
                          Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). A Quantitative
Hydrological Climate Classification Evaluated With Independent
Streamflow Data. Water Resources Research, 54(7), 5088-5109.
https://doi.org/10.1029/2018WR022913

Peer reviewed version

Link to published version (if available):
10.1029/2018WR022913

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) via AGU at
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022913 . Please refer to any applicable terms
of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1029/2018WR022913
https://doi.org/10.1029/2018WR022913
https://research-information.bris.ac.uk/en/publications/29503291-151d-47cd-9255-3d7b55902520
https://research-information.bris.ac.uk/en/publications/29503291-151d-47cd-9255-3d7b55902520


Title 1 

A Quantitative Hydrological Climate Classification Evaluated with Independent Streamflow Data 2 

Authors 3 

1Knoben, Wouter J. M. 4 
1Woods, Ross A. 5 
2Freer, Jim E. 6 

Affiliations 7 

1Department of Civil Engineering, University of Bristol, UK 8 
2School of Geographical Sciences, University of Bristol, UK 9 

Key points 10 

- Dimensionless numbers that describe a location’s aridity, seasonality of aridity and snowfall 11 

can define the global hydroclimate 12 

- Seasonal streamflow regimes and values of hydrologic statistics are similar in locations with 13 

similar values for the dimensionless numbers 14 

- This approach to hydrologic climate classification is more informative than Köppen-Geiger 15 

classes, especially in snow-dominated areas 16 

Abstract 17 

Classification is essential in the study of natural systems, yet hydrology has no formal way to 18 

structure the climatic forcing that underlies hydrologic response. Various climate classification 19 

systems can be borrowed from other disciplines but these are based on different organizing 20 

principles than a hydrological classification might need. This work presents a hydrologically-informed 21 

way to quantify global climates, explicitly addressing the shortcomings in earlier climate 22 

classifications. In this work, causal factors (climate) and hydrologic response (streamflow) are 23 

separated, meaning that our classification scheme is based only on climatic information and can be 24 

evaluated with independent streamflow data. Using gridded global climate data, we calculate three 25 

dimensionless indices per grid cell, describing annual aridity, aridity seasonality and precipitation-as-26 

snow. We use these indices to create several climate groups and define the membership degree of 27 

1103 catchments to each of the climate groups, based on each catchment’s climate. Streamflow 28 

patterns within each group tend to be similar, and tend to be different between groups. Visual 29 

comparison of flow regimes and Wilcoxon two-sample statistical tests on 16 streamflow signatures 30 

show that this index-based approach is more effective than the often-used Köppen-Geiger 31 

classification for grouping hydrologically similar catchments. Climate forcing exerts a strong control 32 

on typical hydrologic response and we show that at the global scale both change gradually in space. 33 

We argue that hydrologists should consider the hydroclimate as a continuous spectrum defined by 34 

the three climate indices, on which all catchments are positioned and show examples of this in a 35 

regionalization context.  36 



1 Introduction 37 

Classification is an essential step in understanding natural phenomena, as evidenced by globally 38 

agreed-upon classification schemes in many different disciplines and a strong expressed need for a 39 

catchment classification scheme in hydrology (e.g. McDonnell and Woods, 2004; Wagener et al., 40 

2007). Well-known classification examples are the periodic table that chemistry uses to group 41 

elements with similar properties (e.g. Scerri, 2007) and Linnaean taxonomy as used in biology to 42 

group organisms based on similarity of their characteristics (e.g. de Queiroz & Gauthier, 1992). 43 

Classifying phenomena into groups with similar characteristics allows transfer of knowledge from 44 

well-observed members of the group to members about which less is known. In hydrology, defining 45 

similarity between catchments plays a crucial role in enabling predictions in ungauged basins 46 

(Wagener et al., 2007).  47 

In complex systems as are common in earth sciences, classification is not straightforward 48 

(McDonnell & Woods, 2004). Many different classification schemes are available, each with a 49 

different focus or underlying principles, and the choice for one is often motivated by a study’s 50 

particular needs. All classification schemes however aim to group those elements of a system that 51 

are similar, and separate them from groups of other elements that are in some significant way 52 

different from the others. For example, soils can be classified with an international system based on 53 

their diagnostic horizons, properties and materials (IUSS Working Group WRB, 2015), but various 54 

national systems are used as well (e.g. Baize & Girard, 2009; Hewitt, 1992; Soil Classification Working 55 

Group, 1991). Lakes can be classified on a variety of characteristics; e.g. thermal properties (Forel, 56 

1880, cited Hutchinson & Löffler, 1956), mixing properties (Lewis Jr, 1983), trophic status (Canfield Jr 57 

et al., 1983) or a combination of hydrological, chemical and biological properties (Johnes et al., 58 

1994). Similarly, different schemes are available to classify vegetation, e.g. by using plants’ survival 59 

strategy (Grime, 1974), a hierarchical scheme based on leaf cover area akin to Linnaean taxonomy 60 

(Viereck et al., 1992) or as a function of dominant prevailing climate known as life zones (Holdridge, 61 

1967).  62 

Catchments are a common object of study within hydrology. The need for a catchment classification 63 

scheme (e.g. McDonnell & Woods, 2004; Wagener et al., 2007) is usually interpreted as defining 64 

catchment similarity based on hydrological response, presumed drivers of the streamflow response, 65 

or a combination of both. Wagener et al. (2007) lists possible options for classification based on 66 

hydro-climatic region, catchment structure or functional catchment response. Hydrologic similarity 67 

(i.e. grouping similar catchments) follows from mapping the relationship between these aspects. An 68 

early example of a global classification of river regimes (Haines et al., 1988) defines 15 different 69 

typical annual streamflow patterns across the globe. Increases in data availability have allowed more 70 

detailed regional studies covering e.g. Australia (Kennard et al., 2010) and the US (Archfield et al., 71 

2014). Looking just at causal factors underlying streamflow, examples of regional classifications exist 72 

based on soil characteristics (Lilly, 2010) and climate (Berghuijs et al., 2014). Many studies combine 73 

both approaches, using causal factors, such as average aridity, average catchment slope and land 74 

use, together with streamflow characteristics, often in the form of streamflow signatures such as 75 

mean flow and slope of the flow duration curve, to group similar catchments (e.g. Coopersmith et 76 

al., 2012; Kuentz et al., 2016; Sawicz et al., 2011, 2014; Yadav et al., 2007). Whereas a wide variety 77 

of metrics and models are used to describe catchment structure and functional response, there 78 

seems to be at least some consensus on how hydro-climatic aspects can be conceptualised: available 79 

water (precipitation) and energy (temperature, evaporation) interact within the catchment to 80 

control the water balance. Understanding of this principle has led to the Budyko-curve on an annual 81 

scale (Budyko, 1974) and shown the importance of within-year variation of climate (e.g. Milly, 1994).  82 



In catchment classification studies, climate is often considered in a basic form (e.g. annual average 83 

aridity) or in direct relation to streamflow response (e.g. runoff ratio, streamflow elasticity) but 84 

recent work shows that a more nuanced approach that describes the influence of climatic input on 85 

typical flow regimes might be appropriate (Addor et al., 2017, 2018; Berghuijs et al., 2014). With 86 

three dimensionless numbers that summarize the climate’s aridity, precipitation timing and 87 

snowiness, typical flow regimes in the US can be classified into 10 distinct groups (Berghuijs et al., 88 

2014). Addor et al. (2017) present an extended set of US catchments, including information about 89 

each catchment’s climate (using three very similar indices), topography, soils and vegetation. In later 90 

work (Addor et al., 2018), they correlate this information with streamflow signatures for each 91 

catchment and find that climate, as expressed by the three indices, has the strongest correlation 92 

with streamflow signature values for this set of USA data. Information about climate, even expressed 93 

as three simple numbers, can thus be used to explain broad streamflow patterns. 94 

Several global climate classifications exist, but these are mostly bio-climatic in origin, and thus do 95 

not explicitly include those aspects of climate regimes that are important influences on hydrology. 96 

The original Köppen scheme (work by Köppen in the late 19th and early 20th century) is for an 97 

important part based on observations of vegetation, which could be used as a proxy for prevailing 98 

climate in times when large-scale climate data was unavailable (Peel et al., 2007). Köppen’s 99 

classification inspired several other classification schemes that tried to improve the correspondence 100 

between climate zones and observed global vegetation patterns (Geiger, 1954; Thornthwaite, 1948; 101 

Trewartha & Horn, 1968). These schemes use hierarchical rules, mainly based on temperature and to 102 

a lesser extent precipitation thresholds, to define climatic zones. They are still regularly updated 103 

with new data (e.g. Belda et al., 2014; Kottek et al., 2006; Peel et al., 2007). Vahl’s climatic divisions 104 

(Reumert, 1946) attempt to address the arbitrary nature of Köppen’s thresholds and certain 105 

mismatches between the classification scheme and observations, by using fewer hierarchical 106 

divisions and introducing precipitation probabilities. Holdridge Life Zones (Holdridge, 1967) and the 107 

Thornthwaite classification (Thornthwaite, 1948) move away from using mainly temperature and 108 

precipitation for classification, although they are still bioclimatic in origin. Holdridge uses a 109 

combination of precipitation, potential evapotranspiration, humidity, altitude and latitude to define 110 

biomes. Thornthwaite attempts to address the perceived arbitrary nature of the Köppen-Geiger 111 

thresholds and to create a more rational classification scheme. Thornthwaite uses climate 112 

observations from the USA to create a classification approach that relies on a precipitation-113 

effectiveness index, a moisture index, thermal efficiency index and the absolute value of potential 114 

evapotranspiration. However, despite these improved alternatives, the original Köppen-Geiger 115 

scheme remains widely used today.  116 

Currently, the main available climate classifications suffer from significant shortcomings when 117 

applied to hydrology. Haines et al. (1988) tested the ability of the Köppen-Geiger classification to 118 

predict typical global runoff regimes and found some relationship between climate zones and flow 119 

regimes, but also considerable spread in the data: a flow regime might occur in many climate zones, 120 

and a single climate zone might contain many flow regimes. Based on recent work (Addor et al., 121 

2018; Berghuijs et al., 2014) in the USA, we can hypothesise that this is likely because Köppen-like 122 

climate classification schemes lack hydrologically relevant detail, in the form of the interaction 123 

between water and energy availability, climate seasonality and snowpack formation. Thornthwaite’s 124 

classification comes close to addressing this, but is only based on USA data and untested in its 125 

accuracy for predicting global hydrologic regimes. Additionally, Thornthwaite already noted that 126 

“variations in the heat factor of climate do not generally result in the development of sharply defined 127 

boundaries between vegetation formations” and that “the boundaries separating tropical, 128 

mesothermal, microthermal and subpolar climates are vague and ill-defined”(Thornthwaite, 1943), 129 



as a point of potential improvement for classification schemes. Traditionally, classification maps 130 

include sharp, unrealistic, boundaries between different classes. More recently, advances in data 131 

sciences (e.g. Schwämmle & Jensen, 2010) have led to more nuanced classification schemes in 132 

hydrology where catchments can belong to several classes at the same time, but with differing 133 

degrees of membership to each class (e.g. Sawicz et al., 2011).  134 

This study addresses an identified need for a global hydrologically-informed climate classification 135 

scheme, that (i) corresponds to observed similarities and differences in observed hydrological 136 

response, (ii) avoids introducing artificial boundaries between classes. We choose to address climate 137 

alone, without consideration of catchment characteristics, as a first step to developing a more 138 

general catchment classification.  139 

2 Data 140 

This study first uses gridded climate data to summarize the world’s climate with several climate 141 

indices and uses these to define different climate clusters. Then, 1103 catchments are associated 142 

with the appropriate climate clusters using the catchments’ locations and boundaries, after which 143 

streamflow data from the catchments is used to evaluate the hydrological usefulness of the climate 144 

clusters. 145 

2.1 Climate data 146 

This study uses monthly average climate values from the CRU TS v3.23 data set (Harris et al., 2014), 147 

for the climatic variables precipitation (P), number of rain days per month (N, defined as days with P 148 

> 0.1mm), temperature (T) and potential evapotranspiration (Ep). These data are available at a 0.5° x 149 

0.5° resolution for the Earth’s land areas, excluding Antarctica. The data set offers so-called primary 150 

variables, which include P, N and T, that are a re-analysis of station observations and existing 151 

climatology. The secondary variables, such as Ep, are estimated from the primary variables. Ep is 152 

estimated with a variant of the Penman-Monteith formula (Allen et al., 1998; Harris et al., 2014).  153 

Ep values are missing for approximately 7.3% of global land cells due to incomplete coverage of the 154 

wind speed data needed for Ep estimation. Ep values are highly spatially correlated (average 155 

correlation coefficient = 0.99 in latitude direction, average 0.72 in longitude direction) and most of 156 

the missing values are bordered by cells for which Ep values are available. Nearly all missing values 157 

can be filled with a weighted nearest-neighbour approach, apart from several small islands that are 158 

too isolated for correlations to be a useful approach.  159 

For this study, P/T/N/Ep data for 1984-2014 are averaged per month to find a typical year (e.g. the 160 

typical January P is the average of all 30 January P values from 1984 to 2014), to approximate the 161 

typical annual variation in all four climate variables.  162 

2.2 Streamflow data 163 

The Global Runoff Data Centre (The Global Runoff Data Centre, 2017b) manages a large database of 164 

river discharge data. This study uses a subset of data known as Pristine River Basins that contains 165 

daily streamflow data for 1182 gauging stations world-wide for the study period 1984-2014. The 166 

catchments in this dataset are asserted to have minimal development and river regulations and 167 

diversions. In addition, records for each catchment cover at least 20 years (overview of record 168 

lengths in Supplementary Information S.1.3) and exceed a certain accuracy threshold (The Global 169 

Runoff Data Centre, 2017a). We applied quality assurance procedures to the data, and as a result 79 170 

catchments were excluded from this study (details in Supplementary Information S.1.2), leaving 171 

1103 stations for use in this study.  172 



Catchment boundary information is available for 718 of the GRDC Pristine Basins (The Global Runoff 173 

Data Centre, 2011). The remaining 449 catchments in the Pristine Basins set vary in area from 0.69 174 

km2 to 4,680,000 km2, with median 596 km2. Larger catchments can cover many grid cells and 175 

without information on the catchments’ boundaries it is impossible to tell how varied the climate 176 

within each catchment is. Therefore we include only those catchments with an area smaller than or 177 

equivalent to the approximate area of  9 grid cells, for which the climate at each gauge’s location 178 

might reasonably be considered representative of the climate in the whole catchment. This limits 179 

both the uncertainty about the prevailing climate in these catchments, and the number of 180 

catchments that must be excluded from further analysis (details in Supplementary Information 181 

S.1.1). 182 

We create a typical streamflow year for each catchment from daily streamflow data, by taking the 183 

median flow for each Julian day (e.g. the typical Jan-1 flow refers to the median of all available Jan-1 184 

for a particular place). We also align all flow records in time so that t=1 coincides with the start of 185 

the hydrological/water year for each location. Using the median flow decreases the influence of 186 

extreme events in the data and is preferable to the mean because of the skewed nature of flow 187 

variability. Catchments are spread across both hemispheres, so hydrological years are preferable to 188 

calendar years for comparison purposes. It is easier to visually assess similarities between flow 189 

patterns when distinctive features such as the seasonal flow peaks are aligned. By convention the 190 

water year in the Northern Hemisphere runs from October to September (e.g. Beck, de Roo and van 191 

Dijk, 2014; U.S. Geological Survey, 2016) however for the Southern Hemisphere both April to March 192 

(Beck et al., 2014) and July to June (Utah State University, 2017) are in use. While conventions such 193 

as these can be useful on a small scale, on a global scale these are too general. Therefore, we use a 194 

61-day moving window to find the period of maximum flow in a typical year for each catchment, and 195 

assume that the water year has started 120 days before this point (Figure 1). Both numbers are 196 

determined through trial-and-error and were found to give the best results (in terms of ease of 197 

visual comparison of flow similarity) for the data used in this study, but should be revisited if a more 198 

comprehensive data set is available.  199 



 200 

Figure 1: Location and boundaries (if available, circles with size relative to catchment area are used when not) of GRDC 201 
Pristine catchments. Catchments for which no boundary data is available are only used if the aproximate catchment length 202 
is smaller or equal to a climate correlation threshold length and removed from the analysis if larger. Colouring indicates 203 
approximate start of the hydrological year, here defined as the 120 days before the time of the 61-day average maximum 204 
flow. 205 

3 Method 206 

This study creates a climate classification scheme that summarises global climate patterns as a 207 

causal factor of global streamflow response. Causal factors (climate) and response (streamflow) are 208 

separated, meaning that our classification scheme is based on only climatic information and can be 209 

independently evaluated with streamflow data. First, we summarize the global climate with several 210 

gridded dimensionless indices (section 3.1). These climatic indices are clustered into fuzzy groups 211 

with a fuzzy c-means clustering algorithm (section 3.2) to define several climates that are 212 

representative of the land surface. We then evaluate the correspondence of the climatic clusters 213 

with global streamflow response, testing the hypothesis that locations within a cluster experience 214 

similar flow patterns while locations in different clusters show different streamflow regimes. We 215 

evaluate this both qualitatively through comparing typical seasonal flow patterns within and 216 

between climate clusters, and quantitatively through streamflow signature values and statistical 217 

tests. We compare the effectiveness of our climatic clustering with that of the Köppen-Geiger 218 

classification, testing the hypothesis that our scheme improves on another often-used method 219 

(section 3.3). Last, we investigate the potential of abandoning the idea of climate classes or clusters 220 

and show the benefits of viewing the global hydro-climate as a continuum rather than a patchwork 221 

of different classes (section 3.4). 222 

3.1 Dimensionless climate indices 223 

The climate at any given location influences the processes near the land surface and those 224 

concerning precipitation and evaporation. The balance between available water and energy 225 

determines whether water will remain on land or be returned to the atmosphere. Periods with lower 226 

temperatures can lead to snow pack formation, and precipitation intensity can influence whether 227 

water will infiltrate into the soil or become surface runoff. However, precipitation and temperature 228 



(and by extension potential evapotranspiration) patterns are variable throughout the year and 229 

precipitation and temperature peaks are not necessarily in phase. It is thus plausible that our indices 230 

need to cover not only annual averages, but also provide a measure of the seasonal variability of 231 

climate variables. This leads to the hypothesis that, in addition to the total annual precipitation, five 232 

different climate aspects might be hydrologically relevant (e.g. Addor et al., 2017, 2018; Berghuijs et 233 

al., 2014; Milly, 1994; Woods, 2003, 2009): (i) the annual average aridity, specifying the ratio of 234 

available energy and water; (ii) the seasonality in aridity, indicating if seasonal water and energy 235 

distributions are in or out of phase; (iii) the fraction of precipitation that falls as snow, indicating 236 

whether precipitation will be (temporarily) stored on the land surface; (iv) the average rainfall 237 

intensity, showing whether rainfall will exceed infiltration rates and thus produce surface runoff; and 238 

(v) the seasonality of rainfall intensity, indicating whether infiltration excess runoff is more likely to 239 

occur in certain parts of the year. 240 

We limit this work to aridity and snow indices for several reasons. First, although precipitation 241 

intensity can vary significantly across the world, its impact on local hydrology (i.e. whether rain 242 

infiltrates or becomes surface flow) depends on local catchment characteristics. Accounting for 243 

global differences in soil types and other catchment characteristics is considered beyond the scope 244 

of this work. Second, the CRU TS climate data set lacks information on the sub-monthly time scale, 245 

and precipitation intensity can thus only be quantified by dividing the monthly precipitation totals by 246 

the number of rain days per month (days with P ≥ 0.1mm). Both the annual average and seasonality 247 

of this approximate intensity are strongly inversely correlated with the annual average aridity 248 

(Spearman rank correlation coefficient R < -0.8 across all land cells) and thus are unlikely to add any 249 

significant new information at the global scale. Similarly, we considered using the absolute annual 250 

average precipitation [mm/y] as a metric, but this is strongly correlated with annual average aridity 251 

(R = 0.74). Several tests during clustering (not shown for brevity) confirm that these metrics indeed 252 

add very little independent information at the global scale. Third, earlier work (Addor et al., 2017, 253 

2018; Berghuijs et al., 2014) shows that average and seasonal aridity indices and one snow index are 254 

strongly related to seasonal streamflow patterns, without considering rainfall intensity or absolute 255 

precipitation totals. 256 

Using CRU TS climate data averaged into a typical year (section 2.1), we calculate three climate 257 

indices for each 0.5° land cell. We use a version of Thornthwaite’s moisture index MI (Willmott & 258 

Feddema, 1992) to express average aridity (𝐼𝑚) and its seasonality (𝐼𝑚,𝑟), and a numerical 259 

implementation of the fraction of annual precipitation that occurs as snowfall fs (Woods, 2009). 260 

These indices have been used for climate classification before but not in this particular combination 261 

(e.g. Willmott & Feddema, 1992, for MI; Berghuijs et al., 2014, for fs). These indices describe the 262 

processes of interest using bounded intervals, which is useful for interpretation and clustering 263 

analysis. 264 

𝑀𝐼(𝑡) = {  
  1 − 𝐸𝑃(𝑡)𝑃(𝑡) , 𝑃(𝑡) > 𝐸𝑝(𝑡)0 , 𝑃(𝑡) = 𝐸𝑝(𝑡)𝑃(𝑡)𝐸𝑃(𝑡) − 1 , 𝑃(𝑡) < 𝐸𝑝(𝑡) 

 

 

 

(1) 

𝐼𝑚 = 112∑ 𝑀𝐼(𝑡)𝑡=12𝑡=1  

 

(2) 

𝐼𝑚,𝑟 = max𝑀𝐼(𝑡) − min𝑀𝐼(𝑡) (3) 



 𝑓𝑠 = ∑𝑃(𝑇(𝑡) ≤ 𝑇0)∑ 𝑃(𝑡)𝑡=12𝑡=1  

 

(4) 

P(t), Ep(t) and T(t) are mean monthly observations of precipitation, potential evapotranspiration and 265 

temperature in the CRU TS data set. 𝑇0 is a threshold temperature below which precipitation is 266 

assumed to occur as snow, here set at 0°C. The annual average moisture index 𝐼𝑚 has range [-1, 1] 267 

where -1 indicates the most arid (water-limited) conditions and 1 indicates the most humid (energy-268 

limited) conditions. The moisture index seasonality 𝐼𝑚,𝑟  has range [0, 2] where 0 indicates that there 269 

are no intra-annual changes in the water/energy budget and 2 indicates that the climate switches 270 

between fully arid (Im = -1) and fully saturated (Im = 1) within a single year. 𝑓𝑠 has range [0,1] where 0 271 

indicates no snowfall in a year and 1 that all precipitation falls as snow. Note that fs = 0 does not 272 

imply that the temperature does not go below the threshold temperature 𝑇0, but merely that during 273 

this period no precipitation occurs. The indices rely on similar information and express phenomena 274 

with similar underlying causes (e.g. seasonality of aridity might be caused by a strong summer-275 

winter contrast, which may also increase the likelihood of snowfall) so some correlation between the 276 

indices is unavoidable. The Spearman rank correlation between Im and Im,r is 0.27, between Im and fs 277 

0.27, and between Im,r and fs 0.37. These are considered to be sufficiently independent for use in this 278 

study, because each index has a different physical interpretation. 279 

3.2 Selecting representative climates for comparison with the Köppen-Geiger 280 

classification 281 

Traditional climate classification schemes use distinct boundaries between climate classes (e.g. 282 

Geiger, 1954; Kottek et al., 2006; Peel et al., 2007; Trewartha & Horn, 1968), but Thornthwaite 283 

already pointed out that climates change gradually in space and distinct boundaries do not do this 284 

justice (Thornthwaite, 1943). However, sharp boundaries are a logical and inescapable result of the 285 

classification method that underlies Köppen-like classifications. In this work, we argue that the 286 

global hydro-climate should be seen as a continuous spectrum and that imposing boundaries on this 287 

spectrum should generally be avoided. However, for illustration purposes we use an automated 288 

fuzzy c-means clustering algorithm (Bezdek, 1981) to select several representative points in the 289 

climate space described by our three indices. Each location (grid cell in the global data) belongs with 290 

a certain degree of membership to each representative climate, based on the similarity of each 291 

location’s climate index values to the climate in each representative point. Memberships can vary 292 

from 0 (the location does not belong to this representative climate at all) to 1 (the location’s climate 293 

is the same as the representative climate), with the possibility for a location to belong 294 

simultaneously to several representative climates. Using these representative climates, it is 295 

straightforward to compare how similar the hydrologic regimes are for locations with the same 296 

Köppen-Geiger class compared to locations with the same representative climate.  297 

While the fuzzy c-means algorithm can objectively create clusters from data, it does require human 298 

input in finding the appropriate settings and determining the appropriate number of clusters. We 299 

use Matlab’s c-means implementation (function fcm) in a multi-start framework to account for the 300 

inherent randomness resulting from its use of random initial cluster centroids. Before clustering, we 301 

standardize the values of our climate indices so that each has a range [0,1], to avoid biasing the 302 

clustering procedure towards the index with the largest range. The fuzzy c-means procedure uses a 303 

so-called fuzzifier parameter to allow data points to belong to different clusters through fuzzy 304 

membership. This parameter can be used to decrease the influence of data points that are near the 305 

boundaries between two clusters when determining the cluster centroid positions (Schwämmle & 306 



Jensen, 2010). This value is kept at its default value of 2. The number of representative climates was 307 

determined through trial-and-error, by performing the clustering procedure with 2 to 30 clusters 308 

and analysing the resulting climate clusters. We did not use any river flow data to either create or 309 

help choose the number of climate clusters. We chose 18 clusters for communication purposes in 310 

this study, because this provides an adequate amount of detail but does not create overly specific 311 

geographically-focussed clusters. However, we emphasise that our key goal is the identification of 312 

climate indices for global hydrology, rather than the set of 18 clusters. 313 

3.3 Effectiveness of hydrologic grouping based on representative climates versus 314 

Köppen-Geiger classes 315 

We use GRDC river flow data for 1103 catchments to compare how well hydrologic regimes can be 316 

grouped based on our representative climates. We also group the same catchments based on their 317 

Köppen-Geiger climate class, to assess whether our approach improves upon this alternative.  The 318 

success of this grouping exercise is determined with a qualitative approach to investigate typical 319 

streamflow patterns per group and a quantitative approach to investigate differences between 320 

streamflow signatures in each cluster. First, we define the membership degree of 1103 catchments 321 

to all 18 representative climates, using the catchment-averaged values of our three climate indices. 322 

For catchments without boundary information we assume that the outlet location is representative 323 

of the whole catchment. We can then show the typical flows per representative climate, using every 324 

catchment’s membership degree to determine how closely the climate in each catchment resembles 325 

that of each representative climate. We assess the typical flows in a qualitative way. 326 

We also assess the differences between flows per representative climate quantitatively through 327 

streamflow signatures and statistical tests. Olden and Poff (2003) categorize 171 streamflow 328 

signatures into five main types relating to flow event magnitude, frequency, duration, timing and 329 

rate of change, distinguishing between high and low flow conditions within the first three categories. 330 

This study uses 16 signatures that cover these 5 categories (Table 1), mainly following 331 

recommendations from Kuentz et al. (2016) and Addor et al. (2017). For each catchment, we 332 

calculate a signature’s value per hydrological year and then take the average of these yearly 333 

signature values. We repeat this for all 16 signatures. Correlation analysis (not shown here for 334 

brevity) indicates that each signature contains some independent information although there is 335 

duplication of information as well. We consider this acceptable for our purposes because the 336 

signatures are only used to evaluate the two classification schemes and are not part of the 337 

classification methods themselves. The classification thus remains unbiased by potential duplicate 338 

information in the streamflow signatures. 339 

Our null hypothesis is that there are no significant differences between signature values calculated 340 

for flows in different representative climates. The alternative is that there are differences between 341 

signature values of flows per representative climate, which indicates that our climate classification 342 

scheme can tell us something informative about the hydrologic response. The Wilcoxon two-sample 343 

test (Wilcoxon, 1945, cited Walpole, 1968, p. 232) is a suitable statistical test to compare a 344 

signature’s values between two climate clusters, because the test assumes no knowledge of the 345 

distribution and parameters of the total population, and allows comparing samples with very 346 

different sizes. It allows testing of distributions (e.g. the values of a signature calculated for 70 347 

catchments in climate I and 115 catchments in climate II) with 𝐻0:  𝜇1 =  𝜇2. We apply this test to all 348 

climate cluster pairs and for all signatures. The sheer number of tests makes it likely that we will find 349 

significant differences through chance alone. We therefore investigate the number of signatures for 350 

which a climate pair is statistically different: if a pair is different for 16 out of 16 signatures, we can 351 

assume that typical streamflow for these pairs is different. If a statistical difference is only found for 352 



1 out 16 signatures, it is more likely that we have found this result through chance. We repeat this 353 

analysis on the catchment grouping created based on the Köppen-Geiger class of each catchment 354 

and comment on the differences. 355 

Table 1: Overview of the hydrological signatures used in this study. Signatures are calculated for every hydrological year 356 
available for each catchment, after which we take the mean for each signature across all hydrological years available for a 357 
catchment. Numbering in the leftmost column refers to Error! Reference source not found.7d and Error! Reference source 358 
not found.. 359 

 Signature Unit Description References 

Magnitude     
1 Mean flow [mm/d] Mean of daily flow - 

11 Q5 [mm/d] 5th percentile of daily flow Kuentz et al. (2016) 

12 Q95 [mm/d] 95th percentile of daily flow Kuentz et al. (2016) 

14 Skewness [-] Mean divided by median of daily flow  Kuentz et al. (2016) 

2 Baseflow index [-] Baseflow fraction of total flow Gustard, Bullock and Dixon (1992) 

4 High flow discharge [-] 90th percentile divided by median flow Kuentz et al. (2016) 

Frequency    

10 No flow frequency [-] Normalized average frequency of no flow 

(number of days with 0 flow) 

- 

8 Low flow frequency [-] Normalized average frequency of low flow 

(number of days with flow < 0.2*mean) 

Olden and Poff (2003); Westerberg 

and McMillan (2015) 

6 High flow frequency [-] Normalized average frequency of high flow 

(number of days with flow > 9*median) 

Clausen and Biggs (2000); 

Westerberg and McMillan (2015) 

Duration     

9 No flow duration [-] Normalized average duration of no flow 

(number of consecutive days with 0 flow) 

- 

7 Low flow duration [-] Normalized average duration of low flow 

(number of consecutive days < 0.2*mean) 

Olden and Poff (2003); Westerberg 

and McMillan (2015) 

5 High flow duration [-] Normalized average duration of high flow 

(number of consecutive days > 9*median) 

Clausen and Biggs (2000); 

Westerberg and McMillan (2015) 

Timing     

16 Half flow date [-] Fraction of year when 50% flow occurs Court (1962) 

15 Half flow interval [-] Fraction of year in which 25th to 75th 

percentile flow occurs 

Court (1962) 

Rate of change     

3 Flow duration curve 

slope 

[-] FDC slope between 33rd and 66th percentile 

in log space 

(Yadav et al., 2007) 

13 Rising limb density [d-1]  Number of rising limbs divided by time that 

hydrograph is rising 

Sawicz et al. (2014) 

 360 

3.4 Beyond catchment grouping and towards climatic assessment on a continuous 361 

spectrum 362 

In addition to being a quantified way to communicate the climate of hydrological systems, these 363 

indices can be used as a rational way to transfer hydrological information from gauged to ungauged 364 

basins. This can also be a starting point to define more powerful hydrological similarity metrics, 365 

eventually resulting in a hydrological catchment classification scheme. In the second part of this 366 

paper we briefly explore the predictive power of the three climate indices. Each catchment is treated 367 

as ungauged in turn, and we use climatic similarity as a very preliminary flow prediction method. 368 

Climatic similarity is expressed as those catchments that (1) belong to the same Köppen-Geiger class, 369 



(2) belong to the same climate cluster, or (3) are nearby based on standardized Euclidean distance in 370 

climate index space (so that every index has range [0,1]) expressed by the Im, Im,r and fs indices. In the 371 

latter case, we investigate both (3a) distance-based weighting of all catchments and (3b) distance-372 

based weighting of the five catchments that are climatically the most similar to the “ungauged” 373 

catchment. We estimate both the flow regime of each “ungauged” catchment and values for the 16 374 

signatures. The accuracy metric used to compare estimated and observed flow regimes is the Kling-375 

Gupta Efficiency (KGE, Gupta et al., 2009). The metric used to compare estimated and observed 376 

signature values is the absolute error.  377 

4 Results 378 

4.1 Approximating climatic gradients with representative climates 379 

Figure 2 shows that values for the three climate indices (annual average aridity, 𝐼𝑚; the seasonal 380 

change in aridity,  𝐼𝑚,𝑟; and the fraction of precipitation as snowfall, 𝑓𝑠) generally change gradually in 381 

space (Figure 2c-e for individual indices, 2b for a map combining all three indices into a single global 382 

overview). The presence of mountain ranges leads to relatively sharp transitions in climate (e.g. 383 

Canadian Rockies, Andes, European Alps, Himalayas). Large areas of deserts are visible in red. These 384 

are arid locations with a high potential evapotranspiration compared to available precipitation, only 385 

small seasonal changes in this ratio and no snowfall. Very wet regions (dark green) are centred 386 

mostly around the equator. These are areas with a continual water surplus and low snowfall. 387 

Traditionally this climate is associated with tropical rain forests but other areas (e.g. Scotland, Japan, 388 

northern New Zealand) show similar index values, even if the underlying climatic drivers are 389 

different in absolute terms. Regions in bright green and yellow show transitional zones between 390 

constantly arid and constantly wet regions. The transitional zones experience strong seasonality in 391 

their water-energy balance, either through clearly defined wet and dry seasons (seasonal rain), 392 

through summer and winter patterns (seasonal changes in potential evapotranspiration) or a 393 

combination of both. Blue and pink regions indicate places where nearly all precipitation occurs as 394 

snowfall. Figure 2a further shows that climates with low seasonality concentrate near both ends of 395 

the aridity (Im) axis (bright red, dark green) and that annual average aridity is not necessarily an 396 

accurate representation of month-to-month aridity, especially in cases where the annual water and 397 

energy budgets are approximately balanced (𝐼𝑚 = 0). 398 



 399 

Figure 2: overview of average climate index values calculated for 1984-2014. (a) Climate index legend to help interpret 400 
figure 2b, showing how values on the three climate index axes determine the final RGB colour. The 3D-plot includes all land 401 
cells shown in 2b. The coloured square shows the colour scheme at 7 pre-determined points in 5 different Im,Im,r planes 402 
along the fs axis. (b) World map with each 0.5° resolution grid cell with local average aridity (Red), aridity seasonality 403 
(Green) and fraction precipitation as snowfall (Blue) determining the RGB colour scale. (c-e) Plots of average aridity Im (red), 404 
aridity seasonality Im,r (green) and fraction of precipitation as snow fs (blue) respectively, showing how each index varies 405 
globally. 406 

In this part of the paper, we investigate whether our index-based classification is better suited for 407 

grouping hydrologically similar regimes than the Köppen-Geiger classification is. For a 408 

straightforward comparison with the Köppen-Geiger classes, we define 18 representative climates in 409 

our continuous climate-index space. These give a representative sample of the climate on the land 410 

surface. Figure 3a shows that 18 clusters approximate the climatic gradients in Figure 2b well, but 411 

the continuous variation of climate in space makes it impossible to create completely homogeneous 412 

classes where every location has a climate that strongly resembles that of the representative point it 413 

belongs to. Each grid cell is coloured based on the climate cluster that the cell belongs to with the 414 

highest degree of membership, here called the “main cluster” for each cell. Figure 3c shows how 415 

high this main membership degree is. A membership threshold of 0.5 is commonly seen as the cell 416 

belonging exclusively to its main cluster (Schwämmle & Jensen, 2010). Large areas of high 417 

membership degree values are visible (blue) and mainly occur away from cluster boundaries. 418 

However, the gradual nature of the changes in climate indices makes it difficult to classify all cells in 419 

homogenous clusters, as evidenced by the large number of cells that have membership degrees <0.5 420 

for their main cluster. These cells can be thought of as belonging to multiple clusters simultaneously. 421 

With 18 clusters, slightly over half (50.4%) of all land cells have membership degrees >0.5 for their 422 

main cluster. 423 

The position of climate cluster centroids (Figure 3b) shows that they are not distributed uniformly in 424 

climate index space and the centroid marker size (larger size indicates that a higher number of land 425 

cells have that cluster as their main cluster) shows that certain climates are more prevalent than 426 

others. The centroids approximate the pattern of all individual cells in climate index space (Figure 427 

2b), showing where this pattern is dense and comparatively sparse. This is a result of the clustering 428 

procedure trying to maximise within-cluster similarity and between-cluster differences. In the 429 

absence of clearly defined clusters/groups in the data, as is the case with the gradual changes in 430 



climate, the algorithm will struggle to draw appropriate boundaries between clusters and reverts to 431 

positioning the cluster centroids in response to point density. Figure 3d quantifies the number of 432 

cells for which each climate cluster is the main cluster and the degree of membership to the main 433 

cluster. Hot and very arid deserts (clusters 1 and 2) are both common and well-defined. Clusters 16 434 

and 17 are on the other extremes (being very wet and snow-dominated respectively) and are also 435 

well-defined but contain fewer cells. In most clusters however, membership degrees are generally 436 

lower (< 0.5, red shading), because locations tend to lie between several representative climate 437 

points. Clusters 1, 2, 16 and 17 are relatively well-defined because their climates can be roughly 438 

approximated with terms as “always” and “no” (e.g. climate 1: always arid, no seasonality and no 439 

snow). The other clusters are all positioned at some non-extreme point on each climate index axis, 440 

and this makes it impossible to draw distinct appropriate boundaries between different climatic 441 

zones in these cases. 442 

 443 

Figure 3: Results of fuzzy c-means clustering performed on climatic indices. (a) The cluster to which a cell belongs with the 444 
highest degree of membership (here called main cluster). (b) Location of climate cluster centroids in climate index space, 445 
with marker size corresponding to the number of cells for which a cluster is the main cluster (circle size is indicative of the 446 
number of cells having each cluster as main cluster). (c) The degree of membership with which each cell belongs to its main 447 
cluster; membership of each cell to the remaining 17 non-main clusters is by definition lower than its membership to the 448 
main cluster. (d) Number of cells for which a cluster is the main cluster (bar height) and degree of membership distribution 449 
per cluster (bar shading, legend in 4c).  450 

4.2 Effectiveness of hydrologic grouping 451 

4.2.1 Comparison of climatic gradients and Köppen-Geiger classes 452 

The proposed new climate indices do not map directly onto Köppen-Geiger classes. The subclasses 453 

of the tropical (A) and arid (B) Köppen-Geiger main classes are relatively distinct from one another in 454 

the climate space defined by indices Im, Im,r and fs, whereas the subclasses of the colder temperate 455 

(C), continental (D) and polar (E) classes cover relatively similar regions in climate index space (Figure 456 

4). This can be seen around the equator, in North-Africa, the Middle-East and most of Australia, 457 

where the Köppen-Geiger map (Figure 4b) is similar to the climate index map (Figure 4a). These regions 458 

are either very dry (through a combination of high temperatures and low precipitation) or very wet 459 

(resulting from very high precipitation) and see virtually no snowfall. These characteristics are 460 

captured well through the threshold approach in the Köppen-Geiger classification scheme. The 461 



hydrologically relevant nuances of precipitation differences in colder climates are not well captured 462 

in the Köppen-Geiger scheme. This can be seen in e.g. the Eastern USA, Alaska, Greenland, most of 463 

Northern Europe and Russia, where the Köppen-Geiger boundaries are nearly exclusively 464 

determined by temperature thresholds. Different degrees of relative water availability and snow 465 

pack formation are lost in this classification. While the thresholds are an appropriate choice to 466 

define vegetation zones, as is the original goal of the Köppen-Geiger scheme, this approach is less 467 

relevant from a hydrological point of view. The climate indices contain more hydrologically relevant 468 

information, as the following sections will show. 469 

 470 

Figure 4: Comparison of the Köppen-Geiger climate classification and the global distribution of climate index values. (a) 471 
Global distribution of climate index values, as shown in Figure 2a. (b) Köppen-Geiger climate classification (Peel et al., 472 
2007). (c-e) Boxplots of average aridity (Im), seasonality of aridity (Im,r) and fraction of precipitation as snow (fs) values per 473 
Köppen-Geiger class 474 

4.2.2 Qualitative comparison of grouped flow regimes 475 

Grouping the typical flow regime of all catchments according to the catchments’ climate indices 476 

(Figure 5) shows that seasonal flow patterns gradually evolve along climate gradients. Clusters 4, 14 477 

and 15 are similar with respect to the aridity seasonality 𝐼𝑚,𝑟 and snow 𝑓𝑠 metrics but are 478 

progressively less arid (𝐼𝑚 metric). As a result of this increased water availability, the clusters’ typical 479 

flow patterns look similar but average flows become progressively higher. Clusters 1, 2, 3, 4, 5 and 6 480 

are similarly arid (𝐼𝑚) and low on snow (𝑓𝑠) but their aridity is progressively more seasonal (𝐼𝑚,𝑟). The 481 

latter clusters thus occasionally experience a water-surplus, even if on average these places are 482 

severely water-limited. As a result, the average flow is low for all clusters, but a progressively higher 483 

seasonal flow peak can be seen.  Clusters 6, 8, 11, 12 and 13 have similar values for the snow (𝑓𝑠) 484 

and seasonality (𝐼𝑚,𝑟) metrics but are progressively less arid. As a result of this increased water 485 

availability, average flows become progressively higher and the main flow peak (likely resulting from 486 

snow melt since 𝑓𝑠 > 0 at the cluster centroids) becomes progressively more pronounced. 487 

Typical flow features such as average flow magnitude and flow peak height and shape are distinctly 488 

different between clusters, but climate can only inform us about average seasonal patterns. For 489 

example, the flow peak shape in snow dominated climates (e.g. clusters 13, 12, 11) shows a much 490 

sharper rise and decline than elsewhere, presumably due to snow storage and melt processes. In 491 



warmer but not water-limited climates (e.g. 16, 15, 10) the flow peak rises and declines gradually, 492 

presumably as a result of seasonal changes in water surplus. However, within each cluster a wide 493 

variety of flows are included and what is true on average for the cluster, is not necessarily true for a 494 

single specific catchment. In a catchment classification context, climate is an important driver of 495 

hydrologic processes but the influence of the catchment itself (e.g. topography, vegetation, 496 

anthropogenic influence) cannot be ignored. This is however considered beyond the scope of this 497 

work. 498 

  499 

Figure 5: Typical flow regime for catchments grouped by climate cluster with the membership-weighted weighted median in 500 
black and the weighted 25th and 75th percentiles in red. Only catchments with a minimum membership of 0.10 or higher are 501 
shown, with darker lines corresponding to higher membership degrees. Includes all 1103 unique catchments, although 502 
catchments may appear in multiple climate plots. Title colouring corresponds to climate cluster centroids (figure 4a, 4b). 503 
Clusters 8 and 12 are not shown because the data lacks climate-specific flow records for these clusters.  504 

Figure 4 showed that Köppen-Geiger main classes A and B show strong correspondence with our more 505 

arid and wet representative climates (e.g. climates 1-4, and 10, 15, 16 respectively). This pattern 506 

repeats with respect to grouping flow regimes by Köppen-Geiger classes (Figure 6): grouped flows 507 

for subclasses in the tropical (A) zone are very similar to the flows in representative climates 16, 15 508 

and 10 (compare Figure 5), which have low aridity and no snowfall. The flows in the arid (B) 509 

subclasses are similar to our arid clusters 1, 2, 3 and 4. However, subclasses of C, D and E climates do 510 

not seem to group flow patterns in any meaningful way. To aid in this comparison, each flow record 511 

is coloured according to our catchment-averaged climatic index values and within main classes A and 512 

B the colouring seems relatively consistent. In climates C, D and E however, catchments with very 513 

different hydro-climates are lumped in each subclass and don’t reveal any obvious typical flow 514 

pattern. E.g. subclass ET (polar tundra) contains flow patterns ranging from being nearly zero all-year 515 

round (orange), to very high, snowmelt-dominated regimes (blue-green). The snowmelt regimes are 516 

not as obviously grouped in the Köppen-Geiger classes as they are in the climate-index clusters 517 

(compare Figure 5 and Figure 6).  518 



 519 

Figure 6: Typical annual flow for all 1103 catchments per Köppen-Geiger climate class with the median (black) and 25th and 520 
75th percentiles (red). Typical flows from individual catchments are coloured by the catchment’s climate index values as 521 
used with the climate index approach. 522 

4.2.3 Quantitative comparison of grouped streamflow signatures 523 

We use catchment membership degrees to create a weighted average streamflow signature value 524 

for 16 different streamflow signatures for each of the 18 representative climates. Statistical tests 525 

show that 145 out of the 153 possible combinations of two representative climates are statistically 526 

different at a 0.01 significance level. Another 7 out of 153 pairs are different at a 0.1 significance 527 

level and only a single pair shows no significant difference (p-value of 0.28; Figure 7d). Figure 7a 528 

shows an example of weighted average signature values per representative climate, here showing 529 

results for the average_flow signature (overview of all signatures is given in Supplementary 530 

Information S.2.2). A clear gradient is visible in the climate space, with the signature value increasing 531 

primarily as aridity decreases and secondarily as seasonality increases. Figure 7b shows the results of 532 

an empirical Wilcoxon test to determine the statistical significance of the differences in 533 

average_flow signature values between all representative climates. This procedure uses the 534 

average_flow signature value for each catchment, coupled with the catchment’s membership 535 

degree (Figure 7c) to each representative climate, to estimate an empirical p-value (details in 536 

Supplementary Information S.2.1). Most representative climates have statistically different 537 

average_flow signature values at a 0.01 level (dark blue shading), but not all climate pairs are 538 

significantly different based on this single signature (white and red shades). Figure 7d shows the 539 

lowest p-value per climate pair across all 16 signatures and shows that 148 out of 153 climate pairs 540 

are different at the 0.05 significance level (bottom-left section of the figure). The top-right part of 541 

the figure shows the number of signatures for which the empirical p-value is below 0.05. The 542 

prevalence of darker shades indicates that climate pairs are statistically different for multiple 543 

signatures, indicating that our clustering approach can indeed group catchments with similar flow 544 

characteristics. 545 

Climate pairs 6-8, 7-8, 6-7, 4-5 and 17-18 are not statistically different on any of the signatures, 546 

possibly due to a lack of climate-specific flow records. If there are statistical differences to be found, 547 



either these differences manifest in flow characteristics not captured in the chosen signatures, or we 548 

lack climate-specific (high membership) flow records to construct an image of how a typical flow 549 

pattern for each representative climate looks. It is unlikely that the signatures are poorly chosen 550 

because they are adequate to distinguish between all other climate pairs (Figure 7d). Lack of 551 

climate-specific flow records is a likely explanation in the case of representative climate 18 (only 4 552 

catchments with membership > 0.1; Figure 7c) and 17 (only 1 catchment has membership > 0.1; 553 

Figure 7c). Similarly, climates 6, 7 and 8 are close together in climate space and membership degrees 554 

of all catchments to each of these three representative climates are quite similar (Figure 7c). It is 555 

likely that the 1103 catchments lack the diversity that would allow the signatures to distinguish 556 

better between these three representative climates. This same explanation might be applied to 557 

climates 4 and 5. The alternative to these explanations is that there are no statistical differences 558 

between the typical flows of these representative climates; i.e. our assumption that the typical flow 559 

regime should be different between these representative climates, because the catchments 560 

associated with each climate have different hydro-climates, is false. However, given the success of 561 

the method with other climate pairs that are close together in climate space (e.g. 10-14, 11-12, 1-2), 562 

lack of climate-specific flow records seems the more likely explanation. 563 



 564 

Figure 7: (a-d): quantitative differences between grouped flows regimes using climate clusters, (e-h) quantitative 565 
differences between grouped flows regimes using Köppen-Geiger classes. (a, e) Value of the average_flow signature per 566 
climate cluster/Köppen-Geiger class. Similar plots for all signatures in S.2.2 [a] Values are calculated as a weighted average 567 
from all 1103 catchments, with weights being each catchment’s membership to a cluster. Numbers refer to climate clusters.  568 
[e] Boxplot colour refers to the legend in Figure 4. (b, f) Statistical tests to determine whether values of the average_flow 569 
signature per cluster/Köppen-Geiger class are statistically different. Blue shades show p < 0.05, white shades show 0.05 < p 570 
< 0.10 and red shades show p > 0.10. [b] Results of an Empirical Wilcoxon test (S.2.1) used with cluster grouping. [f] Regular 571 
Wilcoxon test used with Köppen-Geiger grouping. (c, g) Membership degree of catchments (x-axis) to climate 572 
cluster/Köppen-Geiger classes (y-axis). [c] Darker shades show that a catchment belongs more strongly to a given cluster, 573 
and thus contributes more to the average cluster signature value. [g] All memberships to Köppen-Geiger classes are 1. (d, h) 574 
Bottom-left shows the lowest p-value from all 16 signatures, i.e. the largest significant difference between two groups. The 575 
number in each cell shows for which signature this lowest p-value is found (see Table 1 for numbering). Top-right grey 576 
shading shows for how many out of 16 signatures we find a significant difference (p < 0.05). [d] Results cluster grouping. [h] 577 
Results Köppen-Geiger grouping.  578 

Even though Köppen-Geiger has more climate classes than our climate-index method, analysis of 579 

signature values shows that grouping catchments by their dominant Köppen-Geiger climate class 580 



leads to fewer distinguishable differences in typical flow patterns (Figure 7). Using the average_flow 581 

signature as an example, catchments in classes A and B seem to be sorted well according to their 582 

signature values (Figure 7e.) This is not the case in classes C, D and E, where the boxplots for 583 

subclasses tend to overlap (e.g. for Cfa, Cfb, Dfb and Dfc, all of which include 90 catchments or 584 

more). A Wilcoxon test confirms that statistically significant differences occur less frequently for the 585 

classes C, D and E than for classes A and B (Figure 7f). Using all signatures, we can find statistically 586 

significant differences in signature values between most Köppen-Geiger classes (Figure 7h). Where 587 

we don’t, we likely lack enough catchments in our dataset for that subclass to make proper 588 

statistical inferences (i.e. Cwb, Cfc, Dwc; Figure 7g). However, in many cases in classes C, D and E we 589 

only find statistically significant differences in a few out of all 16 signatures (compare grey shades in 590 

Figure 7d and Figure 7h). This supports the idea that the temperate (C), continental (D) and polar (E) 591 

Köppen-Geiger classes are not well suited to grouping hydrological flow regimes. 592 

4.3 Beyond climate grouping and towards a continuous representation of climates 593 

Figure 8a shows the results of treating each catchment as ungauged in turn and using a climatic 594 

similarity approach to estimate the flow regime of this “ungauged” catchment.  Comparing the 595 

effectiveness of Köppen-Geiger classes and our climate clusters, the clusters are somewhat more 596 

effective for estimating typical flow regimes. However, it is not our intent to advocate replacing one 597 

set of climate groups with another. Avoiding groups/clusters and using hydro-climatic similarity only, 598 

can have strong benefits compared to the classes/clusters approach. Using just 5 climatically similar 599 

basins to estimate the “ungauged” flows shows a significant increase in the number of basins where 600 

KGE values of the estimated regime exceeds 0. Quality of the flow estimates does depend on the 601 

number of samples used: using climate-weighted records from 1102 catchments to estimate each 602 

“ungauged” catchment leads to worse results than using either Köppen-Geiger classes or climate 603 

clusters. In these cases, most catchments are dissimilar from the “ungauged” one and these flow 604 

records dilute the estimate through sheer numbers (even if any individual catchment has a low 605 

weight). Using a small number of climatically similar basins overcomes this issue (within this data 606 

set, climatic similarity consistently outperforms climate clusters when fewer than 150 catchments 607 

are used to estimate any “ungauged” regime – the best results are obtained when 3-10 climatically 608 

similar catchments are used) .  609 

A similar pattern is revealed when climatic similarity is used to estimate signature values for 610 

“ungauged” catchments (Figure 9). Climatic similarity of a few catchments to the target catchment 611 

generally gives the lowest errors across the ensemble of catchments. However, there is considerable 612 

spread in performance between the various signatures. Estimates of signatures associated with the 613 

magnitude of various parts of the water balance (e.g. average flow, q5, q95) and duration and 614 

frequency of high/low/no flow events seem to benefit the most from using index-based similarity 615 

over other options. Improvements are smaller for signatures related to timing (t50, t25_75) and rate 616 

of change (rising limb density, slope of the flow duration curve). Using climatic similarity of a few 617 

basins to estimate signatures also occasionally results in a higher occurrence of larger errors than 618 

other methods (e.g. for the skew signature). There is a delicate balance between using all available 619 

catchments (weighted by climatic similarity) and using just a few climatically very similar catchments 620 

to create estimates. Using more catchments decreases the risk of selecting a small number of 621 

climatically similar but structurally (in terms of vegetation, geology, etc) different catchments as 622 

donors, but also has the potential to dilute the quality of estimate through the sheer number of 623 

dissimilar basins included. Using fewer catchments can be very accurate due to the absence of 624 

dissimilar basins in the estimate, but leaves one vulnerable for differences in the catchment 625 

structure which this approach does not account for. In general, results seem to indicate that using 626 



climatic similarity expressed through indices is a promising avenue for catchment classification. With 627 

refinement and introduction of catchment characteristics into the procedure, this approach to 628 

transfer knowledge between gauged and ungauged catchments can potentially be a powerful tool 629 

for prediction in ungauged basins. 630 

 631 

Figure 8: Estimating flow regimes through various definitions of climatic similarity, treating all 1103 catchments as if they 632 
were ungauged in turn. (a) Overview of sorted KGE values for estimated typical flow regimes, based on various similarity 633 
metrics. KGE values below 0 are not shown for clarity. (b-d) Geographical location of catchments and KGE value for 634 
estimated flow regime for each. Catchments with KGE < 0 shown in grey. [b] Estimation of “ungauged” catchment as the 635 
weighted daily mean of the regimes in the 5 climatically most similar catchments. [c] Estimation of “ungauged” catchment 636 
as the daily mean of the regimes in the same Köppen-Geiger class. [d] Estimation of “ungauged” catchment as the daily 637 
mean of the regimes in the same climatic cluster. 638 



 639 

Figure 9: Cumulative Distribution Functions of absolute errors in signature value estimation. Signatures are estimated by 640 
treating each catchment as ungauged in turn and using climatic similarity to find donor catchments. Signature values from 641 
the donor catchments are averaged to estimate the signature’s value in the “ungauged” catchment. Climatic similarity is 642 
expressed as belonging to the same Köppen-Geiger class (orange), the same climate cluster (light green), or as Euclidean 643 
distance in climate index space expressed by the Im, Im,r and fs indices. In the latter two cases, the estimated signature value 644 
for the “ungauged” catchments are based on distance-based weighting of all catchments (red) or the five catchments that 645 
are climatically the most similar to the “ungauged” catchment (dark green). 646 

5 Discussion 647 

This work presents a hydrologically-motivated alternative to traditional climate classification 648 

schemes, accounting for gradual changes in climate and the influence that has on flow regimes and 649 

streamflow signatures. This addresses two criticisms of traditional classification schemes used for 650 

hydrology, namely that their underlying motivation is not hydrological and the subjective nature of 651 

the number of classes and their distinct boundaries. Although we define 18 representative climates, 652 

these are intended as a communication device only, to enable straightforward comparison between 653 

our method and the Köppen-Geiger classification. Section 4.3 shows that clear benefits can be 654 

gained by using a continuous hydroclimatic spectrum instead. 655 

We find that three simple climate indices, that quantify a location’s average aridity (Im), the seasonal 656 

range of water-versus-energy availability (Im,r) and the fraction of precipitation that occurs as 657 

snowfall (fs), are good indicators for finding similar hydrological regimes on a continuous scale. To 658 

further illustrate this, Figure 1010 shows the degree to which all catchments belong to 659 

representative climates 16, 15, 9 and 8 respectively, and how the typical flows that are strongly 660 

associated with each cluster look. From climate 16 to 15 to 9, the index values indicate progressively 661 

more arid climates, with increasing aridity seasonality and constant (nearly zero) snowfall. The 662 

corresponding streamflow regimes become lower on average as a result of increasing average 663 

aridity, with lower low flows resulting from the increase in aridity seasonality. From cluster 9 to 8, 664 

aridity and seasonality remain constant, but snowfall increases. The corresponding streamflow 665 

regimes in climate 8 are similar to those in climate 9 (both on average and during low flows) but 666 

have a much sharper high flow peak as a result of snow accumulation and melt processes. This 667 

reinforces the hypothesis that gradual changes in climatic conditions lead to gradual changes in 668 



seasonal streamflow patterns and can be of importance during catchment classification and 669 

catchment similarity studies. Most catchment characteristics can be described on a continuous scale 670 

(e.g. area, elevation, slope, porosity, conductivity, degree of vegetation cover, leaf area index) and 671 

these results suggest that climate should be treated in the same way, rather than using discrete 672 

classes.  673 

 674 

Figure 10: (a-d) Membership degree [0,1] of catchments to clusters 16, 15, 9 and 8 respectively (shading) and the 675 
catchment-averaged values for the three climate indices that describe aridity (Im), seasonality of aridity (Im,r) and fraction of 676 
precipitation as snowfall (fs). (e-h) Typical streamflow in catchments with climates similar to representative points 16, 15, 9 677 
and 8 respectively (flows shaded by their degree of membership to the cluster) with the weighted mean (black) and 25th and 678 
75th percentile (red). 679 

Our findings are in line with earlier work on the relation between seasonal streamflow patterns and 680 

climate (Addor et al., 2017, 2018; Berghuijs et al., 2014) and with work on the suitability of the 681 

Köppen-Geiger classification for mapping global flow regimes (Haines et al., 1988). An important 682 

difference is that both Berghuijs et al. (2014) and Haines et al. (1988) create climatic classes by 683 

grouping flow regimes, whereas this work uses streamflow data only to evaluate the 684 

appropriateness of our climate indices in relation to hydrologic regimes. The specific climate indices 685 

we have chosen are slightly different from those used in Berghuijs et al. (2014) and Addor et al. 686 

(2017), but they are intended to capture the same climatic aspects (aridity, seasonality and snow). 687 

Both those studies are regional, focussing on the contiguous USA and our results indicates that their 688 

general findings (i.e. that 3 climate indices can be used in defining hydrologic similarity) might be 689 

applicable on the global scale as well. Haines et al. (1988) present a global classification of river flows 690 

based on monthly streamflow data and find considerable spread in how their proposed regimes 691 

relate to Köppen-Geiger classes, similar to our results. Haines et al. (1988) also compare their result 692 

to an earlier study by Beckinsale (1969), who adapted the Köppen-Geiger classification to apply to 693 

river regimes, and find that “many of the ‘different’ regimes proposed by Beckinsale are in practice 694 

found not to be significantly different at the world scale” (Haines et al., 1988). This is a consequence 695 

of their choice to cap the number of possible regime classes, such that all classes contained a 696 

significant (but unspecified) number of observed flows and were consistent with known geographic 697 

features. Analyzing river flows on a continuous spectrum, such as proposed in this work, rather than 698 

using discrete groups would avoid this problem and allow rarely occuring regimes to be somewhere 699 

on this spectrum as well. However, we emphasize that our work is not intended as a river regime 700 



classification scheme (which would necessarily involve accounting for a catchment’s characteristics 701 

as well), but rather presents a hydrologically-relevant way of accounting for the influence of global 702 

climates in such a catchment classification. 703 

5.1.1 On geographical proximity of the catchments 704 

Geographical proximity of catchments could explain similarity between typical flows as well as 705 

climatic similarity, but the GRDC catchments are spread out enough in climatic and geographical 706 

space that this plays only a small role. Typical correlation lengths for hydrologic similarity are in the 707 

order of 100 to 200 km (e.g. Castiglioni et al., 2011; Gottschalk et al., 2011; Skøien et al., 2003). 708 

Within the GRDC data set, approximately 1.3% of catchment pairs are within this distance from one 709 

another. This can explain certain similarities in flow patterns per climate cluster (Figure 5), because 710 

geographically close catchments are likely to have high membership degrees to the same 711 

representative climate(s). However, nearly all representative climates include catchments with high 712 

degrees of membership from at least two continents and all climates contain catchments that are far 713 

enough apart to ignore spatial correlation (see Supplementary Information S.3). In Figure 11,  the 714 

typical flows in representative climate 15 are separated by continent (columns) and degree of 715 

membership (rows). Within a column, flows are relatively similar in pattern and size, which could be 716 

explained by relative geographical proximity (although the catchments still span several 100s of 717 

kilometres). Across columns however, especially above 0.50 membership degree, the flows on each 718 

of the four continents are remarkably similar. This reinforces the idea that similar climatic conditions 719 

lead to relatively similar flow patterns. 720 

5.1.2 On the choice of climate indices 721 

Our climate indices express the annual average water and energy budget, the seasonality of water 722 

and energy availability and the fraction of precipitation that occurs as snowfall. These indices relate 723 

to similar climatic attributes as earlier regional studies in the US (Addor et al., 2017, 2018; Berghuijs 724 

et al., 2014) have used but we use different equations for aridity and the seasonality of aridity. Our 725 

choices are motivated by both practical concerns and a need to find indices that confer relevant 726 

information on a global scale. Indices on a bounded interval are easy to visualise (in the case of our 727 

3D climate index space, Figure 2a) and straightforward to normalize to a [0,1] interval. The latter is 728 

useful for clustering analysis and regionalization both within this study and for potential later work. 729 

Traditionally, aridity is often given as a dryness index PET / P (e.g. Addor et al., 2017; Berghuijs et al., 730 

2014; Budyko, 1974) with range [0,∞>. We adopt a moisture index (Feddema, 2005; Thornthwaite, 731 

1948) instead that expresses the same information but on a bounded interval [-1,1] and thus fits our 732 

criteria better. We’ve chosen to use the term “seasonality of aridity” over “precipitation seasonality” 733 

as is used in Berghuijs et al. (2014) and Addor et al. (2017). The precipitation seasonality metric is 734 

based on an expression of local P and PET time series as sinusoidal functions and finding the 735 

difference between the timing of the P and PET peak. This approach was originally developed in the 736 

context of snow modelling (Woods, 2009) and thus assumes that PET follows a distinct summer-737 

winter pattern due to temperature seasonality. This assumption is appropriate in the context of the 738 

US but less so towards the equator. Furthermore, precipitation seasonality only confers information 739 

about timing and not relative volumes of P and PET. Therefore, we have opted to use the within-year 740 

range of our monthly moisture index as a seasonality metric instead. This metric conveys 741 

information about the possible states of water availability a location can go through, which is 742 

relevant information on a global scale (although it has its own limitations, see section 5.1.3).  743 

5.1.3 On study limitations 744 

This study has several limitations which can be improved upon in later work. First, we investigate the 745 

relation between climate and streamflow patterns by comparing averaged monthly climate values 746 



over a 30-year period and median daily streamflow values. This approach smooths out outliers in 747 

both climate and streamflow data, but ignores interannual variability. The results shown in this work 748 

form a good basis to investigate interannual variability from. Second, the number of catchments 749 

could be increased. The GRDC catchments were selected for their global nature and availability of 750 

daily flow records, but this still leads to an underrepresentation of African and Asian river systems. 751 

Additionally, to keep as many catchments for the analysis as possible, we have not set an upper 752 

bound to catchment size (provided that the catchment boundaries are known). It is possible that in 753 

large catchments not every part of the catchment contributes equally to overall runoff. The 754 

catchment-average climate that we use might thus not be representative of the climate in the runoff 755 

generating part of large catchments. A larger database of river basins would allow us to restrict the 756 

analysis to smaller catchments where this issue is unlikely to play a role. Third, the seasonality of 757 

aridity metric can be improved. The metric measures the range between the lowest and highest 758 

monthly aridity value (eq. 3) but this range is not necessarily symmetrical around the average aridity 759 

(Im, eq. 2) value. There is thus a certain amount of non-uniqueness for each combination of Im and Im,r 760 

values. For example, Im = 0 and Im,r = 1 can theoretically mean “this location is on average neither 761 

arid nor wet, but reaches a very arid state at some point during the year”, “it’s neither arid nor wet 762 

on average, but has a large water-surplus at some point” and everything in between. Extremely 763 

asymmetrical occurrences are unlikely though, because this would require nearly balanced 764 

precipitation and potential evapotranspiration all-year round, apart from a single extremely 765 

dry/rainy month. The impact of this effect is currently hard to judge but might be investigated 766 

through an increased number of catchments. Another limitation of the Im and Im,r indices is that 767 

(unlike the sine curve approach of Milly, 1994) they do not allow us to reconstruct the monthly times 768 

series of climate.  Other choices of climate indices could lead to improvements, but the results 769 

already look promising: by comparing just three simple indices, we are able to locate catchments 770 

with similar seasonal flow patterns and flow regimes. The climate index values can be used to define 771 

a quantitative measure of “climatic similarity” between catchments in an easier, more succinct way 772 

than is possible with earlier climate classification schemes. 773 

 774 



 775 

Figure 11: flows from GRDC catchments that have climate cluster 15 as their main cluster (i.e. their highest degree of 776 
membership to any cluster is to cluster 15) separated by continent (columns) and degree of membership (rows). Flow 777 
shading corresponds to degree of membership of each individual catchment to cluster 15. 778 

6 Conclusions 779 

Hydrology needs its own structured way to quantify climates, acknowledging that climates vary 780 

gradually on a global scale, that distinct boundaries between climate classes do not represent reality 781 

well, and that climate descriptors should explicitly including those climate aspects that drive changes 782 

in hydrologic regimes. Until now, climate classification in hydrology has either used classification 783 

schemes from other disciplines (e.g. the Köppen-Geiger scheme) or used ad-hoc methods (e.g. a 784 

within-study selection of metrics such as aridity or streamflow elasticity). In this work, causal factors 785 

(climate) and streamflow response are intentionally separated, meaning that the classification 786 

scheme presented here is based on only climatic information and can be evaluated with 787 

independent streamflow data. We define the hydro-climate on a global scale, using three 788 

dimensionless indices that describe each location’s aridity, the seasonal changes in aridity and the 789 

fraction of precipitation that occurs as snowfall. Using 1103 catchments, we show that typical 790 

streamflow regimes and streamflow signature values correlate strongly with the local hydro-climate. 791 

Gradual spatial changes in climatic conditions are accompanied by gradual changes in flow regimes. 792 

In a climate classification context, using these three indices is a better way to identify hydrologically 793 

similar catchments than the Köppen-Geiger classification. This is partly because the Köppen-Geiger 794 

scheme is not hydrologically based and does not capture the hydrologically relevant nuances of 795 

colder climates properly, and partly because the Köppen-Geiger scheme uses discrete climate 796 

classes. The gradual changes in climatic and streamflow conditions are not adequately captured 797 

using discrete classes. Instead, it is more useful to view the global hydro-climate as a continuous 798 

spectrum on which every catchment is located. Regionalization of typical streamflow patterns and 799 

streamflow signature values tends to be better when a small number of climatically similar basins 800 

(i.e. close together in the climate space described by our climate indices) is used instead of donors 801 

chosen based on either Köppen-Geiger or climate cluster grouping. Using the work shown here, a 802 

catchment’s climate can be described with three simple numbers, which allows easier knowledge 803 

transfer between catchments and can form the basis of a catchment classification method.  804 
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