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Introgression lines (ILs), in which genetic material from wild tomato species is introgressed into a domesticated background,

have been used extensively in tomato (Solanum lycopersicum) improvement. Here, we genotype an IL population derived from

the wild desert tomato Solanum pennellii at ultrahigh density, providing the exact gene content harbored by each line. To take

advantage of this information, we determine IL phenotypes for a suite of vegetative traits, ranging from leaf complexity,

shape, and size to cellular traits, such as stomatal density and epidermal cell phenotypes. Elliptical Fourier descriptors on

leaflet outlines provide a global analysis of highly heritable, intricate aspects of leaf morphology. We also demonstrate

constraints between leaflet size and leaf complexity, pavement cell size, and stomatal density and show independent

segregation of traits previously assumed to be genetically coregulated. Meta-analysis of previously measured traits in the ILs

shows an unexpected relationship between leaf morphology and fruit sugar levels, which RNA-Seq data suggest may be

attributable to genetically coregulated changes in fruit morphology or the impact of leaf shape on photosynthesis. Together,

our results both improve upon the utility of an important genetic resource and attest to a complex, genetic basis for

differences in leaf morphology between natural populations.

INTRODUCTION

The tomato clade (Solanum sect. Lycopersicon) provides unique

opportunities to study natural variation. As one of the world’s

most important crops, intense focus has been dedicated to the

genetic analysis of fruit size, shape, and sugar content between

domesticated tomato (Solanum lycopersicum) and wild relatives

(Frary et al., 2000; Fridman et al., 2004; Xiao et al., 2008). One of

the most distant wild relatives of domesticated tomato, Solanum

pennellii, originated in the deserts of Peru. When comparing

tomato to a relative that inhabits such an extreme environment,

other phenotypic differences undoubtedly underlie the successes

of these two species (Moyle, 2008; Chitwood et al., 2013; Koenig

et al., 2013). Changes in drought resistance, disease resistance,

and water use efficiency, among many other traits, have enabled

these two species to thrive in their respective environments. As

much as the fruits of these two species differ (Figure 1A), so do

their vegetative organs, such as leaves, which exhibit pronounced

differences in size, complexity, and morphology (Figure 1B).

Surprisingly, few studies have explicitly studied quantitative

trait loci (QTL) regulating leaf traits, in any species. Such phe-

notypes are associated with water use efficiency and thermo-

regulation, traits important to yield (Nicotra et al., 2011; Chitwood

et al., 2012a). Studies examining leaf morphology are often limited

to analyses of size, dimensions of length and width, and com-

plexity (Jiang et al., 2000; Pérez-Pérez et al., 2002; Holtan and

Hake, 2003; Frary et al., 2004). Recently, a genome-wide asso-

ciation study using the maize (Zea mays) nested association

mapping population identified liguleless genes as regulators of

upright leaf angles. In addition to leaf angle, leaf length and width

are regulated by many loci of small effect with little epistasis (Tian

et al., 2011). If the complement of genetic changes responsible

for differences in leaf shape between species is to be fully un-

derstood, similar quantitative genetics approaches will be re-

quired in the future. Although length, width, and the dimensions of

leaves are important, natural variation in leaf morphology is im-

mense, and methods to quantify the entirety of shape variance

are required to determine the full complement of genes regulating

differences in populations (Langlade et al., 2005; Chitwood et al.,

2012b, 2012c, 2012d). Ultimately, the morphology of leaves is

determined at the cellular level, and the genetics underlying

natural variation in cellular traits are only now beginning to be

examined (Massonnet et al., 2011; Sterken et al., 2012).

Despite the disparate phenotypic differences and ecological

habitats occupied by species in the tomato clade, most species

are interfertile (Stevens and Rick, 1986), a property that has been

exploited to create introgression lines (ILs) between wild tomato
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Figure 1. Phenotypic Differences between IL Parents and RNA-Seq and RESCAN Data for Chromosome 2 ILs.

Phenotypic differences in the fruit (A) and leaves (B) between domesticated tomato (S. lycopersicum) and a wild relative (S. pennellii ). Beyond obvious

differences in the size, shape, and color of fruits are differences in metabolite content. Leaves between these species vary in size, complexity, and

shape and non-cell-autonomously provide the majority of photosynthate to fruits. Shown are the S. pennellii introgression regions for ILs covering

chromosome 2 as determined by two methods: RNA-Seq (C) and RESCAN (D). The depth of coverage (distance from midpoint on y axis) and genotype

(color and direction on y axis) of each SNP/indel is plotted against chromosomal position (x axis). Polymorphisms that match S. pennellii are colored

green and plotted on the top half of each IL panel, while polymorphisms matching cv M82 are plotted in magenta in the bottom halves. The coloring is

on a continuum such that the color approaches black as a position’s genotype approaches heterozygosity. The y axis tick marks indicate depths of

coverage ranging from 0 to 100 (C) or 0 to 20 (D). Subsequent to genotyping, introgression boundaries consistent between the RNA-Seq and RESCAN

analyses were delineated. Using these breakpoints, S. pennellii and cv M82 regions are summarized by horizontal lines at the top and bottom of each IL

panel, respectively.
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species and domesticated cultivars. A unique property of many

such lines is that they contain a single, defined, introgressed ge-

nomic region from a wild species donor in an otherwise domesti-

cated background (Eshed and Zamir, 1995; Liu and Zamir, 1999;

Monforte and Tanksley, 2000; Canady et al., 2005). A set of such

ILs that tile genomic segments from desert-adapted S. pennellii

into domesticated S. lycopersicum cv M82 (Eshed and Zamir,

1995; Liu and Zamir, 1999) has been extensively phenotyped,

amassing a plethora of QTL. The S. pennellii ILs have been used to

map QTL for metabolites, enzymatic activity, yield, and fitness

traits as well as the genetic basis of heterosis (Rousseaux et al.,

2005; Schauer et al., 2006, 2008; Semel et al., 2006; Stevens et al.,

2007; Steinhauser et al., 2011). Ultrahigh-density genotyping of the

ILs is a first step toward understanding the whole plant relation-

ships that underlie domesticated traits, but our knowledge will al-

ways be limited by phenotype (Chitwood and Sinha, 2013; Zamir,

2013).

Here, we precisely define the boundaries of the S. pennellii ILs

at both the genomic and transcriptomic levels. Importantly, the

combination of ultrahigh-density genotyping with the recently

completed tomato genome allows the exact gene content of these

ILs to be determined, aiding breeding efforts and the molecular

characterization of QTL. Using precisely defined ILs, we undertake

a comprehensive phenotyping of leaf traits, from the organ to

cellular level. Measuring leaf shape, size, complexity, and serration

traits, in addition to pavement cell morphology and stomatal

density and patterning, we detect 1035 QTL, 826 toward the di-

rection of S. pennellii and 209 transgressive, beyond the pheno-

type of the domesticated parent. We observe distinct, highly

heritable aspects of leaf shape and show that leaf shape, serra-

tion, and complexity can be genetically separated, contrary to

previous findings from mutagenesis-based approaches. We ad-

ditionally observe a relationship between pavement cell size and

stomatal density, suggesting that modulation of cell size may be

a mechanism to alter the spacing of stomata in natural pop-

ulations. Finally, we analyze our phenotypes within the context of

previously reported metabolic, enzymatic, and whole-plant phe-

notypes, finding an association between leaf complexity and

shape with mono- and disaccharide levels in the fruit pericarp.

RNA-Seq analysis of gene expression in the vegetative apices of

the ILs demonstrates an association between the expression of

developmental and photosynthetic pathways with this constella-

tion of traits. The results suggest that leaf morphology can mod-

ulate photosynthetic efficiencies and/or that natural variation

regulating the shape of leaves affects fruit morphology, which in

turn affects the accumulation of fruit sugar. Our results improve

upon an important, stable genetic resource and offer insights into

not only the quantitative genetic basis of leaf shape, but also its

phenomic context at a whole plant level.

RESULTS

Fine-Scale Genotyping of ILs

For fine-scale genotyping of the 76 ILs, we generated a data-

base of polymorphisms between the domesticated tomato

species S. lycopersicum cv M82 and its wild relative, S. pennellii

(see Supplemental Data Set 1 online). Single nucleotide poly-

morphisms (SNPs) and indels between species were identified

using RNA-Seq and reduced representation genomic sequenc-

ing, hereafter referred to as restriction enzyme sequence com-

parative analysis (RESCAN; Monson-Miller et al., 2012; Seymour

et al., 2012). Taking both approaches together, we identified

;750,000 polymorphisms between cv M82 and S. pennellii (see

Supplemental Table 1 online). Ninety-nine percent of the poly-

morphisms identified have at most a single gene separating them,

saturating coverage at the level of genetic loci.

RNA-Seq and RESCAN data for the 76 ILs and detected SNPs

were used to genotype each IL across the entire genome (data

available at www-plb.ucdavis.edu/Labs/sinha/TomatoGenome/

Resources.htm). A graphical summary of the S. pennellii in-

trogressions for all the ILs shows that they tile over nearly the entire

tomato genome (see Supplemental Figure 1 and Supplemental

Table 2 online).

For each IL, we plotted the genotype of polymorphisms for all

relevant chromosomes (ILs with introgressions on chromosome 2

are shown in Figure 1; see Supplemental Figures 2 and 3 online

for all other chromosomes). The RNA-Seq and RESCAN-based

genotyping results are consistent with and complement one an-

other. Our RNA-Seq–based genotyping (Figure 1C) has a higher

relative depth of coverage, aiding polymorphism identification,

although a smaller portion of the genome was sequenced. RESCAN-

based genotyping (Figure 1D), which yields a more even distribu-

tion of polymorphisms and includes nongenic regions.

Noncontiguous Introgressions and Bins

Ultrahigh-density genotyping revealed that seven ILs have multiple

introgressions. The majority of the additional introgressions are on

the same chromosome as the primary introgression (for example,

IL2-1-1 and IL2-3; Figure 1; see Supplemental Figure 4 online);

however, we found that IL9-3-1 has an ;100-kb introgression

from S. pennellii at the top of chromosome 12 (see Supplemental

Figures 2L and 5 online).

ILs harboring multiple introgressions have important im-

plications for genetic mapping. Unique overlapping regions be-

tween introgressions define smaller intervals than the ILs, termed

“bins.” The unique combinations of ILs that define a bin can dissect

a QTL into considerably smaller intervals than the ILs themselves

(Liu and Zamir, 1999; see Supplemental Data Set 2 online). Im-

portantly, because of the additional introgressions, we changed the

nomenclature of our bins compared with the original bins. As much

of the literature uses the old bin designations and cannot be

changed retroactively, we name our bins with a “d-” prefix (as in

d-5E), denoting “Davis, CA.” The moniker is critical, as the bin names

between the old and new systems do not correspond. Whereas

previously the 76 S. pennellii ILs defined 107 bins, precisely de-

fined IL boundaries reveal 112 bins (see Supplemental Figures 4

and 5 online). The majority of bins harbor <500 annotated genes

(median = 177 genes, mean = 295.03 genes; see Supplemental

Figure 6 and Supplemental Data Set 3 online). Increased bin

numbers are caused by ILs with multiple introgressions where

previously only one had been detected and slightly different

boundaries between borders of ILs that were thought to be shared.

In some instances, bins are noncontiguous, especially in the case
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of ILs harboring multiple introgressions (for example, d-2G follows

the IL2-3 split; see Supplemental Figure 4 online) and when

a smaller introgression lies completely within a larger introgression

(for example, d-10A is divided by IL10-1-1; see Supplemental

Figure 5 online). Precise knowledge of IL boundaries allows the

gene content of bins to be known with near certainty. A list of

annotated genes within the newly defined bins is provided (see

Supplemental Data Set 4 online).

Heritability and Detected QTL

Having precisely defined the introgression boundaries, we next

used this resource to determine the genetic basis underlying

natural variation in leaf form, measuring a comprehensive suite of

leaf traits in the ILs. A number of the traits are derived from outline

analyses of terminal (“Term”) and distal lateral (“Lat”) leaflets from

field-grown ILs. These include size (TermLfSize and LatLfSize) and

measures of serration/lobing (LftCirc and LftSolid). To globally

measure the differences in shape between leaflets, we used an

elliptical Fourier descriptor (EFD) approach followed by a principal

component analysis (Iwata et al., 1998; Iwata and Ukai, 2002).

Over 11,000 leaflets were measured, including the terminal and left

and right distal lateral leaflets, at a pseudoreplication of 15 leaflets

per individual and replication of 10 individuals per IL (raw photos

available at www-plb.ucdavis.edu/Labs/sinha/TomatoGenome/

Resources.htm). The principal components resulting from the EFD

analysis describe intuitive, distinct aspects of shape segregating in

the ILs, which we treat as traits (TermPC1-5 and LatPC1-5; Figure

2; Chitwood et al., 2012b, 2012c, 2012d). Together, the five prin-

cipal components considered in this article explain;75% of all leaf

shape variance observed.

Additionally, we provide measures of leaflet length-to-width

ratio (LftAR and LftRound), leaf complexity (CompPri, CompSec,

CompInt, CompRachis, and CompAll), pavement cell size

(CotPaveArea and CotPaveCnt), pavement cell morphology

(CotPaveAR, CotPaveRound, CotPaveSolid, and CotPaveCirc),

stomatal density (CotStom, LfAdStom, and LfAbStom), stomatal

patterning (CotStomInd), and flowering time (FlowTime) in the

ILs (see Supplemental Figure 7 and Supplemental Data Sets 5

and 6 online). An extensive list detailing traits, what they rep-

resent, and how they are statistically modeled is provided for

reference (see Supplemental Data Set 7 online; trait information

has been deposited at Phenom-Networks, www.phenome-

networks.com). Correlation analysis and hierarchical clustering

suggest that our traits fall into three main categories. The first

category includes leaflet size and leaf complexity measures, the

second pavement cell-related traits and stomatal density, and

the third leaflet length-to-width ratio, serration, and shape (see

Supplemental Figure 8 online).

The traits we measure vary widely in their broad-sense herita-

bilities. Previous reports analyzing measures of leaf length and

width in maize (Tian et al., 2011) and shape analysis in Antirrhinum

majus (Langlade et al., 2005) suggested a high genetic component

to the variance in leaf morphology in these species. Our results are

similar; the highest broad-sense heritability values are observed in

measures of leaflet serration and length-to-width ratio (see

Supplemental Figure 9 online). Specifically, two distinct shape

components, PC1 and PC4, from the EFD analysis of leaflet shape

are highly heritable, and as discussed later, show unique inter-

actions with metabolite and yield-associated traits. Leaf complexity

and size, as well as leaf stomatal density, exhibit intermediate

heritability, whereas most of the cellular traits we measured have

low heritability. This low heritability may not reflect a small genetic

component to these phenotypes, but rather the high variance in

these measurements due to the inability to account for micro-

patterning across the entirety of the leaf surface, and, as we show,

robust QTL for such traits can still be determined.

In total, we detect over 1000 QTL at a significance level of <0.05.

829 of these QTL are in the direction toward S. pennellii. Because

the directionality of traits was determined by comparisons with

S. pennellii grown in the greenhouse (because of the difficulty growing

this species under Davis, CA field conditions), whether QTL are

transgressive beyond S. pennellii cannot be determined. However,

209 QTL are transgressive beyond cv M82 (see Supplemental

Figure 10 online). Of particular note is the numerous QTL that re-

duce leaf complexity and induce shape changes toward that of

S. pennellii. The results suggest that large portions of the genome

contribute to natural variation in leaf complexity and shape and that

these polygenic contributions can act additively (although a limited

role for epistasis in the ILs cannot be discounted).

QTL Regulating Leaf Shape, Complexity, and Serration

No IL comes close to approximating the shape of a S. pennellii

leaflet, the longest axis of which lies perpendicular to cv M82

Figure 2. Principal Components Resulting from an Elliptical Fourier

Descriptor Analysis of Field Leaflet Shapes.

Shown are the first five PCs, explaining 75% of all shape variance from

>11,000 field-grown leaflets. Given is the percentage of variance in

shape each PC explains and the heritability values of each PC, for lateral

(Lat) and terminal (Term) leaflets. PC1 explains a large amount of all

shape variance (44.4%) and relates to the length-to-width ratio of leaflets

(similar to LftAR). PC2 (13.0%) explains asymmetry relating to the sam-

pling of left and right distal lateral leaflets, which on average are mirror

images of each other. The remaining PCs explain shape variance relating

to the proximal-distal distribution of blade outgrowth along the leaflet.

For all PCs, heritability is greater in the distal lateral leaflets relative to the

terminal leaflet. PCs vary in heritability, and the most heritable PCs are

1 and 4. NA, not applicable.
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(see Supplemental Figure 11 online). S. pennellii leaflets are also

more orbicular and lack the distinct deltoid tip and lobing of

a domesticated tomato leaflet. Because the ILs tile the tomato

genome and a majority of ILs possess a significant shape QTL

(see Supplemental Figure 10 online), this reinforces the idea that

leaflet shape is highly polygenic with an important additive

component.

The largest contributing loci to leaflet shape in the IL pop-

ulation include ILs 4-3 and 5-4, which are much wider than cv

M82, and ILs 2-1 and 9-1-2, which are transgressively narrower

than cv M82 leaflets (see Supplemental Figure 11A online). A

close comparison of the averaged leaflet outlines of the two

widest and two narrowest ILs against each other reveals that

these ILs alter their shape in distinct ways (see Supplemental

Figure 11B online). For example, the tip of IL5-4 remains much

more distinct than that in IL4-3, while increasing its wideness at

the base of the leaflet. Similarly, IL2-1 and 9-1-2 vary distinctly in

the degree of constriction at their proximal ends. These four ILs

represent four different extremes in PC1-PC4 space. Although

a simplification, PC1 explains shape variance relating to overall

length-to-width ratio changes, whereas PC4 tends to explain

variance relating more to the distinctness in shape between ILs,

such as the distribution of laminar outgrowth along the proximal-

distal axis and cordate bulges at the base of leaflets (Figure 2).

Extensive developmental and mutagenesis-based approaches

in model systems suggest that a suite of leaf morphology fea-

tures, including serration, complexity, and laminar outgrowth,

are under similar genetic regulation, including the activities of

auxin and KNOX, CUC, and TCP family members (Barkoulas

et al., 2007). How do these leaf features behave within the

context of segregating natural variants? At least one IL, IL4-3,

possesses significant QTL in the S. pennellii direction for all

traits measured, including significantly decreased length-to-

width ratio (influenced by laminar outgrowth), decreased ser-

ration and lobing (as measured by circularity and solidity), and

decreased leaf complexity counts. Nonetheless, serration and

shape are genetically separable. For example, IL5-4 is signifi-

cantly wider than cv M82 but is transgressively more serrated

and has increased leaf complexity (Figure 3). Looking at repre-

sentative leaflets, it becomes apparent that measurements of

serration and lobing versus shape impinge upon each other to

some degree; for example, the increased lobing in IL5-4 creates

proximal lobes that likely contribute toward its increased width.

The varying combinations of leaflet shape, serration, and com-

plexity are also present in the transgressively thinner ILs 2-1 and

9-1-2. That these leaf morphology traits segregate independently

from each other suggests that either unique genes contribute to

natural variation in these features or that the spatiotemporal reg-

ulation of known factors is modulated independently from each

other.

QTL Regulating Cellular Phenotypes

Natural variation in organ shape must arise during development

from differences in the patterning, division, and expansion of

cells. Additionally, cellular features are important for adaptations

to abiotic conditions, such as the patterning and response of

stomata to the xerophytic conditions found in the native habitat

of S. pennellii (Heichel and Anagnostakis, 1978). To measure

natural variation at the cellular level in the ILs, we analyzed the

size of pavement cells, their shape characteristics, and stomatal

density and patterning on the adaxial side of cotyledons. We

additionally measured the density of stomata on the adaxial and

abaxial sides of mature, field-grown leaves.

One IL in particular, IL10-3, consistently exhibits extreme

phenotypes for a number of cellular features (see Supplemental

Figure 12 online). Like S. pennellii, IL10-3 has a significantly

lower stomatal density on the adaxial side of cotyledons and

true leaves, and it also possesses the largest pavement cell size

measured in the ILs. Beyond the developmental interest of ad-

axial stomatal density, IL10-3 additionally possesses signifi-

cantly reduced stomatal density on the abaxial side of true

leaves, an important adaptive trait considering the desert habitat

of S. pennellii (see Supplemental Data Sets 5 and 6 online). In-

terestingly, the stomatal index of IL10-3 is not significantly dif-

ferent from cv M82 (“CotStomInd”; see Supplemental Data Sets

5 and 6 online), suggesting that the number of stomata per

pavement cell is not the major cause of these phenotypes and

that the larger pavement cell size pushes the stomata away from

each other, reducing their density. The significant correlations be-

tween pavement cell size and stomatal density (see Supplemental

Figures 8 and 13 online) may represent an evolutionary mechanism

to modulate stomatal spacing.

Bin Mapping and Gene Candidates

Bin mapping can be a qualitative endeavor. If one IL possesses

a significant phenotypic difference from cv M82 and an over-

lapping IL does not, then a QTL interval can be narrowed by

exclusion. Similarly, a shared region between ILs with similar

phenotypes can be used to delimit a QTL by parsimony. Ap-

plying exclusion and parsimony can be difficult when dealing

with QTLs, though. For example, is an IL not significant enough

to use to exclude a region, or conversely is a QTL significant

enough to apply parsimony? To help solve this predicament, for

each bin, we use a marginal regression approach, regressing

bin genotypes of individuals against their trait values (see

Supplemental Figures 14A to 14D online). This allows a proba-

bility value to be assigned to each bin based on its correlation

with a trait. This method is only to be used as an aid in addition

to IL-based mapping approaches: Because each bin is defined

by, at most, a handful of ILs, the P values assigned to bins in this

manner are influenced by the ILs that define them. Graphs si-

multaneously showing IL and bin mapping results (to compare

and integrate these two methods) are provided (see Supplemental

Figures 15 to 47 online).

Bin gene content, combined with IL and bin mapping, can

lead to candidate genes causal for the QTL of interest. One

example is SELF-PRUNING 5G (SP5G), which in our bin map

resides on bin d-5E. With respect to flowering time, a QTL can

be narrowed down to this bin, as IL5-4 (but not ILs 5-3 or 5-5)

takes significantly more days to flower than cv M82 (see

Supplemental Figure 14A online). As this bin encompasses only

36 genes and SP5G is a FLOWERING LOCUS T homolog

(Carmel-Goren et al., 2003), it is a prime candidate for causing

the increased flowering time (see Supplemental Figure 14E

Quantitative Genetics of Leaf Shape 5 of 17

http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1
http://www.plantcell.org/cgi/content/full/tpc.113.112391/DC1


online). Moreover, SP5G cosegregates for the pht5.4 QTL

regulating plant height and is tightly linked to the OB-

SCURAVENOSA locus, and it has been suggested that the tight

linkage of these two loci contributes to the coincident features

of compact plant habit and chloroplast-obscured venation in

processing tomato varieties (Jones et al., 2007). Similarly, we

observe leaf phenotypes in IL5-4 as well, including wider leaves

(see Supplemental Figure 11 online) with more serration and

complexity (Figure 3). Given previously demonstrated con-

nections between flowering time pathways and leaf morphology

Figure 3. Leaflet Shape, Serration, and Leaf Complexity Are Genetically Distinct Components.

(A) Representative leaflets from ILs with significant shape QTL. Given are the direction and significance of length-to-width ratio change relative to cv

M82 (AR), serration/lobing (circularity), and leaf complexity. Note that despite considerable accumulated genetic evidence suggesting otherwise, these

features do not follow each other, and different ILs exhibit different combinations of these traits.

(B) Graphs demonstrating the breaking between AR, circularity (Circ.), and complexity (Comp.). In each graph, AR is on the x axis for comparison

showing IL values for circularity and complexity on the y axis. Colors indicate significance of trait deviations for the y axis.

[See online article for color version of this figure.]
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(Willmann and Poethig, 2011), it is not unreasonable to suspect

SP5G as a modulator of leaf shape in addition to flowering time.

Not all bins are as small as the aforementioned, but knowing

the gene content of an interval can provide a list of potential

candidates regulating traits. For example, bin d-9B is inferred to

possess a QTL that increases leaflet aspect ratio (AR; see

Supplemental Figure 14B and LatPC1 in Supplemental Figure 31

online). An ARF16 homolog, a modulator of leaflet width and

hyponasty in Arabidopsis, lies in this interval (Liu et al., 2011).

Similarly, d-8F is an interval regulating leaflet AR as well (see

Supplemental Figure 14C online). Within this bin lies a homolog

of FILAMENTOUS FLOWER/GRAMINIFOLIA, a regulator of lam-

inar outgrowth, as well as an ATHB-2 homolog, which in addition

to its role in the shade avoidance response, also modulates leaf

width (Siegfried et al., 1999; Steindler et al., 1999; Golz et al.,

2004; Eshed et al., 2004). As adaxial-abaxial polarity determinants

modulate leaf complexity in tomato (Kim et al., 2003a, 2003b), the

inclusion of LEUNIG and KANADI2 homologs (Kerstetter et al.,

2001; Cnops et al., 2004; Stahle et al., 2009) on the d-8A interval,

which regulates leaf complexity, is interesting (see Supplemental

Figure 14D online).

Identifying causal genes for QTL obviously requires fine-mapping,

but the delimitation of the exact gene content in bins (see

Supplemental Data Set 4 online) provides a powerful starting

place to begin studies of natural variation in tomato.

Associations between Leaf Morphology

and Fruit Sugar Metabolism

One of the advantages of a true-breeding genetic resource, such

as the S. pennellii ILs, is the ability to meta-analyze phenotypic

data sets with a common genetic basis (Zamir, 2013). Perhaps

the most interesting relationship between phenotypes that has

been established by such studies (Schauer et al., 2006, 2008;

Steinhauser et al., 2011; Toubiana et al., 2012) is a prominent

negative correlation between harvest index (the ratio of fruit yield

to overall biomass) and metabolite levels in the pericarp. Gener-

ally, the more biomass of a plant dedicated to fruit production, the

lower the metabolite concentrations in the fruit. The antagonism

between metabolite levels and harvest index obviously bodes

badly for breeding efforts to increase both of these critical traits

simultaneously. However, the relationship is understandable,

especially if viewed from the perspective of limited resources,

nutrient allocation, and effects of metabolite dilution at the whole-

plant level. Critical to the understanding of these whole plant

relationships is detailed knowledge of not only nutrient sinks (i.e.,

fruits, seeds, and flowers) but the ultimate source (leaves).

To better understand the role that leaves play in these rela-

tionships, we performed a correlation analysis of leaf traits with

the existing phenomics database (Phenom-Networks, www.

phenome-networks.com; Figure 4; see Supplemental Figures 48

and 49 online). We divide all traits analyzed into five major

groups, defined by the studies from which they are reported and

the phenotype that they measure. Largely, traits belonging to

a group describe related phenotypes, but for consistency they

are first defined by the study from which they originate, the

authors’ terminology in those studies, and most importantly their

class designations in the Phenom-Networks database. “MET”

traits are derived from Schauer et al. (2006, 2008) and measure

metabolite levels in the fruit pericarp. “MOR” traits (for “mor-

phology,” using the nomenclature of Schauer et al. [2006, 2008]

and Phenom-Networks) include both yield-related traits and ex-

plicit morphological measurements of fruits and flowers. The term

“morphology” is used loosely and in contrast with the “metabo-

lite” traits also measured by Schauer et al. (2006, 2008). For ex-

ample, “MOR” traits include fruit Brix, earliness (the ratio of red

fruit yield to total fruit yield), and plant weight, even though these

are not strictly morphological features. “ENZ” traits, derived from

Steinhauser et al. (2011), measure enzymatic activities in the fruit

pericarp, and “SEED” traits, reported by Toubiana et al. (2012),

measure metabolite levels in seeds. Traits described in this article

were termed “DEV” traits because of their relevance to leaf de-

velopment. MET, MOR, ENZ, and SEED traits (represented in

blue, magenta, yellow, and orange in figures, respectively) are

described in Supplemental Data Set 8 online and their values and

correlations with other traits provided in Supplemental Data Sets

9 to 11 online. DEV values are provided in Supplemental Data Set

5 online and described in Supplemental Data Set 7 online.

Hierarchical clustering of the mean z-scores for traits reveals

a strong negative relationship of harvest index and yield-associated

(MOR) traits with metabolite levels (MET; dotted box, upper right-

hand corner of Figure 4A), demonstrating the robustness of this

previously described relationship (Schauer et al., 2006, 2008;

Toubiana et al., 2012). The metabolites exhibiting the strongest

negative correlation with harvest index and MOR traits are re-

lated to nitrogen and amino acid metabolism in both the fruit and

seed (for a close-up of the trait identities in Figure 4A, see

Supplemental Figure 50 online; amino acids indicated by asterisk).

Leaf traits (DEV; black) cluster exclusively outside of the

aforementioned complex of phenotypes (i.e., the strong negative

relationship between harvest index and metabolites; Figure 4A).

As DEV traits were not considered in previous analyses, the

traits from other classes that cluster with DEV traits are in-

formative as to the importance of leaf traits as correlates of

metabolism and yield. For example, a small group of highly

heritable DEV traits explaining the length-to-width ratio of leaf-

lets (LftAR, LftRound, LatPC1, and TermPC1) cocluster and are

significantly correlated with MOR traits related to length-to-

width ratio in fruit and seeds (Figure 4B, red box in Figure 4A).

Length-to-width ratio is the major source of shape variance

(>40%) in field-grown leaflets (PC1; Figure 2). Such correlation

suggests that leaf shape is not independent from the genetic

basis of morphology in disparate organs, with implications for

the independent modulation of organ shapes during evolution.

As we discuss below, changes in either leaf or fruit morphology

can explain correlations we observed with fruit sugar, demon-

strating the difficulty of organ specific breeding efforts.

Brix and pericarp levels of Suc, Glc, Fru, Gal, mannose, and

trehalose (small dotted box in lower right-hand corner in Figure

4A; see Supplemental Figure 50 online) cluster away from the

previously described constellation of harvest index and metab-

olite antagonisms. Also included in this cluster are plant weight

and earliness. This suggests a more prominent relationship

between carbon metabolism and leaves than the previously

found connection between nitrogen metabolism and harvest

index. A more detailed analysis confirms the special relationship
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Figure 4. Relationship between Leaf Morphology and Previously Measured IL Traits.

(A) Hierarchical clustering of leaf traits with previously studied traits. DEV (black), leaf development traits from this study; MOR (magenta), whole-plant,

yield, and reproductive morphological traits as described by Schauer et al. (2006, 2008); MET (blue), metabolic traits described in the same studies; ENZ

(yellow), enzymatic activities, as measured by Steinhauser et al. (2011); SEED (orange), seed metabolites, as described by Toubiana et al. (2012).

Hierarchical clustering is based on absolute correlation values, with red denoting negative Pearson correlation coefficients and yellow positive. The top

half of the plot shows significant correlations (<0.05) between traits after global multiple test adjustment, indicated in black. Trait identities are indicated

as a marginal rug plot along the sides of the graph. The large group of highly correlated traits (in the top right-hand corner, indicated by the dotted line) is

consistent with previous reports of negative correlation between MOR traits (including harvest index, [HI], indicated by an arrow) with fruit metabolite

levels. DEV traits cluster away from this previously described relationship and closely associate with Brix, plant weight, and mono- and disaccharide

levels, indicated by the dotted lined box toward the bottom of the graph. A more detailed view of the hierarchical clustering is found in Supplemental

Figure 50 online.
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between leaf complexity and shape with sugar metabolism in

the fruit (see Supplemental Figure 48 online), and jackknifing

suggests that the correlations are robust and not artifacts re-

sulting from undue influence of a few ILs (see Supplemental

Figure 51 and Supplemental Data Set 12 online). Additionally, if

only correlation between leaf development traits with traits from

other classes are considered, then not only do Brix and sugar

levels in the fruit exhibit the highest connectivity with leaf

complexity and shape, but they are among the most significant

correlations (see Supplemental Figure 49 online).

Association between Photosynthetic Gene

Expression and Leaf Morphology

Leaf morphology may correlate with sugar accumulation in the

fruit due to a variety of factors, indirectly and directly involving

leaves. (1) The coregulation of fruit and leaf morphology through

similar gene regulatory networks (especially considering that

fruits are modified leaves) may lead to shape changes in the fruit

that affect the accumulation of sugars. (2) Natural variation in

leaf morphology may affect photosynthetic efficiencies through

physiological parameters (Nicotra et al., 2011; Chitwood et al.,

2012a). The latter hypothesis is particularly intriguing consider-

ing that >80% of sugars in the fruit are produced directly by

photosynthesis in leaves and subsequently translocated through

the phloem (Heatherington et al., 1998; Lytovchenko et al., 2011).

Nonetheless, fruit photosynthesis has been demonstrated to

significantly affect the accumulation of fruit sugars (Powell et al.,

2012), and the role of fruit morphology in this process remains to

be more fully explored.

To explore these hypotheses, we correlated the gene ex-

pression levels in the 76 ILs, as measured in the vegetative apex

using RNA-Seq, against other IL trait values (Figure 5A; see

Supplemental Data Sets 13 to 15 online). After hierarchically

clustering traits and the expression profiles of those genes

significantly correlated with at least one trait (after multiple test

correction; see Supplemental Data Set 16 online), a distinct

group (indicated by an asterisk in Figure 5A) contained genes

with numerous correlations to leaf development (DEV) traits. In

addition to leaf complexity, LftCirc/LftSolid (measures of serra-

tion), and PC1/LftAR (length-to-width ratio), fruit Glc is repre-

sented among the traits significantly correlated with this group

of genes (see Supplemental Figure 52 online).

As might be predicted, potential regulators of leaf morphology

are present in this group of genes, including ARF3/ETTIN, ARF4,

AGO1, SAW1, BELL1, PIN5, and GRF7 homologs (see Supplemental

Data Set 17 online), which regulate laminar outgrowth, patterning,

indeterminacy, and cell expansion. Support for an intimate

association between the genetic coregulation of leaf and fruit

morphology with fruit sugar is apparent in genes such as AUXIN-

RESPONSE FACTOR4 (ARF4), which modulate not only leaf

shape through auxin and adaxial-abaxial pathways, but also the

morphology of the fruit (Jones et al., 2002; Yifhar et al., 2012;

Sagar et al., 2013).

A Gene Ontology enrichment analysis for genes within this

group reveals numerous significantly enriched categories re-

lated to photosynthesis (Figures 5A and 5B; see Supplemental

Data Set 18 online). It is unlikely that leaf complexity and shape

modulate the levels of photosynthetic genes via changes in

overall blade area given the negative correlation between leaf

complexity and leaflet area (see Supplemental Figure 13 online).

Rather, the correlation of photosynthetic gene expression with

leaf development traits may reflect the influence of leaf mor-

phology on photosynthetic efficiency physiologically. It is also

possible that developmental gene regulatory networks impinge

upon photosynthesis pathways more directly, independent of

leaf shape. ARF4 again provides a striking example: Not only

does this gene regulate both leaf and fruit morphology (Yifhar

et al., 2012), but it also regulates the accumulation of chloro-

plasts and the greening of fruits (Jones et al., 2002), which were

recently shown to affect sugar levels (Sagar et al., 2013). Con-

sidering the relationship between leaf and fruit shape, a fuller

understanding of the causative factors underlying sugar accu-

mulation will require a similar gene expression analysis in fruits

to that performed here in vegetative apices.

DISCUSSION

Although breeding traits from wild relatives into domesticated

lines is important in and of itself, the knowledge of the identities

of genes regulating these traits can be incredibly powerful and

explanatory (Frary et al., 2000; Fridman et al., 2004; Xiao et al.,

2008; Kimura et al., 2008; Li and Chetelat, 2010). In this study,

the high-density genotyping we perform at the genetic and

transcriptomic levels elaborates upon previous genetic maps of

the S. pennellii ILs and provides outstanding resolution of the

recombination breakpoints that define their introgressions. In

many instances, the increased resolution resulting from our

genotyping yielded insights into the bin structure and the

complement of genes harbored by the ILs. Precise knowledge of

the genetic content of each IL is a prerequisite for positional

cloning of QTL, reverse genetics, and genetic genomics. To-

gether with the recently completed tomato genome (Tomato

Genome Consortium, 2012), the means to begin understanding

the genetic basis of natural variation in the tomato complex are

coming into place (Moyle, 2008; Ranjan et al., 2012).

Despite the exhaustive study of harvest and fruit-related

phenotypes, little has been done to study leaves in the S. pennellii

ILs. Indeed, approaches utilizing natural variation to study leaf

Figure 4. (continued).

(B) Detailed analysis of the clustering reveals unexpected whole-plant relationships between traits. For example, LftAR, LftRound, and PC1 (all highly

heritable traits describing leaflet length-to-width ratio) most closely cluster with traits relating to the dimensions of seeds and fruit, suggesting that the

morphology of disparate organ types is regulated by common genetic elements. Relevant significant correlations, as multiple test–adjusted for the traits

shown, are shown with red asterisks. The traits represented in (B) are indicated in (A) by a red box.
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development are rare in any species (Jiang et al., 2000; Holtan

and Hake, 2003; Kimura et al., 2008; Tian et al., 2011). Even rarer

are studies of variation in leaf morphology by a quantitative

means capable of describing total shape variance (Iwata et al.,

1998; Iwata and Ukai, 2002; Langlade et al., 2005; Chitwood

et al., 2012b, 2012c, 2012d). Our analyses reveal that leaf mor-

phology is highly heritable and that the S. pennellii ILs are

a valuable resource to study natural variation in leaves (Figure 2;

see Supplemental Figure 9 online). Moreover, the drastic, but

superficially simple shape differences in leaves between S. pen-

nellii and S. lycopersicum cv M82 are regulated through a com-

plex, polygenic genetic basis (see Supplemental Figure 10 online).

For example, in addition to the simple regulation of length-to-

width ratio, different QTL can impart distinct shapes by which

leaflets modulate their width (see Supplemental Figure 11 online).

Additionally, we demonstrate that leaflet serration and leaf com-

plexity segregate independently from shape characteristics and

even each other (Figure 3). This observation goes against the

prevailing wisdom that leaf morphology is regulated by common

genetic elements (Barkoulas et al., 2007) and suggests that only

a small fraction of the genes regulating the tremendous variation

of leaf morphology in natural populations has been discovered.

What mechanisms could explain the disparate association

between leaf morphology and sugar levels in the fruit? A purely

developmental connection between leaves and fruit is likely part

of the explanation. Among other correlations we detect is a re-

lationship between traits describing the length-to-width ratio of

leaflets with traits explaining similar dimensions of fruit and

seeds (Figure 4B). Considering the extensive analysis of fruit

size and morphology in tomato (Frary et al., 2000; Cong et al.,

2008; Xiao et al., 2008), it will be interesting to analyze genetic

perturbations modulating fruit phenotypes for their effect on

vegetative development and vice versa (Wu et al., 2011). An-

other possibility is that leaf development is altered by genetic

changes in overall metabolism (Hackel et al., 2006) or that ma-

nipulation of carbon metabolism itself induces morphological

changes in leaves (Tsai et al., 1997; Geigenberger et al., 2004;

Lawson et al., 2006; Raines and Paul, 2006).

It is also possible that leaf morphology affects sugar metab-

olism in the fruit. Not only are leaves the ultimate source of most

photoassimilates, but overwhelming evidence suggests that

sugars are apoplastically unloaded from the phloem into the fruit

(Fridman et al., 2004; Baxter et al., 2005; Hackel et al., 2006;

Zanor et al., 2009), suggesting a directionality to the correlations

we observe. The traits that correlate with fruit sugar levels are

not related to ratios of biomass to yield (Do et al., 2010) or the

size of leaves, but rather, sensu stricto, leaf shape and com-

plexity. That the expression profiles of photosynthetic genes

correlate with leaf morphology traits (Figures 5A and 5B) only

bolsters the idea that leaf shape can modulate fruit sugar levels

via a photosynthetic mechanism. Similar analyses to those

presented here of photosynthetic gene expression in IL fruits are

required to better resolve the roles of vegetative and reproductive

organs in sugar accumulation.

Regardless of the mechanism, our results highlight an often

overlooked fact: Leaves, as the major source of photoassimilate

in the fruit (Heatherington et al., 1998; Lytovchenko et al., 2011;

Powell et al., 2012) and as organs with a shared developmental

Figure 5. An Association between Photosynthetic Gene Expression and

Leaf Morphology.

(A) Hierarchical clustering of traits and gene expression profiles in the

vegetative apex measured across the 76 ILs. Gene expression profiles

across ILs were regressed against traits and only those genes with at

least one significant correlation with a trait were considered. Colors in-

dicate significant correlation after multiple test adjustment with a gene

expression profile and the class to which the correlated trait belongs

(DEV, black/white; MOR, magenta; MET, blue; ENZ, yellow; and SEED,

orange). One cluster of genes (indicated by an asterisk) significantly

correlate with numerous DEV traits related to leaf development.

(B) Gene Ontology enrichment analysis of the gene group with an as-

terisk reveals numerous significant categories related to photosynthesis.
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foundation with carpels, are an important consideration for any

breeding effort. Substantial theoretical and empirical evidence

has accumulated that leaf shape and size play major roles in

water use efficiency and thermoregulation (Parkhurst and Loucks,

1972; Givnish and Vermeij, 1976; Poorter et al., 2010; Nicotra

et al., 2011; Chitwood et al., 2012a). Additionally, the relationship

in the fossil record between temperature and precipitation with

leaf serration and size further supports a functional significance of

leaf shape (Bailey and Sinnott, 1915; Wolfe, 1971; Greenwood,

1992; Wilf et al., 1998). The environment imposed by agriculture

upon domesticated species, including tomato, is radically dif-

ferent from that encountered by their wild ancestors. If the mor-

phology of leaves matters with respect to photosynthetic

efficiency, then leaf size and shape may have been bred as much

as the crop, even when the crop is not the leaf, as in tomato. Just

as leaf angle has been responsible for most yield increases in

maize over the past century (Duvick, 2005; Tian et al., 2011), we

propose that leaves may have affected the tomato fruit through

developmental and photosynthetic mechanisms.

METHODS

Plant Materials, Growth Conditions, and Experimental Design

Second-generation Solanumpennellii ILs (Eshed and Zamir, 1995; Liu and

Zamir, 1999) and Solanum lycopersicum cv M82 seeds were obtained

from the Tomato Genetics Resource Center (University of California,

Davis) and Dani Zamir (Hebrew University, Rehovot, Israel). For in-

formation about the seed stocks used for different lines and experiments,

please see Supplemental Data Set 19 online.

In mid April, seed were washed in 50% bleach for ;2 min, rinsed, and

placed onto water-soaked paper towels in Phytatrays (Sigma-Aldrich) in

preparation for field planting. Seeds were placed in darkness for 3 d before

moving to a 16:8 light cycle in growth chambers for 4 d. Seedlings were

then transplanted into 53 10 subdivided trays (113 22 inches) in Sunshine

Mix soil (Sun Gro) in a greenhouse. Importantly, seedlings were trans-

planted in trays in the same randomized block design used in the field: Not

only did this assist field transplanting, but it allowed cellular trait meas-

urements to be taken in the lath house. Twenty-one days after plating,

seedlings were then transferred to a lath house (early May). In both the

greenhouse and lath house, seedlings were vigorously top watered and

allowed to completely dry between waterings to harden for the field.

Thirty-five days after plating, seedlings were hand transplanted to the

field (late May). Transplanted seedlings were initially sprinkler watered

followed by ditch irrigated. Ditch irrigation was used as needed throughout

the season. ILs and cv M82 were arranged in a block design with 10 rep-

licates. Each block consisted of two rows. Arrangement within each block

was randomized.

Anthesis began in early June, and field measures of leaf morphology

were taken in early July from mature leaves. Harvest of fruit began late

August and continued until mid September.

All traits (exceptflowering time), whether cellular traitsmeasured in the lath

house or fieldmeasurements ofmature leaves, were studied in a 2010 field in

Davis, CA. Additionally, leaf complexity traits weremeasured in a 2011 field in

Davis, CA and the results incorporated together with 2010 data in statistical

models. Flowering time was measured exclusively from the 2011 field

season.

For the RNA-Seq–based genotyping and expression analysis ex-

periments, seeds of the ILs and two parents were washed in 50% bleach

for ;2 min. Afterwards, seeds were placed in darkness for 3 d before

moving to a 16:8 light cycle in growth chambers for 5 d. Seedlings were

then transplanted into 2 3 5 pots per tray in Sunshine Mix soil (Sun Gro).

For each replicate, six seedlings of each parent or IL were planted per pot.

The 76 ILs (and two replicates each of cv M82 and S. pennellii ) were

divided into four cohorts of 20 randomly assigned genotypes. These

cohorts sampled different shelves and regions of shelves across four

temporal replicates in a Latin square design to account for positional

effects on growth. Within a cohort’s assigned space for each of four

temporal replicates, pots were randomly distributed. The seedlings were

harvested 5 d after transplanting (13 d of growth in total). Cotyledons and

mature leaves >1 cm in total length were excluded, and remaining tissues

(including the shoot apical meristem) above the midpoint of the hypocotyl

were pooled, for all individuals in a pot, into 2-mL microcentrifuge tubes

and immediately frozen in liquid nitrogen.

RNA-Seq Library Preparation

mRNA isolation and RNA-Seq library preparation were performed from 80

samples at a time using a high-throughput RNA-Seq protocol (Kumar

et al., 2012). The prepared libraries were sequenced in pools of 12 for

replicates 1 and 2 (one lane each) and in pools of 80 for replicates 3 and 4

(seven lanes) at the UC Davis Genome Centre Expression Analysis Core

using the HiSequation 2000 platform (Illumina).

Preprocessing RNA-Seq and RESCAN Sequence Data

Preprocessing of reads involved removal of low quality reads (phred

score < 20), trimming of low-quality bases from the 39 ends of the reads,

and removal of adapter contamination using custom Perl scripts. The

quality-filtered reads were sorted into individual libraries based on

barcodes and then barcodes were trimmed using the Fastx toolkit.

RNA-Seq Mapping

RNA-Seq reads were initially mapped to the Heinz reference genome

using BWA (parameters: -e 15 -i 10 -k 1 -l 25 -n 0.05; Li and Durbin, 2009).

Nonuniquely mapped reads and reads with a mapping quality <20 were

discarded. Unmapped reads were subsequently remapped using TopHat

(parameters: -m 1 -g 1–segment-length 22 I = 5000–library-type fr-

unstranded–solexa1.3-quals–butterfly-search; Trapnell et al., 2009).

Mapping and intermediate processing (including sorting, filtering, and

duplicate removal using samtools [Li et al., 2009] and Picard [http://

picard.sourceforge.net/]) were automated using a Perl script available at

http://github.com/mfcovington/RNaseq_mapping.

To remove reads originating from repeat-rich genomic regions,

RESCAN sequencing reads were initially mapped to the Sol Genomic

Network’s tomato repeat database using BWA (BWA parameters: -e 15 -i

10 -k 1 -l 25 -n 0.05) (we created the fasta file for this from the gff3 file

available at ftp://ftp.sgn.cornell.edu/genomes/Solanum_lycopersicum/

annotation/ITAG2.3_release/ITAG2.3_repeats.gff3). Reads not mapped

to the repeat database were extracted using bam2fastq program (http://

www.hudsonalpha.org/gsl/software/bam2fastq.php). Subsequently,

these repeat-filtered reads were mapped to the Heinz reference genome

using the same BWA parameters. Samtools (with the’–bq 1’ option) was

used to retain the reads that mapped uniquely to the reference genome.

Polymorphism Identification for RNA-Seq

Polymorphisms between cv M82 and Heinz or S. pennellii and Heinz were

identified using a set of Perl scripts (available at http://github.com/

mfcovington/snp_identification). These scripts identify potential SNPs/

indels based on pileup data extracted from the sequence alignments.

RNA-Seq reads that encroach upon introns can lead to the identification

of false SNPs/indels if the portion of the read that protrudes into the intron

is not long enough to be recognized by TopHat as containing an intron
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junction. To eliminate these false polymorphisms (and maintain actual

polymorphisms that exist within the exon near an exon-intron junction as

well as those at the beginning or end of a transcript), we developed a filter

based on the ratios of coverage at the putative polymorphism position

and flanking positions (offset by eight nucleotides). We used two types of

coverage: one that only counts actual reads and another that includes

gaps in reads that represent introns (CIGAR score of’N’). Both gap and no-

gap depth of coverage was calculated with a samtools-based Perl module

(available at http://github.com/mfcovington/coverage_calc).

A preliminary list of cv M82 versus S. pennellii polymorphisms was

generated by combining the filtered SNP/indel lists for the individual

parents versus Heinz. Shared polymorphisms were discarded as well as

polymorphisms at chromosomal positions for which the opposite parent

had a depth of coverage less than four reads. Thesewere performed using

a set of Perl and R scripts (available at http://github.com/mfcovington/

snp_identification).

Polymorphism Identification for RESCAN

VarScan (v2.2.7), a software for variant detection from next generation

sequencing data, was used to call SNPs for generating parental refer-

ences (Koboldt et al., 2012). To this end, the pileup2snp command was

used (parameters: –min-coverage 4–min-reads 2–min-avg-qual 20–min-

var-frequation 0.9–p-value 0.05). Subsequently, the compare function of

VarScan (with the “unique” option) was used to discard common SNPs

between cv M82 and S. pennellii, compared with the Heinz genome. The

S. pennellii SNP reference was further refined by removing SNPs rep-

resented in more than five of the 76 ILs, since the reads contributing to

these SNPs are likely derived from unannotated repetitive regions. These

steps yielded preliminary RESCAN polymorphism list.

Polymorphism Noise Reduction

The preliminary RNA-Seq and RESCAN polymorphism lists were filtered

to remove spurious SNPs/indels. This was done by genotyping the pa-

rental lines that were used for initial polymorphism identification (cv M82

and S. pennellii ) and removing any SNPs/indels that return an unexpected

genotype (using a Perl script available at http://github.com/mfcovington/

snp_identification). This noise reduction step results in final RNA-Seq and

RESCAN versions of the database of polymorphisms between cv M82

and S. pennellii (see Supplemental Data Set 1 online).

IL Genotyping and Plotting

IL sequence data was mapped to the Heinz reference genome. Mpileup

information from each alignment was interrogated for every chromosomal

position in the relevant version of the SNP database (i.e., RNA-Seq versus

RESCAN) to determine the number of reads matching cv M82 versus

S. pennellii (using a set of Perl scripts available at http://github.com/

mfcovington/genotyping). The genotype of every SNP/indel for all ILs can

be found at www-plb.ucdavis.edu/Labs/sinha/TomatoGenome/Resources.

htm.

These data were plotted with a ggplot2-based (Wickham, 2009) ap-

proach that conveys genotype and depth of coverage information for

each polymorphism across the genome (using an R script available at

http://github.com/mfcovington/geno_plot). The technique we developed

to plot genotypes is also able to show heterozygous regions. Poly-

morphism positions that are S. pennellii or cv M82 for every sequencing

read are shown as bright green or magenta, respectively. As the ratio of

S. pennellii to cv M82 evens out, the color of the data point approaches

black. For example, our stock of IL1-2 is segregating and the introgressed

region is clearly heterozygous for thepoolwe sequenced (see Supplemental

Figures 2A and 3A online).

Trait Measurement

Cellular traits were measured from the adaxial side of cotyledons from

plants in the lath house or from the adaxial and abaxial side of true leaves

from the field. In all cases, dental impression (Provil Novo Light Standard

Fast; Pearson Dental Supplies) was applied using an application gun and

allowed to dry before archiving. Fingernail polish (Sally Hanson Double

Duty) was applied to impressions, allowed to dry completely, removed

from the impression, and floated on microscope slides with water. Water

was removed and the nail polish remained affixed to the slide. Micro-

graphs of samples were taken using a standard compound microscope.

For each individual impression, two micrographs were taken to ensure

representative measures. For each micrograph, four cotyledon pavement

cells were traced using Bamboo Tablets (Wacom) in ImageJ (Abramoff

et al., 2004) and the area and shape descriptors recorded. For stomata

and epidermal cell counts, Bamboo Tablets were used to quickly place

dots in ImageJ over the feature of interest, followed by custom macros

that would count and record the number of features. Pseudoreplication

was averaged.

Leaf complexity measurements were taken in the field. Pairs of mea-

surers would measure two leaves per plant, including primary, secondary,

and intercalary leaflet numbers. Leaf complexitywasmeasured in both 2010

and 2011 field seasons. Pseudoreplication was averaged.

Leaf shape traits were derived from photographs. More than 11,000

leaflets were measured for this study. For each individual, five leaves were

collected into plastic Ziploc bags and transported back to lab. For each

leaf, the terminal and two distal lateral leaflets were dissected and

arranged under nonreflective glass (a total of 15 leaflets per individual

were measured). Olympus SP-500 UZ cameras were mounted on copy

stands (Adorama 36-inch Deluxe Copy Stand) and controlled remotely by

computer using Cam2Com software (Sabsik). Using custom ImageJ

(Abramoff et al., 2004) macros, individual leaflets were extracted and

named appropriately to denote individual and leaflet type (terminal, distal

lateral left, and distal lateral right). Leaflet outlines were then batch

processed in ImageJ to measure circularity, solidity, AR, and roundness.

Global analysis of leaflet shape was conducted using EFDs followed by

principal component analysis using the program SHAPE (Iwata and Ukai,

2002). Object contours were extracted as chain-code. Chain-code was

subsequently used to calculate normalized EFDs. Normalization was

based upon manual orientation with respect to the proximal-distal axis of

the leaflet. Principal component analysis was performed on the EFDs

resulting from the first 20 harmonics of Fourier coefficients. Coefficients of

EFDs were calculated at22 and +2 standard deviations for each principal

component and the respective contour shapes reconstructed from an

inverse Fourier transformation. Principal components resulting from

terminal and lateral leaflets were considered separately, and the remaining

pseudoreplication was averaged.

Raw data of leaflet photos and micrographs of epidermal impressions

can be found at the following database: www-plb.ucdavis.edu/Labs/

sinha/TomatoGenome/Resources.htm. Trait information has also been

deposited at Phenom-Networks (www.phenome-networks.com).

Statistical Modeling and QTL Analysis

Traits were modeled using mixed-effect linear models with the lme4

package (http://CRAN.R-project.org/package=lme4) in R (R Development

Core Team, 2011). Before modeling, the distribution of the trait was

checked to determine if it was normal, and if not, it was appropriately

transformed. A thorough description of transformations applied to traits,

whether model terms were treated as fixed or random, and the signifi-

cance of terms is provided in Supplemental Data Set 7 online. Models

were selected through a process of backward selection, in which two

models differing by only the presence of a single term were compared to

determine the significance of the term in explaining variance in the data.
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The process was repeated for all terms (replacing the previously tested

term and testing another), and at the end of the process the most non-

significant term (using a P value threshold of 0.05) was removed from the

model. This process was iterated until only significant terms remained in

the model. We then performed a forward selection check of the resulting

minimal model, adding terms previously removed back to the model and

comparing to the minimal model to ensure that the nonsignificance of

removed terms persists. That the distribution of residuals in the model

was normal was verified. Model fitted values were used for subsequent

analysis. P values frommodels for significant differences between ILs and

cv M82 were extracted using the pvals.fnc function from the language

R package (http://CRAN.R-project.org/package=languageR).

For bin analysis, each individual was factored as to whether it did or did

not possess a particular bin. This process was repeated for each bin.

Marginal regression was performed by fitting a linear model between each

trait as a function of the presence for each bin. Resulting significance

values for each bin with respect to a given trait were then multiple test

adjusted using the Holm method to control the family-wise error rate at

0.05 level.

Meta-Analysis of Traits, Hierarchical Clustering,

and Network Analysis

Traits from other studies used in meta-analysis were downloaded from

www.phenome-networks.com. The studies from which traits are derived

and whether or not they are included in this study are detailed in

Supplemental Data Set 8 online. Only those traits for which data were

collected for >60 ILs were considered, so as to not unduly bias results. In

reality, this means that 67 ILs were measured for the trait with the fewest

recorded values used in this study. For each trait in a data set, data were

z-score normalized, and z-scores were averaged across replicates (see

Supplemental Data Set 9 online). A correlation matrix (Pearson) was then

created between all traits, both those measured in this study and those

from others (see Supplemental Data Set 10 online). Significance values for

correlations were determined and the false discovery rate controlled using

the Benjamini and Hochberg method (see Supplemental Data Set 11

online; Benjamini and Hochberg, 1995). Subsequently, subsets of the

correlation matrix would be analyzed; for example, only those correlations

between a DEV trait with a trait of another class that are significant after

multiple test adjustment.

Hierarchical clustering on data was performed using the hclust

function from the stats package in R (R Development Core Team, 2011),

clustering by the absolute value of the Pearson correlation coefficient

using Ward’s minimum variance method. Hive plots, as previously

conceived (Krzywinski et al., 2011), were implemented using a Web in-

terface developed by the Wodak Lab (wodaklab.org). Jackknifing was

performed using custom scripts.

Unless otherwise noted, visualization of statistical results was per-

formed with the ggplot2 package in R (Wickham, 2009).

Gene Expression Analysis

Mapping and normalization were done on the iPLANT Atmosphere cloud

server (Goff et al., 2011). S. lycopersicum reads were mapped to 34,727

tomato cDNA sequences predicted from the gene models from the

ITAG2.4 genome build (downloadable from http://solgenomics.net/itag/

release/2.3/list_files; Tomato Genome Consortium, 2012). A pseudo

reference list was constructed for S. pennellii using the homologous

regions between S. pennellii scaffolds v.1.9 and S. lycopersicum cDNA

references above. Using the defined boundaries of ILs, custom R scripts

were used to prepare IL-specific references that had the S pennellii se-

quences in the introgressed region andS. lycopersicum sequences outside

the introgressed region. The readsweremapped using BWA (Li and Durbin,

2009) using default parameters except for the following that were changed:

bwa aln: -k 1 -l 25 -e 15 -i 10 and bwa samse: -n 0. Nonuniquely mapped

readswere discarded. Raw counts for each genewere then tabulated using

a Perl script, and the counts table was then filtered in R using the Bio-

conductor package EdgeR version 2.6.10 (Robinson and Oshlack, 2010)

such that only genes that have more than two reads per million in at least

three of the samples were kept. Normalization factors were then calculated

using the trimmed mean of M-values method (Robinson and Oshlack,

2010), and this wasmultiplied with the library size of each sample to get the

effective library size. The reads per million was then calculated for each

gene of a sample as (gene counts 3 1,000,000)/effective library size. The

average of all the normalized replicates of each IL or parent was then

calculated, and this average, in normalized reads per million, was used for

the gene expression analysis.

Averaged, normalized reads for each IL, representing 20,332 genes,

were regressed against 222 trait profiles as a linear model. After multiple

test adjustment using the Benjamini and Hochberg method, 12,501

correlations were significant out of the 4,513,704 correlations tested. The

12,501 significant correlations between gene expression profiles and

traits represented 3951 genes. These genes were hierarchically clustered

based on their expression profile across ILs using the hclust function from

the stats package in R, clustering by the absolute value of the Pearson

correlation coefficient using Ward’s minimum variance method. In-

dependently clustered genes and traits were then plotted against each

other as a matrix shown in Figure 5A. Clusters of genes were then an-

alyzed for enrichment of Gene Ontology terms at a 0.05 false discovery

rate cutoff (goseq Bioconductor package; Young et al., 2010).

Accession Numbers

Sequence data from this article are presented in the supplemental data.

All supplemental materials from this article are deposited in the DRYAD

repository: http://dx.doi.org/10.5061/dryad.rm5v5.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. S. pennellii Introgression Summary for All 76 ILs.

Supplemental Figure 2. RNaseq-Based Genotyping of All Chromosomes.

Supplemental Figure 3. RESCAN-Based Genotyping of All Chromosomes.

Supplemental Figure 4. Map of S. pennellii Introgression Lines,

Chromosomes 1-6.

Supplemental Figure 5. Map of S. pennellii Introgression Lines,

Chromosomes 7-12.

Supplemental Figure 6. Distribution of Genes per Bin.

Supplemental Figure 7. Z-Score Values of ILs Relative to cv M82.

Supplemental Figure 8. Correlation between Leaf Developmental

Traits.

Supplemental Figure 9. Broad-Sense Heritability for Leaf Develop-

mental Traits.

Supplemental Figure 10. Detected Leaf Development QTLs.

Supplemental Figure 11. Leaflet Shape QTL.

Supplemental Figure 12. IL10-3 Exhibits QTL Affecting Pavement

Cell Size and Stomatal Density.

Supplemental Figure 13. Developmentally Insightful Correlations

between Leaf Development Traits.

Supplemental Figure 14. Bin Mapping and Gene Candidates.

Supplemental Figure 15. Bin Mapping Result Legend.
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Supplemental Figure 16. Bin Mapping Results for CompAll.
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Supplemental Figure 45. Bin Mapping Results for TermPC3.

Supplemental Figure 46. Bin Mapping Results for TermPC4.

Supplemental Figure 47. Bin Mapping Results for TermPC5.

Supplemental Figure 48. Significant Correlations between Leaf

Complexity and Shape with Fruit Sugar Levels.

Supplemental Figure 49. Network Analysis Reveals a Relationship

between Leaf Complexity and Shape with Sugars, Brix, and Biomass.

Supplemental Figure 50. Hierarchical Clustering of Traits Analyzed in

This Study.

Supplemental Figure 51. Jackknifing Results Indicate Stable Corre-

lations between Leaf Complexity and Shape with Sugar Metabolism
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Supplemental Figure 52. Traits Significantly Correlated with a Distinct

Cluster of Genes.

Supplemental Table 1. Summary of cv M82 Versus S. pennellii SNP/

Indel Distribution for RNaseq and RESCAN Analyses.

Supplemental Table 2. Chromosomal Positions of the S. pennellii
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