities8–10, and the key question becomes
how to define their relative importance in controlling community
diversity, distribution, and succession3,8–14.

To unify niche and neutral perspectives on governing com-
munity structure, Vellend12,15 proposed a conceptual framework
that community diversity and dynamics are controlled by four
high-level general ecological processes: selection, dispersal, spe-
ciation or diversification, and ecological drift15,16. Hereafter, we
use the term ‘ecological processes’ particularly to represent these
community assembly processes. Although the framework has
recently received a great attention in microbial ecology3,17–19,
translating this conceptual framework into a quantitative opera-
tional model is even more challenging16–18,20. Due to the lack of
quantitative approaches, most analyses with respect to the relative
importance of the four processes across different types of natural
communities are qualitative and subjective, and replete with great
uncertainty16. As an exploratory effort, a null modeling-based
operational approach was developed to obtain quantitative
information on community assembly processes from the statis-
tical perspective19,20, which is abbreviated as QPEN (Quantifying
assembly Processes based on Entire-community Null model
analysis) hereafter. QPEN uses phylogenetic metrics to infer
selection since phylogenetic distance could reflect niche difference
(so-called phylogenetic signal) within some threshold19,21.

This statistical approach represents a significant advance in
microbial ecology that enables microbial ecologists to obtain
quantitative information on community assembly processes3. It
has provided valuable insights into the importance of various
ecological processes in microbial ecology19,20,22–26 and plant
ecology27. However, a major limitation is that various ecological
processes are estimated based on the pairwise turnovers of the
whole communities19,20. This may not be appropriate because it
is well known that the actions of various ecological processes (e.g.
natural selection) are typically on the finer biological organization
levels, such as genotypes and populations rather than whole
communities10,17,18,28,29. Within a single microbial community,
certain populations are under strong selection, whereas others
could be under strong drift. This type of difference cannot be
discerned using whole community level metrics. Also, various

groups of organisms differ greatly in their responses to envir-
onmental changes. Similarly, the dispersal ability, diversification
rates, and susceptibility to drift are substantially different among
various microbial groups. Thus, it would be meaningful to con-
sider selection and other ecological processes at the level of
individual taxa/lineages rather than the entire community3,17. To
this end, we developed a general framework to quantitatively infer
Community Assembly Mechanisms by Phylogenetic-bin-based
null model analysis, abbreviated as iCAMP, based on the turn-
overs of individual bins across communities (samples). We apply
this approach to investigate whether and how experimental
warming affects various ecological processes in the assembly of
grassland soil microbial communities. Our results indicate that
iCAMP provides a robust, reliable tool for quantifying the relative
importance of ecological processes in controlling microbial
community diversity and succession.

Results
Overview of iCAMP. To quantify various ecological processes,
the observed taxa are first divided into different groups (‘bins’)
based on their phylogenetic relationships (Fig. 1, Supplementary
Fig. 1a). Then, the process governing each bin is identified based
on null model analysis of the phylogenetic diversity using beta
Net Relatedness Index (βNRI), and taxonomic β-diversities using
modified Raup–Crick metric (RC) (Fig. 1, Supplementary
Fig. 1b). For each bin, the fraction of pairwise comparisons with
βNRI <−1.96 is considered as the percentages of homogeneous

Phylogenetic binning

Statistics

Community composition Phylogenetic tree

Phylogenetic bins with adequate phylogenetic signal

Bin 1 … Bin k

Relative importance of different ecological processes

HoS HeS HD DL DR

…

Correlation, Regression,

Variance Partitioning, etc.

Abundance-weighted
aggregation

Statistical analysis

Phylogenetic  diversity

Determinism Stochasticity

⎮⎮βNRIk⎮ > 1.96 ⎮βNRIk⎮  ≤ 1.96

βNRIk < –1.96 βNRIk > 1.96

Taxonomic   diversity

RCk < –0.95 RCk > 0.95 ⎮RCk⎮ ≤ 0.95

Null model

analysis for

each bin

Ecological process governing each bin

Ecological processes Environmental variables

a

b

c

Fig. 1 Overview of iCAMP. iCAMP includes several key steps: a phylogenetic

binning; b bin-based null model simulations with phylogenetic diversity for

partitioning selection, and taxonomic diversity for partitioning dispersal and

drift; and c statistical analysis for assessing relative importance of different

ecological processes and linking the processes with different environmental

factors. βNRI beta net relatedness index, RC modified Raup–Crick metric; Here,

‘ecological processes’ particularly mean community assembly processes,

including homogeneous selection (HoS), heterogeneous selection (HeS),

homogenizing dispersal (HD), dispersal limitation (DL), and ‘drift’ (DR).

See the main text for a detailed explanation.
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selection, whereas those with βNRI >+1.96 as the percentages
of heterogeneous selection based on the threshold applied
previously20,30. Next, taxonomic diversity metric RC is used to
partition the remaining pairwise comparisons with |βNRI| ≤ 1.96.
The fraction of pairwise comparisons with RC <−0.95 is treated
as the percentages of homogenizing dispersal, while those
with RC >+ 0.95 as dispersal limitation19,20. The remains with
|βNRI| ≤ 1.96 and |RC| ≤ 0.95 represent the percentages of drift,
diversification, weak selection, and/or weak dispersal3, hereafter,
simply designated as ‘drift’19 for convenience. The above analysis
is repeated for every bin. Subsequently, the fractions of individual
processes across all bins are weighted by the relative abundance of
each bin, and summarized to estimate the relative importance
of individual processes at the whole community level (Fig. 1,
Supplementary Fig. 1e). Furthermore, various statistical analyses,
e.g. Mantel test, multiple regression on distance matrix (MRM),
variation partitioning, etc., are used to reveal the linkages of
individual processes to different environmental factors for
obtaining detailed insights into community assembly mechanisms
(Fig. 1). Besides βNRI and RC, iCAMP also incorporated direct
test based on null model distribution, which provided highly
similar results as βNRI and RC in this study (Supplementary
Fig. 17), and should be a preferred choice when the null model
simulated values do not follow normal distribution31 (see Sup-
plementary Note 1 for details).

Simulated communities. Due to lack of a gold-standard experi-
ment to establish the true community assembly processes, using
simulated communities is the predominant approach for asses-
sing performances of various computational methods, as shown
in many other computational studies32,33. Thus, we used a
simulation model to generate communities with pre-defined
relative importance of each ecological process (Supplementary
Fig. 2). In this simulation model, four plots (LA, LB, HA, HB) in
two islands (A, B) under two types of environments (L, H) are
considered, with six local communities sampled from each plot
(Supplementary Fig. 2a). Each local community consists of dif-
ferent types of species controlled by drift, selection, or dispersal
(Supplementary Fig. 2c–e).

Three scenarios were simulated with three different levels of
phylogenetic signal in the regional species pool: low (Blomberg’s
K= 0.15), medium (K= 0.9), and high (K= 5.5). Each scenario
has 15 simulated situations, where the expected (‘true’) relative
importance of each process (selection, dispersal, drift) was
set from 0% to 100% (with an interval of 25%, Supplementary
Fig. 2b and Supplementary Table 1). Then, the relative
importance of different ecological processes was assessed by
iCAMP. The performance was evaluated with six quantitative
and qualitative indexes: quantitative accuracy and precision,
and qualitative accuracy, precision, sensitivity, and specificity
(detailed in the Methods section, Eqs. (16)–(21)). The quantita-
tive performance indexes are based on the difference between
the expected and estimated relative importance of each process,
while the qualitative performance indexes are calculated from
the true or false identification of dominant process. According to
the performances with simulated communities, we optimized the
binning algorithms (Supplementary Figs. 3 and 4), metrics
(Supplementary Fig. 5), and null model algorithms (Supplemen-
tary Fig. 6), and explored the impact of randomization times and
resampling taxa on the performance (Supplementary Figs. 7 and
8; detailed in Supplementary Note 1).

Comparison between iCAMP and other approaches. After
appropriate parameter settings were determined, iCAMP and sev-
eral previously reported approaches were compared for their

performances with the simulated communities (Fig. 2, Supple-
mentary Figs. 9–12). First, the ecological stochasticity was quanti-
fied by five approaches, including abundance-weighted neutral taxa
percentage (NP)3 based on neutral-theory model, normalized sto-
chasticity ratios (NST)33 based on taxonomic (tNST) or phyloge-
netic metrics (pNST), and the relative importance of stochastic
processes (homogenizing dispersal, dispersal limitation, and drift)
based on QPEN or iCAMP. Under high-phylogenetic-signal and
medium-phylogenetic-signal scenarios, iCAMP consistently showed
the highest quantitative accuracy (0.978–0.997) and precision
(0.903–0.930), while pNST exhibited similar accuracy (0.924–0.954)
but lower precision (0.658–0.722, p < 0.001, Fig. 2a–c). Under low-
phylogenetic-signal scenario, iCAMP continued to show the highest
precision (0.807) and the second-high accuracy (0.770), while pNST
showed similar precision (0.723) and the highest accuracy (0.947).
By contrast, tNST, NP, and QPEN showed lower precision (<0.57,
down to −0.75, p < 0.0001) than iCAMP in simulated scenarios
(Fig. 2a–c).

Only QPEN and iCAMP can quantify relative importance of
different ecological processes, so we compared their performances.
On average, iCAMP had higher accuracy (0.93–0.99 against
0.81–0.97, 9.9% higher), precision (0.82–0.94 against 0.33–0.52,
120.2% higher), sensitivity (0.83–0.94 against 0.54–0.58, 61.1%
higher), and specificity (0.96–0.98 against 0.87–0.88, 10.6% higher)
than QPEN (Fig. 2i, Supplementary Fig. 9k, l). The setting of
phylogenetic signal also had significant impacts on iCAMP
performance. When the phylogenetic signal increased from low/
medium to high (Fig. 2i, Supplementary Fig. 9k, l), the accuracy and
specificity of iCAMP remained high (>0.92) without significant
changes (p > 0.20), but the precision and sensitivity of iCAMP
increased from 0.80–0.82 to 0.90–0.94. By contrast, the overall
performance of QPEN was improved by higher phylogenetic signal.
In addition, iCAMP demonstrated good robustness to the
uncertainty in bin determination (Supplementary Figs. 10 and 11,
see Supplementary Note 2).

The performance varied considerably among different ecolo-
gical processes (Fig. 2d–h, Supplementary Fig. 12). In the
simulated communities under medium and high phylogenetic
signals, all performance indices were higher than 0.78 for iCAMP
(Supplementary Fig. 12), indicating considerable improvement
from QPEN, particularly in estimating homogeneous and
heterogeneous selections. However, with low phylogenetic signal,
iCAMP had low sensitivity (down to 0.17) for homogeneous
selection (Supplementary Fig. 12), albeit still higher (p < 0.05)
than QPEN (sensitivity < 0.04). These results confirmed that low
phylogenetic signal of niche preference can limit the capability of
phylogenetic metrics to infer selection, which can be partly but
not completely overcome by iCAMP. Nevertheless, the quanti-
tative performance of iCAMP remained relatively high for all
processes under all scenarios, with quantitative accuracy and
precision 0.71–1.00 (averagely 129% higher than QPEN),
indicating that iCAMP can substantially improve the quantitative
estimation of community assembly processes.

Effects of warming on grassland bacterial assembly. To deter-
mine the effectiveness of iCAMP in real-world studies, iCAMP was
applied to an empirical data of soil bacterial communities in
a grassland under experimental warming34, with focus on within-
treatment spatial turnovers. Based on iCAMP analysis, homo-
geneous selection and drift were more important than other
processes in bacterial community assembly, with average relative
importance of 37.0–38.5% and 58.3–59.9% (Fig. 3a, b), respectively.
Warming significantly altered the relative importance of different
processes (p < 0.01, permutational ANOVA). Since other processes
had quite low estimated relative importance (<3.4%), we primarily
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focused on the effects of warming on homogeneous selection and
drift in subsequent analyses. Overall, warming decreased the rela-
tive importance of drift and increased homogeneous selection.
Significant year-to-year variations were observed (Fig. 3c, d). In the
first year, the communities under warming showed significantly
higher ratio of drift (Cohen’s d= 2.9, p= 0.001), but lower ratio of
homogeneous selection (Cohen’s d=−2.7, p < 0.001) than those
under control, suggesting the bacterial community assembly
was even more stochastic under warming than control in the
beginning. In the second year, the difference between warming
and control became insignificant. In the third to fifth years,
the communities under warming had significantly higher ratio of
homogeneous selection (Cohen’s d= 0.6–1.7) and lower ratio of
drift (Cohen’s d=−0.8 to −1.3), suggesting that the selection
pressure imposed by warming on the soil bacteria gradually
increased with time.

QPEN was also applied to quantify the ecological processes. The
results from QPEN indicated that homogeneous selection pre-
dominated (>73%) bacterial assembly with higher relative impor-
tance under warming (83.3%) than control (73.3%, Supplementary

Fig. 13a, b) although not significant (p= 0.174). QPEN suggested
0.0% of drift under warming, 0.0% of heterogeneous selection, and
homogenizing dispersal across all years, and 100% of homogeneous
selection in some years (Supplementary Fig. 13c, d). This appears
not reasonable, considering important roles of stochastic processes
have been widely reported across various ecosystems10,11,13,14,35,
including desert28 and acidic soils25.

Stochastic vs. deterministic bacterial assembly. Based on the
principle of the null models employed by iCAMP and QPEN, the
fractions of dispersal limitation, homogenizing dispersal, and drift
are largely considered stochastic3. Thus the sum of their esti-
mated relative importance can be used to estimate stochasticity of
community assembly. Based on iCAMP results, the relative
importance of stochastic processes was 62.6% under control and
61.3% under warming (Supplementary Fig. 14). By contrast,
QPEN estimated the relative importance of stochastic processes
was 26.7% under control and 16.7% under warming, which were
much lower than those estimated by other approaches (Supple-
mentary Fig. 14). For instance, variation partitioning analysis
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(VPA) revealed that substantial portions of the community var-
iations (68.4%) could not be explained by all measured envir-
onmental variables34. The tNST and pNST were on average 48.8%
under warming and 52.3% under control, and NP ranged from
74% to 79% in different years for both warming and control
(Supplementary Fig. 14). It appears that VPA, NST, and NP
showed more consistent results with iCAMP than QPEN.

All approaches did not reveal significant (p > 0.10) differences
of the 5-year mean stochasticity between warming and control,
except tNST with medium effect size (p < 0.05, Supplementary
Fig. 14). But in the third to fifth year (Fig. 3e), both tNST and
iCAMP revealed that warming had significant (p < 0.05) decrease
in stochasticity, and there was slight decrease in stochasticity with
pNST and NP under warming (small effect size) though it was
insignificant (p > 0.10). On the contrary, QPEN showed a slight
but insignificant increase in stochasticity. Collectively, consistent
with our previous analysis34, various approaches supported that
stochastic processes could play more important roles in grassland
soil bacterial assembly and that warming decreased the
stochasticity after 3 years.

Assembly mechanisms across different phylogenetic groups. In
contrast to QPEN and other approaches, iCAMP can provide
information on the relative importance of different ecological
processes in individual lineages (bins). For this purpose, the
observed 18,123 OTUs were divided into 658 phylogenetic bins,
each of which was then analyzed separately as outlined in Fig. 1.
Our results revealed that homogeneous selection dominated 59
bins (9% of bin numbers and 33% of relative abundance, Fig. 4a).
Two of the major bins were Bacillales (Bin 1, 26.7% in total
abundance of bins controlled by homogeneous selection) in
Firmicutes and Spartobacteria (Bin 2, 18.8%) in Verrucomicrobia
(Fig. 4b, Supplementary Fig. 15a). By contrast, drift dominated
598 bins (91% of bin numbers and 67% of relative abundance,
Fig. 4a), which mainly belonged to Class Alphaproteobacteria
(22.2% in total abundance of drift-controlled bins) and Phylum
Actinobacteria (23.5%, Supplementary Fig. 15a).

To understand how different lineages respond to warming, we
further determined the bacterial groups contributing to the
warming-induced changes of homogeneous selection and drift in
the third to fifth years (Fig. 4c, d). Our results revealed that
Firmicutes contributed 58.2% of the warming-induced increases
in homogeneous selection (Supplementary Fig. 15b). The most
abundant Firmicutes bin (Bin 1, Bacillales, average 74.8% in
Firmicutes) was governed by homogeneous selection (Supple-
mentary Fig. 15c). After Year 3, which had severe drought,
Firmicutes were significantly more abundant under warming than
control (Supplementary Fig. 15c). 1 by contrast, the decrease of
drift under warming was due to similar negative responses of
many bins in five phyla (Proteobacteria, Verrucomicrobia,
Bacteroidetes, Planctomycetes, and Acidobacteria, Fig. 4c, Sup-
plementary Fig. 15b). For instance, Bin 4 of Rhizobiales in
Alphaproteobacteria had lower relative abundance and reduced
relative importance of drift under warming, especially in later 3
years (Supplementary Fig. 15d). From Year 3 to Year 5, 27 bins
showed significantly higher relative abundances under warming
than control (Wilcoxon p < 0.05, Cohen’s d > 0.5). However, 81%
of them (22 bins) were mainly governed by drift, while two of
them switched from governed by drift in controls to homo-
geneous selection under warming. These results demonstrated
complex assembly mechanisms of different bins in response to
warming, and possible misinterpretation could occur without
bin-level mechanistic information.

Environmental factors influencing ecological processes. The
influences of environmental factors on various ecological pro-
cesses were further determined with Mantel test and MRM. Since
the relative importance of other processes (heterogeneous selec-
tion, homogenizing dispersal, and dispersal limitation) was small,
we primarily focus on homogeneous selection and drift. Overall,
these two processes were significantly linked to the environmental
factors related to water, temperature, and plants (Fig. 5, Supple-
mentary Fig. 16, Supplementary Tables 2 and 3). Such linkages
were greatly changed by warming (Fig. 5, Supplementary Fig. 16).
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Fig. 3 Relative importance of different ecological processes in response to warming. a Under control. b Under warming. c Changes of homogeneous

selection under warming (orange bar) and control (aqua bar). d Changes of drift. a–d were estimated by iCAMP. e Stochasticity estimated by different

methods in the later 3 years. One-side significance based on bootstrapping test was expressed as ***p < 0.01; **p < 0.05; *p < 0.1. p= 0.001, 0.818, 0.014,

0.346, 0.035 in Year 1–5 for homogeneous selection; p= 0.001, 0.657, 0.066, 0.207, 0.058 in Year 1–5 for drift; p= 0.000, 0.542, 0.500, 0.014, 0.567

for tNST, pNST, NP, iCAMP, and QPEN, respectively. L, M, S, and N represented large (|d| > 0.8), medium (0.5 < |d|≤ 0.8), small (0.2 < |d|≤ 0.5), and

negligible (|d|≤ 0.2) effect sizes of warming, based on Cohen’s d (the mean difference between warming and control divided by pooled standard deviation).

Data are presented as mean values ± SD. Error bars represented standard deviations; c and d n= 6 comparisons among four biologically independent

samples at each time point; e n= 18 comparisons= 6 comparisons in each of the 3 years. Source data are provided as a Source Data file.
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Homogeneous selection under control showed the strongest
correlations with the C-4 biomass difference and plant richness
(Mantel R2 > 0.33, p < 0.01, Fig. 5a, Supplementary Table 2), and
had slightly lower correlations with drought, precipitation, and
moisture (R2 > 0.3, p < 0.01). By contrast, homogeneous selection
had the highest correlations with drought and precipitation (R2=
0.52–0.57, p < 0.1) under warming, followed by C-4, total plant
biomass, and soil temperature (R2 > 0.32, p < 0.1) (Fig. 5a).
Interestingly, the total plant biomass under warming and the
difference of C-4 biomass under control had strong correlations
with homogeneous selection when the effects of drought or any

other factors were controlled (partial Mantel, Supplementary
Table 3). Considering potential significant correlations among
multiple factors, MRM was further used to determine the
contributions of different environmental factors to homogeneous
selection. Our result showed that the MRM models were able to
explain a large portion of the plot-wise variations of homogeneous
selection under warming (R2= 0.94, p < 0.001, Fig. 5b) and control
(R2= 0.86, p < 0.001, Fig. 5c). The most important variables
explaining homogeneous selection were soil temperature in
sampling month under warming (partial regression coefficient
b= 0.92, p < 0.001, Fig. 5b), and the between-plot difference of
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annual soil temperature under controls (b=−1.2, p < 0.001, Fig. 5c).
Meanwhile, some water-related and plant-related variables also
showed significant, although smaller, effects (|b| > 0.16, p < 0.1) on
homogeneous selection, including total plant biomass, drought, and
moisture under warming (Fig. 5b), and plant richness, C-4 biomass,
precipitation, and moisture in controls (Fig. 5c). These results
indicated soil temperature, plant productivity, and drought were
more effective in explaining the plot-wise variation of homogeneous
selection under warming.

Drift had similar relationships to various environmental factors as
homogeneous selection, but with opposite direction, based on
Mantel (Supplementary Fig. 16a, Supplementary Table 2) and
partial Mantel (Supplementary Table 3) tests. Under control
condition, MRM models showed that soil total carbon and nitrogen,
various plant biomass differences, and precipitation, had relatively
strong effects on drift (|b| > 0.36, p < 0.06, Supplementary Fig. 16c).
Under warming, the three most important variables shaping drift
included total plant biomass, soil temperature, and drought (|b|=
0.34–0.66, p < 0.005, Supplementary Fig. 16b). Collectively, these
results suggested that the environmental factors shaping homo-
geneous selection and drift were more similar under warming than
control.

Discussion
Disentangling ecological drivers controlling community assembly
is crucial but difficult in ecology, especially in microbial ecol-
ogy — mainly due to the huge diversity of microorganisms and
the difficulties in their detection and quantification1,3,17,18,36.
Although metagenomics and associated technologies have revo-
lutionized microbial ecology research1, a great challenge is how to
use such massive data to address compelling ecological questions
such as community assembly mechanisms. Thus, in this study, we
developed a framework, iCAMP, to quantify the relative impor-
tance of different ecological processes underlying community
diversity and dynamics based on individual phylogenetic groups
(bins) rather than the entire community. Various analyses
demonstrated that iCAMP improved performance substantially
with higher precision, sensitivity, specificity, and accuracy com-
pared with previous approaches. Also, the results from iCAMP

indicated important roles of stochastic processes in shaping the
grassland soil microbial community with an average of ~60%
stochasticity, which are consistent with those from various pre-
vious studies3,8–14. The developed framework would provide an
effective and robust tool to quantify community assembly pro-
cesses in microbial ecology towards mechanistic understanding of
community diversity and succession. Given that our framework
and simulation are general to high diversity communities rather
than specific to microbes, it should also be applicable to plant and
animal communities with high diversity.

To quantify selection, phylogeny-based approaches20–22,24,25,37–39

require that the phylogenetic distances among taxa reflect their niche
difference, i.e. there is phylogenetic signal or niche conservatism3,21.
Although phylogenetic niche conservatism of microbial traits was
reported40,41, the signals were mostly at medium or low levels (i.e.
close to or lower than Brownian Motion expectation)42. Fortunately,
significant phylogenetic signals were frequently found within a short
phylogenetic distance25,38,40, which was employed by recent micro-
bial studies22,24,25,39, particularly in QPEN19,20. However, QPEN did
not always perform well in inferring selection (e.g. in our simulated
communities), possibly because it does not distinguish the differential
influences of selection on distinct phylogenetic groups. By contrast,
iCAMP partitions selection based on individual phylogenetic groups
with essential phylogenetic signal embedded, and hence it can greatly
improve quantitative performance (accuracy and precision > 0.7)
with robustness to low phylogenetic signal across the tree and the
complex assembly within individual bins. However, if competition
predominates, closely related organisms may lead to strong compe-
titive exclusion, which could disrupt phylogenetic conservatism, and
thus significantly decrease the performance of iCAMP as showed in
our simulation (Supplementary Fig. 11a–f). But given that the sig-
nificant phylogenetic signal within short phylogenetic distances is
widely observed21,22,25,38, the disruption may not happen often under
natural settings as theoretically predicted.

Unraveling the drivers controlling the responses of ecological
communities to climate change is a critical topic in ecology and
global change biology34. Several previous studies demonstrated
that climate warming have significant impact on microbial
diversity43, structure34, functional gene composition44, and
activities44,45, but the underlying community assembly processes
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were rarely examined. In our grassland site, experimental
warming increased the soil temperature by ~3 °C (ref. 34), thus it
may gradually impose selective pressure as a deterministic force
to decrease stochasticity as evident by our previous studies34,43.
Here, iCAMP further revealed that warming gradually enhanced
homogeneous selection and decreased drift in bacterial commu-
nity assembly, and that the warming-induced selection was
enhanced by drought and lower plant biomass, besides the soil
temperature. These results are consistent with several previous
studies showing that the effects of warming on microbial com-
munities intertwines with precipitation/drought46–49 and plant
variables50. In addition, our results showed that the warming-
enhanced homogeneous selection was mainly attributed to the
positive responses of a group of Bacillales in Firmicutes, which are
ubiquitous Gram-positive bacteria in nature. Bacillales are
endospore-forming and can remain in the dormant state for
years51. These traits could offer their competitive advantages
under selective pressure from increased temperature and drying.

Although iCAMP has better performance over traditional
approaches and provided valuable insights into the ecological
processes governing the responses of grassland soil microbial
communities to climate warming, there are still some limitations.
For instance, one of the fundamental processes, diversification, is
important to govern community assembly15,17,18, but it is not
explicitly accounted for in iCAMP. Diversification is still
embedded with drift, weak selection, and/or weak dispersal in the
‘drift’ part of this framework. Given the lower performance of
iCAMP when competition predominates selection, environmental
filtering and biotic interactions need to be differentiated from
each other in selection. In addition, although built on within-bin
beta diversity, iCAMP should generally be able to capture
important cross-bin selection (Supplementary Note 3). However,
iCAMP might underestimate selection when cross-bin selection
does not lead to detectable within-bin difference. Thus, further
developments are needed by incorporating null model of evolu-
tion to infer the relative importance of diversification, and by
integrating functional traits (genes) and network approaches with
iCAMP to disentangle biotic interactions from abiotic filtering
and capture special cross-bin selection.

Methods
Procedure of iCAMP. Conceptually, selection under homogeneous abiotic and
biotic conditions in space and time is referred to as constant selection16 or
homogeneous selection20, by which low phylogenetic compositional variations or
turnovers are expected. By contrast, selection under heterogeneous conditions leads
to high phylogenetic compositional variations, which is referred to as variable
selection16,20 or heterogeneous selection3. Similarly, dispersal is also divided into
two categories19,20— homogenizing dispersal and dispersal limitation. The former
refers to the situation that high dispersal rate can homogenize communities and
hence lead to little taxonomic compositional variations, whereas the later signifies
the circumstance that low dispersal rates could increase community taxonomic
variations. When neither selection nor dispersal is dominated, community
assembly is governed by drift, diversification, weak selection and/or weak dispersal,
which is referred to be ‘undominated’20 or simply designated as ‘drift’19.

To quantify these processes, iCAMP includes three major steps (Fig. 1). The
first step is phylogenetic binning (Supplementary Figs. 1a and 3). Three binning
algorithms were compared. One is based on the distance to abundant taxa
(Supplementary Fig. 3a). The most abundant (i.e. the highest mean relative
abundance in the regional pool) taxon is designated as the centroid taxon of the
first bin. All taxa with distances to the centroid taxon less than the phylogenetic
signal threshold, ds, are assigned to this bin. The next bin is generated from the rest
taxa in the same way. Consequently, a series of bins are generated with strict
radiuses less than ds, so-called strict bins. However, some strict bins may have too
few taxa to provide enough statistical power for further analysis. Thus, each small
bin is merged into its nearest-neighbor bin until all bins reach the minimal size
requirement, nmin. The second algorithm is based on pairwise distances
(Supplementary Fig. 3b). The first bin consists the most abundant taxon, and all
other taxa among which all pairwise distances are lower than ds. The second bin
includes the next most abundant taxon among the remaining taxa. This procedure
continues until all taxa are classified into different bins. To ensure each bin have
enough size (≥nmin), a small bin less than nmin is merged into the nearest neighbor

until all bins reach the minimal requirement nmin. The third algorithm is based on
phylogenetic tree (Supplementary Fig. 3c). The phylogenetic tree is truncated at a
certain phylogenetic distance (as short as necessary) to the root, by which all the
rest connections between tips (taxa) are lower than the threshold ds. The taxa
derived from the same ancestor after the truncating point are grouped to the same
strict bin. Then, each small bin is merged into the bin with the nearest relatives.
This procedure is repeated until all merged bins have enough taxa (≥nmin).
Although not used in this study, another option is also provided in our tool to omit
small bins when they are negligible. However, all binning algorithms require a
reliable phylogenetic tree, which might be difficult to construct for highly divergent
marker genes such as ITS. In this case, certain special phylogenetic tree
construction approaches (e.g. hybrid-gene52 or constrained phylogenetic tree
construction53) should be considered.

The objective of phylogenetic binning is to obtain adequate within-bin
phylogenetic signal. To evaluate phylogenetic signal within each bin, the
correlation between the pairwise phylogenetic distances and niche preference
differences were analyzed by Mantel tests, where niche preference means the niche
leading to optimum fitness (or relative fitness reflected by relative abundance) of a
taxon. The bins with Pearson correlation coefficient R > 0.1 and p < 0.05 (one tail)
are considered as bins with significant phylogenetic signal. In simulated
communities, the niche preference difference between two taxa is treated as the key
trait value difference. For empirical data, a practical index, i.e., niche value, is
estimated as the relative-abundance-weighted mean of an environmental factor for
each taxon21. For instance, if OTU1 has relative abundances of 10%, 20%, and 10%
in three samples under the temperature of 10, 20, and 30 °C, respectively, the
temperature niche value of OTU1 is (10 × 10%+ 20 × 20%+ 3 × 10%)/(10%+
20%+ 10%)= 20 °C. Then, the difference of niche values between taxa reflects
niche difference, which are used for phylogenetic signal estimation. An optimized
nmin should give the highest number of bins with significant phylogenetic signal
and relatively high average correlation coefficient (average R) within bins.
Accordingly, the optimized nmin is identified as 24 for simulated datasets and 12 for
the empirical data. The index ‘niche value’ works under the assumption that
relative abundances can represent the fitness of a taxon and the available
environmental factors can measure the niche profile. Otherwise, an alternative way
should be considered, i.e. choose the nmin value that makes the estimated relative
importance of stochastic processes close to the stochasticity assessed by referable
approaches (e.g. pNST).

The second step is the null model analysis within each bin shown in
Supplementary Fig. 1b. Accordingly, an operator is defined to count whether a bin
is governed by a process. The operator can be calculated from βNRI and RC as Eqs.
(1)–(10). Another significance testing index directly based on null model
distribution is also provided in Supplementary Note 1.

WHeSuvk ¼
1 βNRIuvk>1:96

0 else
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where ‘WHeSuvk’ is operator for heterogeneous selection, to count whether the
turnover of the kth phylogenetic bin (Bin k) between community u and v governed
by heterogeneous selection. WHoSuvk , WDLuvk , WHDuvk , and WDRuvk are analogous
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operators for homogeneous selection, dispersal limitation, homogenizing dispersal,
or ‘drift’, respectively. ‘βNRIuvk ’ is bNRI of Bin k between community u and v.
‘βMPDuvk ’ is beta mean pairwise distance of Bin k between communities u and v,
and ‘βMPDnulluvk ’ is the βMPD of the null communities randomized according to a
null model. ‘Sd’ is standard deviation. ‘RCuvk’ is modified RC. ‘Nr’ is total

randomization times, usually 1000 times. ‘δ
ðnrÞ
uvk ’ is an operator to calculate RC value.

‘BCuvk ’ is Bray–Curtis dissimilarity index. ‘BC
ðnrÞ
nulluvk ’ is Bray–Curtis dissimilarity of

Bin k between null communities u and v of the nrth time randomization according
to a null model. ‘fiu ’ and ‘fjv ’ represent relative abundance of taxon i in community

u or taxon j in community v, respectively. ‘Sk ’ represents taxa number in Bin k. ‘xiu ’
and ‘xiv ’ are abundance of taxon i in communities u and v, respectively. For
microbial data from sequencing, it is usually difficult to get accurate estimation of
absolute abundances of taxa in a community, thus relative abundances can be used
to calculate Bray–Curtis index as a common practice.

The null model algorithm for phylogenetic metrics is ‘taxa shuffle’21,37, which
randomizes the taxa across the tips of the phylogenetic tree, and thus it randomizes
the phylogenetic relationship among taxa. The null model algorithm for taxonomic
metric is the one constraining occurrence frequency of each taxon proportional to
observed and richness in each sample fixed to observed19,54. The null model
algorithm results heavily depend on the selection of the regional pool, within which
randomization is implemented54. Thus, the algorithms randomizing taxa within
each bin and across all bins were compared in iCAMP analysis for the simulated
communities. No matter whether the randomization is within or across bins, the
beta diversity metrics are calculated in each bin as defined in Eqs. (6)–(10).

Null model analysis is most computational resource — and time-consuming,
which largely depends on the times of randomization and taxa number. But
decreasing randomization times or taxa number can reduce reproducibility of the
null model analysis. Considering that most reported null model analyses used
1000-time randomization, iCAMP were performed for simulated data with
randomization times ranging from 25 to 5000 and repeated 12 times with each
number of randomization times. The results from 60,000-time randomization
served as a standard for evaluation. In addition, three methods for reducing taxa
number were tested. The method ‘rarefaction’ means to randomly draw the same
number of individuals (sequences) from each sample and reduce the taxa number.
The method ‘average abundance trimming’ ranks all taxa from abundant to rare
according to their average relative abundances across all samples and only keeps
the taxa before a certain rank. The method ‘cumulative abundance trimming’ ranks
taxa in each sample from abundant to rare, then only keeps the abundant taxa in
each sample so that every sample has the same cumulative abundance. The iCAMP
results from the three methods were compared to that from the original simulated
communities.

The third step of iCAMP is to integrate the results of different bins to assess the
relative importance of each process (Supplementary Fig. 1c–f). Defining neutrality
at individual level has been proved a key to successfully develop the unified neutral
theory6. Therefore, the relative importance of a process can be quantitatively
measured as abundance-weighted percentage for each bin (Eq. (11)) or the entire
communities (Eqs. (12) and (13)). Qualitatively, for each pairwise comparison
between communities (samples), the process with higher relative importance than
other processes is regarded as the dominant process.

Pτk ¼

Pm
uv

fukþfvk
2 Wτuvk

Pm
uv

fukþfvk
2

; ð11Þ

Pτuv ¼
X

K

k¼1

fuk þ fvk
2

Wτuvk; ð12Þ

Pτ ¼

Pm
uv Pτuv
m

¼
X

K

k¼1

fkPτk; ð13Þ

where ‘Pτk ’ is relative importance of the τth ecological process in governing the
turnovers of Bin k among a group of communities (e.g. samples within a treatment,
a region, etc.; Supplementary Fig. 1d) or between a pair of groups (e.g. between
treatment and control, which can be enabled by set ‘between.group’ as TRUE for
functions ‘icamp.bins’ and ‘icamp.boot’ in iCAMP package). ‘Pτuv ’ is relative
importance of the τth ecological process in governing the turnover between
communities u and v (Supplementary Fig. 1c). ‘Pτ ’ is relative importance of the τth
ecological process in governing the turnovers among a group of communities
(Supplementary Fig. 1c) or between a pair of groups. Thus, Pτ can be PHeS , PHoS ,
PDL , PHD , or PDR for heterogeneous selection, homogeneous selection, dispersal
limitation, homogenizing dispersal, or ‘drift’, respectively. ‘fuk ’ and ‘fvk’ are total
relative abundance of Bin k in community u and community v, respectively. ‘Wτuvk ’

is operator counting whether the kth bin is governed by the τth ecological process,
including WHeSuvk,WHoSuvk ,WDLuvk ,WHDuvk, andWDRuvk (Eqs. (1)–(5)). ‘K ’ is total
number of bins. ‘m’ is number of pairwise comparisons in a group of communities
(e.g. within a treatment) or between a pair of groups (e.g. between treatments). ‘fk ’
is average relative abundance of Bin k in the group of communities.

As shown in Eq. (13), the relative importance of each process Pτ is the sum of
the terms fkPτk , by which we can define the contribution of different bins to Pτ

(Eqs. (14) and (15)).

BPτk ¼ fkPτk ¼

Pm
uv

fukþfvk
2 Wτuvk

m
;

ð14Þ

BRPτk ¼
BPτk

Pτ
¼

Pm
uv

fukþfvk
2 Wτuvk

PK
k¼1

Pm
uv

fukþfvk
2 Wτuvk

; ð15Þ

where ‘BPτk ’ is Bin contribution to Process, measuring the contribution of Bin k to
the relative importance of τth ecological process in the assembly of a group of
communities (Supplementary Fig. 1e). ‘BRPτk ’ is Bin Relative contribution to
Process, measuring the relative contribution of Bin k to the τth ecological process
(Supplementary Fig. 1f).

Simulation model. In the simulation model (Supplementary Fig. 2), all samples are
from the same region sharing the same metacommunity (the regional species pool)
with 20 million individuals. The relative abundances of species in metacommunity
are simulated using metacommunity zero-sum multinomial distribution model
(mZSM) derived from Hubbell’s Unified Neutral Theory Model55, using R package
‘sads’ (version 0.4.2)56 with J= 2 × 107 and θ= 5000. The whole region has two
separated islands of A and B (Supplementary Fig. 2a). For species controlled by
dispersal, migration is unlimited within each island but nearly impossible between
islands. Each island has two plots: plot LA and HA at island A, and plot LB and HB
at island B. The two plots at the same island are under distinct environments. The
environment variable is as low as 0.05 in the north plots at each island (LA and
LB), but as high as 0.95 in the south plots (HA and HB), which is a critical setting
for species under niche selection. At each plot, six local communities are simulated
and sampled as biological replicates. Each local community contains 20,000 indi-
viduals of 100 species.

A phylogenetic tree was retrieved from a previous publication20, which
simulated evolution from a single ancestor to the equilibrium between speciation
and extinction and generated a tree with 1140 species. A trait defining the optimal
environment of each species (Ei) evolves along the phylogenetic tree with a certain
phylogenetic signal. We simulated three pools of species as three scenarios to
explore the performance of iCAMP under distinct levels of phylogenetic signals. (i)
The low-phylogenetic-signal pool was generated using Stegen’s evolution model20.
The Blomberg’s K value is as low as 0.15, close to the mean K value of 91
continuous prokaryotic traits42. The phylogenetic signal is low if counting the
phylogenetic distance across the whole tree. However, the trait still shows
significant phylogenetic signal within a short phylogenetic distance20, in
accordance with general observations in microbial communities in various
environments19,38. (ii) The medium-phylogenetic-signal pool was generated by
simulating the trait according to Brownian motion model, using the function
‘fastBM’ in R package ‘phytools’ (version 0.6–99)57 with an ancestral state of 0.5, an
instantaneous variance of Brownian process of 0.25, and the boundary from 0 to 1.
The final K value is 0.9, close to the mean phylogenetic signal level of 899
prokaryotic binary traits42. (iii) The high-phylogenetic-signal pool was simulated
according to Blomberg’s ACDC model58 with a g value of 2000. The final K value is
as high as 5.5, close to the highest phylogenetic signal of prokaryotic traits to
date42.

For each scenario, we simulated 15 situations with different levels of expected
relative importance of various processes (Supplementary Fig. 2b). The situations
can be classified into two types. In the first type, all species under each situation are
governed by the same kind of processes, i.e. pure selection, or dispersal, or drift. In
each of the other situations, species in the regional pool are assigned to different
types controlled by various processes. Once a species is assigned to be controlled by
selection or dispersal rather than drift, its nearest relatives within ds will also be
assigned to the same type of processes considering the phylogenetic signal of traits.
Species controlled by each type of processes are simulated as below. (i) To simulate
strong selection due to abiotic filtering without stochasticity, the relative abundance
of each species is determined by the difference between the environment variable
and their trait values (optimal environment), following a Gaussian function
(Eq. (16), Supplementary Fig. 2d).

Aij / exp �
ðEVj � EiÞ

2

2σ2E

" #

; ð16Þ

where ‘Aij ’ is abundance of species i in local community j. ‘EVj ’ is the value of the

key environmental variable in local community j, which is 0.05 in the north plots
(LA and LB) and 0.95 in the south plots (HA and HB). ‘Ei ’ is the optimum
environment of species i. ‘σE ’ is the standard deviation, which is 0.015.
Consequently, the turnovers of these species under the same environment (i.e.
within north plots, or within south plots) are solely governed by homogeneous
selection, and those between distinct environments (i.e. between north and south
plots) are governed by heterogeneous selection.

(i) To simulate competition without stochasticity, a geometric series model59

was modified to consider stronger competition between species with similar niche
preference37. Competitive species in a local community are ranked from the
strongest competitor to the weakest with their relative abundances proportional to
0.5, 0.52, 0.53, …, 0.5h, …. The strongest competitor is randomly selected from
species with the best fitness, i.e. from the top 10 species with the lowest |EVu–Ei|.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18560-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4717 | https://doi.org/10.1038/s41467-020-18560-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Then, the next competitor is the one with the largest niche difference with prior
competitor(s) in the rank, based on abundance-weighted Euclidean trait distance37

to previous competitor(s) (Eq. (17)). The total relative abundance of species
controlled by competition is determined as the designated ratio of competition in
selection multiplied by the designated ratio of selection in a simulated situation.
The turnovers of these species are defined as governed by selection, without
distinguishing between homogeneous and heterogenous selections.

ndhi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

h�1

j¼1; i>j

0:5jðEi � EjÞ
2

v

u

u

t

; ð17Þ

where ‘ndhi ’ is the index to assess niche difference between species i and (h−1)
prior competitors in the rank. The species with the highest ndhi will be the hth
competitor in the rank, and assigned relative abundance proportional to 0.5h. ‘Ei ’ is
the optimum environment of species i which is not included in the (h−1) prior
competitors. ‘Ej ’ is the optimum environment of species j which is the jth prior

competitor with relative abundance proportional to 0.5j.
(ii) To simulate extreme dispersal without selection, we modified Sloan’s

simulation model60 which was derived from Hubbell’s neutral theory model
(Supplementary Fig. 2e). Each island has a unique species pool, simulated as a local
community under the regional metacommunity following neutral theory model but
with a relatively low dispersal rate (m1= 0.01). However, the unique species pools
of the two islands are constrained to have no overlapped species, regarding extreme
dispersal limitation between the two islands. Then, the local communities in each
island are simulated as governed by neutral dispersal from both the regional
metacommunity with a low rate (m1= 0.01) and the unique species pool of the
island with a high rate (m2= 0.99). It means 99% of dead individuals in a local
community are replaced by species from the small island–unique species pool at
each time step. Therefore, all the turnovers within an island are governed by
homogenizing dispersal, and those between islands are controlled by dispersal
limitation.

(iii) Drift is simulated as neutral stochastic processes at a moderate dispersal
rate rather than limited or strong dispersal. To simulate drift, all local communities
are generated under neutral dispersal from the regional metacommunity with a
medium rate (m1= 0.5, Supplementary Fig. 2c). Since 50% of dead individuals are
replaced by species randomly drawing from a relatively large regional pool, all the
turnovers among local communities are neither affected by homogenizing dispersal
nor under dispersal limitation.

Under each situation, the dataset of the 24 local communities is simulated as a
combination of species governed by different ecological processes, with ratios
defined by the situation setting (Supplementary Table 1, Supplementary Fig. 2b).
To simulate complex assembly of bins, the species pool is divided into bins with
different bin size limitation (nmin= 3, 6, 12, 24, 48) and phylogenetic distance
cutoff (ds= 0.1, 0.2, 0.4), and each bin is simulated as controlled by a certain
process. Then, as iCAMP analysis still uses nmin= 24 and ds= 0.2, some estimated
bins can have members governed by different processes in the same bin. For each
turnover between a pair of local communities, the mean relative abundance of
species governed by a process defines the expected relative importance of the
process (Eq. (18)). The process with the highest relative importance is the expected
dominant process of the turnover. Since dispersal and drift are simulated as pure
stochastic processes, the expected stochasticity is defined as the sum of expected
relative importance of homogenizing dispersal, dispersal limitation, and drift
(Supplementary Table 1).

EPτuv ¼
X

K

i¼1

fuk þ fvk
2

ωτuvk; ð18Þ

where ‘EPτuv ’ is the expected relative importance of the τth ecological process in
community turnover between samples u and v. ‘fuk ’ is total relative abundance of
Bin k in community u. ‘fvk’ is total relative abundance of Bin k in community v.
‘ωτuvk’ is operator, equal to 1 if the turnover of the kth bin between communities u
and v is governed by the τth ecological process, and equal to 0 if not.

We simulated three scenarios with different levels of phylogenetic signal,
15 situations per scenario with 1 dataset per situation, thus a total of 45 datasets.
In each dataset, we applied both QPEN and iCAMP to estimate the relative
importance of different processes (quantitative estimation) and the dominant
process (qualitative estimation). QPEN cannot assess relative importance of
processes for each turnover, but can estimate their relative importance as the
percentage of turnovers governed by the process in all turnovers within a plot (e.g.
plot HA) or between a pair of plots (e.g. plot HA vs. HB). Then, the ecological
stochasticity of community assembly can be quantified as the relative importance
of stochastic processes (i.e. homogenizing dispersal, dispersal limitation, and drift)
based on QPEN and iCAMP, respectively. For comparison, the ecological
stochasticity in each dataset is also estimated with NP61, tNST33, and pNST33,34.

The performance of quantitative estimation is evaluated by accuracy (Eq. (19))
and precision coefficients (Eq. (20)) derived from concordance correlation
coefficient (CCC)62. The performance of qualitative estimation is assessed with
respect to accuracy, precision, sensitivity, and specificity by counting the true and

false positive/negative results (Eqs. (21)–(24)).

qACC ¼
2σxσy

σ2x þ σ2y þ μx � μy

� �2 ; ð19Þ

qPRC ¼
σyx

σxσy
; ð20Þ

where ‘qACC’ and ‘qPRC’ are quantitative accuracy and precision, respectively.
‘σyx ’ is covariance of x and y. In our study, x and y are the expected and estimated

stochasticity or relative importance of a process, respectively. ‘σ2x ’ and ‘σ2y ’ are

variance of x and y, respectively. ‘μx ’ and ‘μy ’ are mean of x and y, respectively.

ACC ¼
TPþ TN

TPþ TNþ FPþ FN
; ð21Þ

PRC ¼
TP

TPþ FP
; ð22Þ

SST ¼
TP

TPþ FN
; ð23Þ

SPC ¼
TN

TNþ FP
: ð24Þ

In the qualitative performance indexes, ‘ACC’ is accuracy; ‘PRC’ is precision
measured as positive predictive value; ‘SST’ is sensitivity measured as true positive
rate; ‘SPC’ is specificity measured as true negative rate. ‘TP’ is true positive number.
A true positive for a process means a turnover is correctly identified as dominated
by this process. Overall true positive of a method is calculated as the sum of true
positive numbers of all processes. ‘TN’ is true negative number. A true negative for
a process means a turnover is correctly identified as not dominated by this process.
Overall true negative is calculated as the sum of true negative numbers of all
processes. ‘FP’ is false positive number. A false positive for a process means a
turnover is incorrectly identified as dominated by this process. Overall false
positive is calculated as the sum of false positive numbers of all processes. ‘FN’ is
false negative number. A false negative for a process means a turnover is incorrectly
identified as not dominated by this process. Overall false negative is calculated as
the sum of false negative numbers of all processes.

For example, a turnover is in fact dominated by drift. If the estimated
dominating process is drift, this is a true positive for drift, and a true negative for
other processes. If the estimated dominating process is dispersal limitation, this is a
false positive for dispersal limitation and a false negative for drift, but a true
negative for other processes.

Experimental data and analyses. We applied iCAMP to an empirical dataset
from our previous study34, with sequencing data available in the NCBI Sequence
Read Archive under project no. PRJNA331185. Briefly, the grassland site is located
at the Kessler Atmospheric and Ecological Field Station (KAEFS) in the US Great
Plains in McClain County, Oklahoma (34°59ʹN, 97°31ʹW)34. The field site
experiment was established in July of 2009. Surface soil temperature in warming
plots (2.5 m × 1.75 m each) is increased to 2–3 °C higher than the controls by
utilizing infrared radiator (Kalglo Electronics, Bath, PA, USA). Surface (0–15 cm)
soil samples were taken annually from four warming and four control plots. A total
of 40 samples over 5 years after warming (2010–2014) were analyzed in this study.
Soil DNA was extracted by from 1.5 g of soil by freeze-grinding and SDS-based
lysis63 and purified with a MoBio PowerSoil DNA isolation kit (MoBio Labora-
tories). Then the V4 region of 16S rRNA gene was analyzed by amplicon
sequencing on Illumina MiSeq34, using the primers 515F (5ʹ-GTGCCAGCMGCCG
CGGTAA-3ʹ) and 806R (5ʹ-GGACTACHVGGGTWTCTAAT-3ʹ). Sequencing
results were analyzed with our pipeline (http://zhoulab5.rccc.ou.edu:8080)34 built
on the Galaxy platform (version 17.01)64 and OTUs were generated by UPARSE65

at 97% identity. Soil properties were analyzed using a dry combustion C and N
analyzer (LECO), a Lachat 8000 flow-injection analyzer (Lachat), pH meter, a
portable time domain reflectometer (Soil Moisture Equipment Corp.), and
constantan–copper thermocouples with CR10x data logger (Campbell Scientific)34.
Plant biomass was measured with a modified pin-touch method and the plant
richness was based on identification of all species in each plot34. The drought index
is calculated as additive inverse of standardized precipitation–evapotranspiration
index (SPEI) retrieved from SPEIbase66.

Statistical analyses. The significance of difference for each evaluation index (e.g.
qualitative accuracy, precision, sensitivity, etc.) between different methods was
calculated by bootstrapping for 1000 times (one-side test). To assess the effects of
warming on ecological processes, the standardized effect size (Cohen’s d) was
calculated as the difference of means between warming and controls divided by the
combined standard deviation, and the magnitude of effect is defined as large (|d| >
0.8), medium (0.5 < |d| ≤ 0.8), small (0.2 < |d| ≤ 0.5), and negligible (|d| ≤ 0.2)
according to Cohen’s d67. NST33, NP61 and QPEN19,20 were applied to the dataset.
The significance of difference in stochasticity or relative importance of ecological
processes between warming and control was calculated by permutational t test
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(1000 times). The empirical study only investigated within-treatment spatial
turnovers at each time point.

For correlation test between each process and various measured factors, we
applied Mantel test, partial Mantel68, and MRM69 with constrained permutation
considering repeated measures design of the experiment. For Mantel test, both linear
model and general linear model with a logit link function and a ‘quasibinomial’
distribution were tested, and the relative importance of each process and each factor
were either log-transformed or not, to explore the best model. To log-transform a
factor with zero or negative values, all its values were subtracted by the lowest value
and the resulted zero values were replaced by 0.05 (i.e. −3.00 in natural log) of the
minimum positive value before natural −log transformation. Partial Mantel was
performed on factors with significant correlation with homogeneous selection or
drift. For MRM, the factors were log-transformed and standardized to zero-mean
and unit-variance, then the best model was forward selected based on Akaike
information criterion (AIC). For each measurement (e.g. soil nitrate), both the
variation (e.g. |Nitrateu–Nitratev|, where u and v represent samples) and the mean
(e.g. [Nitrateu+Nitratev]/2) in each pair of samples were investigated for correlation
with the relative importance of each process (e.g. PHoSuv). All statistical analyses were
implemented by R (version 3.5.3)70. All significance tests are two-side unless
specified.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data are available in the NCBI Sequence Read Archive under project no.
PRJNA331185. The source data underlying Figs. 2–5 and Supplementary Figs. 3–17 are
provided in the Source Data file. Other source data are all available from GitHub (https://
github.com/DaliangNing/iCAMP1), such as OTU tables, phylogenetic trees, treatment
information, etc. All other data are available from the authors upon reasonable
request. Source data are provided with this paper.

Code availability
Code is available as an open-source R package ‘iCAMP’, which can be downloaded from
the Comprehensive R Archive Network (CRAN, https://cran.r-project.org/)70. iCAMP
can also be implemented on a web-based pipeline (http://ieg3.rccc.ou.edu:8080) built on
Galaxy platform (version 18.09)64. The R package and an example with detailed notes are
also available in the Supplementary Code file. All custom scripts are available from
GitHub (https://github.com/DaliangNing/iCAMP1). Source data are provided with
this paper.
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