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Abstract 

This paper introduces a choice-based method that for the first time makes it possible to quantitatively 

measure regret theory, one of the most popular models of decision under uncertainty. Our measurement is 

parameter-free in the sense that it requires no assumptions about the shape of the functions reflecting 

utility and regret. The choice of stimuli was such that event-splitting effects could not confound our 

results. Our findings were largely consistent with the assumptions of regret theory although some 

deviations were observed. These deviations can be explained by psychological heuristics and reference-

dependence of preferences. 
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1. Introduction 

 Regret theory, first proposed by Bell (1982) and Loomes and Sugden (1982), is one of the most 

popular nonexpected utility models. The theory has intuitive appeal and has a relatively simple structure 

relative to other nonexpected utility models. It is based on two functions: a utility function u(x), which is 

defined over outcomes, and a function Q(u(x) − u(y)), defined over utility differences, which captures the 

impact of regret. In spite of its simple structure, regret theory can account for a wide range of observed 

deviations from expected utility, including the common consequence effect, the common ratio effect, the 

joint existence of gambling and insurance, and the preference reversal phenomenon. The crucial 

assumption of regret theory that generates the observed deviations from expected utility is that the 

function Q(⋅) is convex. Regret theory is the only important theory of decision under uncertainty that is 

consistent with violations of transitivity. The violations of transitivity predicted by regret theory have been 

commonly observed experimentally (e.g. Loomes et al. 1991) and cannot be explained by the other main 

nonexpected utility theories, including prospect theory (Kahneman and Tversky 1979, Tversky and 

Kahneman 1992). Hence, there is clearly a domain on which it is important to study regret theory. 

 Many studies have tested the predictions of regret theory in a qualitative way (for an overview see 

Starmer 2000). They adopted the assumptions of regret theory, in particular convexity of Q(⋅), and then 

examined whether regret theory could account for their data. The validity of most of these studies was 

called into question by Sugden and Starmer (1993). They found that a substantial part of the empirical 

support for regret theory could be explained by event-splitting effects, by which an event with a given 

probability is weighted more heavily if it is considered as two subevents than if it is considered as a single 

event (see also Humphrey 1995). For psychological evidence on the impact of regret on decision making 

under uncertainty see, for example, Larrick (1993), Zeelenberg et al. (1996) and Zeelenberg (1999).  

Several papers have analyzed the role of regret in specific domains. Smith (1996), and Yaniv 

(2000) analyze the role of regret in medical decision making. Gollier and Salanié (2006) and Muermann et 

al. (2006) incorporate regret into models of asset pricing and portfolio choice. Braun and Muermann 

(2004) show that regret can explain the commonly observed preference for low deductibles in personal 

insurance markets. Barberis et al. (2006) use regret theory to explain why people tend to invest too little in 
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stocks, Michenaud and Solnik (2006) show that regret can explain observed hedging behavior, and 

Muermann and Volkman (2007) show how regret can explain the disposition effect, the finding that 

investors have a preference for selling winning stocks too early and holding losing stocks too long 

(Shefrin and Statman 1985). The crucial assumption in most of these studies amounts to convexity of the 

regret function Q(⋅). Whether this assumption is justified is an open question as no quantitative 

measurements of Q(⋅) are currently available in the literature. Providing such a quantitative measurement 

of Q(⋅) is the topic of this paper.  

A quantitative measurement of regret theory is not only important for descriptive purposes, but 

also for practical decision analysis, where prescriptions and predictions have to be made. The prescriptive 

status of regret theory is controversial. Several authors have argued in favor of the prescriptive validity of 

regret theory and intransitive choice (Loomes and Sugden 1982, Bell 1985, Anand 1987, Fishburn 1991), 

while others have rejected the prescriptive status of regret theory because of the possibility of intransitive 

preferences. Regardless of one’s view on the prescriptive status of regret theory, it is important for 

practical decision analysis to have a method that allows quantifying regret theory. This is obvious if regret 

theory is considered prescriptive. However, it is also true if regret theory is merely considered descriptive. 

Prescriptive decision analyses require the measurement of utilities. Measuring utilities is a descriptive task 

and, hence, susceptible to the biases that lead to violations of expected utility. To correct for these biases a 

method is needed that can separate the irrational part of preferences (regret) from the rational part (utility 

or the attitude towards outcomes). Our measurement method makes it possible to achieve such a 

separation and allows measuring utility without the impact of regret.  

Our measurement method is parameter-free in the sense that it requires no assumptions about the 

functional forms of u(⋅) or Q(⋅). It is based on Wakker and Deneffe’s (1996) tradeoff method. The tradeoff 

method was previously used to measure utility under prospect theory. We show that it can also be used to 

measure utility under regret theory. Consequently, regret theory can be measured by well-known and 

widely used measurement techniques and its measurement is much easier than commonly thought and can 

be based on direct choice, the basic primitive of utility theory.  
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We applied our method in an experiment where we controlled for event-splitting effects. We 

found that most subjects had a concave utility u(⋅); at the aggregate level, u(⋅) was, however, close to 

linear. Consistent with the predictions of regret theory, Q(⋅) was predominantly convex both at the 

individual level and at the aggregate level. Some deviations existed, however, that could not be explained 

by regret theory and that suggest that other factors besides utility and regret affect decisions under 

uncertainty.  

 In what follows, Section 2 reviews regret theory. Section 3 describes our method for quantitatively 

measuring regret theory. Section 4 describes the design of our experiment and Section 5 its results. Section 

6 presents predictions and implications from our results. Section 7 contains a discussion of the main 

findings and Section 8 concludes. Details on the experiment and an overview of the individual data are in 

the Appendix. 

 

2. Regret Theory  

Let S denote a state space. Subsets of S are called events. A probability measure p is given over 

the set of events. An act is a function from S to the set of outcomes. We indicate acts as f,g. Our elicitation 

method, described in Section 3, requires that outcomes are real numbers. They are money amounts in the 

experiment in Section 4. Because our elicitation method only uses acts with two different outcomes we 

will restrict attention to such binary acts. We shall denote acts as (x, p; y), which means that there is an 

event E with probability p such that x obtains under E and y obtains under the complement of E.   

We assume that a preference relation í is given over the set of binary acts. The conventional 

notation ê and ~ is used to denote strict preference and indifference. By restricting attention to constant 

acts, i.e. acts for which x = y, a preference relation over outcomes can be defined, which we also denote by 

í. We assume that higher outcomes are preferred to lower outcomes. For money amounts this assumption 

is self-evident. 

Consider two acts f = (f1, p; f2) and g = (g1, p; g2). The general formulation of regret theory 

proposed by Loomes and Sugden (1987) postulates a real-valued function Ψ(fj,gj) such that 

f í g ⇔ pΨ(f1,g1) + (1− p)Ψ(f2,g2) ≥ 0.      (1) 
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The function Ψ(fj,gj), j = 1,2, can be interpreted as assigning a real-valued index to the net 

advantage of choosing f rather than g if event j obtains. Ψ(⋅,⋅) is unique up to scale, i.e. it can be replaced 

by any other function Ψ′(⋅,⋅) = αΨ(⋅,⋅), α > 0 without affecting preferences, and satisfies the following 

three restrictions: 

(i) Ψ(⋅,⋅) is strictly increasing in its first argument: for all outcomes x and y if x > y then 

Ψ(x,⋅) > Ψ(y,⋅).  

(ii)  Ψ(⋅,⋅) is skew-symmetric: for all outcomes x and y, Ψ(x,y) = −Ψ(y,x). 

(iii) for all outcomes x > y > z, Ψ(x,z) > Ψ(x,y) + Ψ(y,z). This property was labeled 

convexity in Loomes and Sugden (1987a), but is now generally referred to as regret 

aversion. 

Skew-symmetry entails that for all outcomes x, Ψ(x,x) = 0. Expected utility is the special case of regret 

theory in which Ψ(x,y) = u(x) − u(y) and u is a von Neumann Morgenstern utility function. Fishburn's 

(1982) skew-symmetric bilinear (SSB) theory resembles the general form of regret theory but assumes that 

preferences are defined over prospects, probability distributions over outcomes, rather than over acts.  

 Bell (1982, 1983) and Loomes and Sugden (1982) considered a restricted form of (1) in which  

Ψ(x,y) = Q(u(x) − u(y)).       (2) 

Bell (1982) refers to u in Eq. 2 as a value function measuring strength of preference, or incremental value. 

Loomes and Sugden (1982) refer to u as a choiceless utility function, which reflects the utility the decision 

maker would derive from an outcome x if he experienced it without having chosen it. That is, both Bell 

(1982) and Loomes and Sugden (1982) assume another primitive beyond choice.2 Our method, which we 

will explain in Section 3, is entirely choice-based and we do not assume any other primitives like 

incremental value or choiceless utility. To emphasize this point, we will refer to u as a utility function in 

what follows. 

 The function Q(⋅) in Eq. 2 is strictly increasing and has the following symmetry property: for all k, 

−Q(k) = Q(−k). Regret aversion, which yields the distinctive predictions of regret theory, implies that Q(⋅) 

is convex. It follows from the properties of difference measurement that u(⋅) is unique up to scale and unit 

                                                 
2 In the appendix to their paper, Loomes and Sugden explain, however, how u(⋅) can be derived solely from choices. 
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(Krantz et al. 1971). Because we can replace Ψ by any function which is a positive multiple of Ψ, we can 

replace Q(⋅) by Q′(⋅) = αQ(⋅), α > 0. Because for all x, Ψ(x,x) = 0, Q(0) = 0. 

 Some authors use a slightly different expression for regret theory in which the utility of obtaining 

x and not y is equal to u(x) + R(u(x) − u(y)), where R is a regret-rejoice function, which is at least three 

times differentiable, strictly increasing, and decreasingly concave. This formulation of regret theory is 

equivalent to Eq. 2 when we define Q(u(x) − u(y)) = u(x) − u(y) + R(u(x) − u(y)) − R(u(y) − u(x)). 

Convexity of Q corresponds to R being decreasingly concave. 

 

3. Elicitation Method 

 This Section explains our method for measuring regret theory. Even though our measurement 

method can be used to elicit the general regret model, Eq. 1, as we explain below, the intuition behind the 

method is clearer if we consider Eq. 2 and, hence, we will focus on this model.  

 Our method consists of two stages. In the first stage we use the tradeoff method (Wakker and 

Deneffe 1996) to elicit a standard sequence of outcomes {x0,…,xk} that are equally spaced in terms of 

utility, i.e. the elements of the standard sequence are such that u(xj+1) − u(xj) = u(x1) − u(x0) for all j in 

{1,…k−1}. Hence, the first stage elicits the function u(⋅), which has the properties of Bell’s (1982) 

incremental value function but without assuming the primitive of incremental value. In the second stage 

we use the standard sequence of outcomes to elicit the function Q(⋅).  

It is easily verified, by substituting Ψ(xj+1,xj) for Q(u(xj+1) − u(xj)) in the exposition below, that in 

the general regret theory of Loomes and Sugden (1987a)  the standard sequence {x1,…,xk} is such that 

Ψ(xj+1,xj) = Ψ(x1,x0) for all j in {1,…k−1}. The second stage then uses the standard sequence to elicit 

Ψ(⋅,⋅) for pairs of elements of the standard sequence. This shows that our method can indeed be used to 

elicit the general regret model, Eq. 1. 

 



 7

3.1. First stage: elicitation of u(⋅) 

We start by selecting the probability p with 0 < p < 1, two gauge outcomes M and m with M ê m, 

and a starting outcome x0. Then we elicit the outcome x1 for which the decision maker is indifferent 

between (x0, p; M) and (x1, p; m). The indifference (x0, p; M) ~ (x1, p; m) yields by Eq. 2: 

pQ(u(x0) − u(x1)) + (1 − p) Q(u(M) − u(m)) = 0.      (3) 

Rearranging and using the symmetry of Q(⋅) gives: 

Q(u(x1) − u(x0)) = 
1 − p

 p   Q(u(M) − u(m)).      (4) 

 We then determine the outcome x2 for which the decision maker is indifferent between (x1, p; M) 

and (x2, p; m). Writing out this indifference gives by a similar line of argument as in Eqs. 3 and 4: 

Q(u(x2) − u(x1)) = 
1 − p

 p   Q(u(M) − u(m)),      (5) 

and, thus, Q(u(x1) − u(x0)) = Q(u(x2) − u(x1)). Because Q(⋅) is strictly increasing, it follows that u(x2) − 

u(x1) = u(x1) − u(x0). We proceed by eliciting indifferences (xj, p; M) ~ (xj+1, p; m) and in so doing we 

elicit a standard sequence {x1,…,xk} for which u(xj+1) − u(xj) = u(x1) − u(x0), j = 1,…,k−1. Because u(⋅) is 

unique up to unit and location, we can arbitrarily choose the utility of two outcomes. We set u(x0) = 0 and 

u(xk) = 1. It then follows that u(xj) = j/k for j = 0,…,k.  

 

3.2. Second stage: elicitation of Q(⋅) 

 We use the standard sequence elicited in the first stage to measure Q(⋅). Q(⋅) is scaled such that 

Q(u(x1) − u(x0)) = Q(1/k) = 1. Because u(xj+1) − u(xj) = 1/k for j = 0,…,k−1, it follows that Q(u(xj+1) − 

u(xj)) = 1 for any two successive elements of the standard sequence. We considered two ways of 

measuring Q(⋅): a direct procedure and a chained procedure. In the direct procedure Q(j/k), j = 2,…,k, is 

measured by selecting an element xj of the standard sequence and by eliciting the probability p for which 

the decision maker is indifferent between (x0, p; x1) and (xj, p; x0). By (2) this gives: 

pQ(u(x0) − u(xj)) + (1−p) Q(u(x1) − u(x0)) = 0      

⇔ pQ(j/k) = 1 − p         



 8

    ⇔ Q(j/k) = 
1 − p

 p  .        (6) 

By making the standard sequence sufficiently fine, which can be achieved by appropriate selection of the 

two gauge outcomes, we can approximate Q(⋅) to any desired degree of accuracy.  

 A disadvantage of the direct procedure is that the elicitation of p may be highly sensitive to 

response error when p is close to zero. A first problem is that even small response errors will then have 

strong effects on the elicited value of Q(⋅). This is most likely for values of Q(⋅) close to Q(1). For 

example, in our experiment we used k = 5 and to measure Q(1) we must, by the above procedure, elicit the 

probability p for which a decision maker is indifferent between  (x0, p; x1) and (x5, p; x0). For our median 

subject this would mean that we had to elicit p such that indifference held between  (€200, p; €390) and 

(€1220, p; €200). Pretesting of our experiment showed that for most subjects this indifference only held 

for small probabilities p, leading to unstable estimates of Q(⋅). 

 A second problem associated with small indifference probabilities is that response errors can lead 

to biases in the elicited values of Q. Suppose that a subject’s true indifference probability p is equal to 

0.03. Then the room for error “to the left” of 0.03 is limited because for p = 0, the subject will, by 

dominance, have a clear preference for (x0, p; x1) over (xj, p; x0). To the right of 0.03, there is, however, 

much more room for error and if the subject is equally likely to report a value lower than 0.03 as to report 

a value exceeding 0.03 then there will be an upward bias in the elicited indifference probability and, 

hence, a downward bias in Q(⋅). 

 Because of the above problems we decided to use a chained procedure for the determination of 

Q(⋅). The chained procedure measures Q(⋅) by eliciting the probabilities pj for which subjects are 

indifferent between (x0, pj; xj) and (xj+1, pj; x0), j = 1,…,k−1.3 By Eq. 2 and the scaling of u(⋅), these 

indifferences yield: 

 pjQ( j + 1
k  ) = (1 − pj) Q( j

k ), j = 1,..,k−1.      (7) 

 We know that Q(1/k) = 1, by the scaling of Q(⋅), and, hence, Eq. 7 measures Q(2/k) directly. Once 

we know Q(2/k), we can use the value of Q(2/k) to determine Q(3/k), etc. The chained procedure is less 

                                                 
3 We could have used any other element of the standard sequence instead of x0 in the elicitation.  
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likely than the direct procedure to elicit probabilities close to zero, because it uses successive elements of 

the standard sequence. Pretesting showed that in the chained procedure most elicited probabilities were far 

away from 0, generally around 0.40.  

A disadvantage of the chained method is that it may be sensitive to error propagation: errors made 

in the elicitation of Q(2/k) translate into errors in the elicitation of Q(3/k) and so on. To obtain insight into 

the extent to which our conclusions were affected by error propagation we performed simulation 

exercises, which are explained in Section 4 and the results of which are described in Section 5. The 

simulation exercises indicated that error propagation was not a major cause of concern in our study. 

 

4. Experiment 

 The aim of the experiment was to elicit the functions u(⋅) and Q(⋅) through the procedure outlined 

in Section 3.  This quantitative measurement also allowed testing for regret aversion, i.e. convex Q(⋅).  

 

Subjects and stimuli 

Subjects were 82 students (38 female, mean age 22) from different faculties of the Erasmus 

University Rotterdam. Before the actual experiment, we tested the design in 12 pilot sessions using other 

students and staff from INSEAD as participants. Subjects were paid a flat fee of €10 for their 

participation. In addition, one out of every ten subjects was selected randomly to play one of his choices 

for real at the end of the experiment. Regret theory predicts that this random problem selection procedure 

reveals subjects’ true preferences in the sense that no differences will be observed with choices that are 

always played out for real. Empirical evidence provides support for this claim (Starmer and Sugden 1991, 

Beattie and Loomes 1997). A potential problem of using real incentives is that our method is based on 

chained measurements. This may induce subjects to respond strategically. For example, by giving too high 

values of xi in the first stages of the elicitation of u(⋅), subjects could increase the attractiveness of the 

options that they faced in later stages of the elicitation. This danger is particularly present in matching 

tasks, in which subjects directly state their indifference value and this indifference value features in 

subsequent elicitation questions. We reduced the danger of strategic responses by using a choice-based 



 10

elicitation procedure. This makes it hard to notice the chained nature of the experiment because the 

derived indifference values do not appear in subsequent questions. To make the chained nature of the 

measurements even harder to discern, we included several filler questions that interspersed the elicitations. 

  

Procedure 

 The experiment was run on a computer and was administered in small groups of at most 4 

subjects. Subjects were seated in separate cubicles and no interaction between the subjects was possible. 

Two interviewers were present during each experimental session. Sessions lasted thirty minutes on 

average. 

 Each experimental session started with an explanation of the task, which was read aloud by one of 

the interviewers. Subjects could also see this explanation on their computer screen. Then a practice 

question followed. After this practice question the interviewer explained the random problem selection 

procedure. The introduction to the experiment ended with another practice question. 

 Figures 1 and 2 give examples of the questions in both stages of the elicitation. Subjects were 

presented with two options, labeled A and B, and they were asked to choose between the options by 

clicking on their preferred option, indifference was not allowed. They were then asked to confirm their 

choice. If they confirmed their choice they moved on to the next question. If not, they faced the same 

question again. The confirmation question intended to reduce the impact of response errors. 

 

Figure 1: Example of a screen faced in the first part of the experiment 
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Figure 2: Example of a screen faced in the second part of the experiment 

 

 

As mentioned before, we used a choice-based method to elicit indifferences. Empirical evidence 

suggests that choice-based procedures are less prone to inconsistencies than procedures that ask directly 

for indifference values (Bostic et al. 1990). When an indifference value had been determined through a 

series of choices, we repeated the first choice in the iteration process. If a subject made the same choice as 

before in this repeated question then the program moved on to the next choice-based elicitation. If not, the 

iteration process was started anew. Both options always yielded different outcomes under the two states of 

nature. This was deliberately done to avoid that event-splitting effects would confound the results. 

 To measure the function u(⋅), we elicited a standard sequence {x0,…,x5}. Hence, k = 5 in our 

study. We set the probability p equal to ⅓, the gauge outcomes M and m to €100 and €40, and the starting 

outcome x0 to €200. The probability ⅓ was chosen because the pilot sessions showed that subjects found it 

easy to understand. In the pilot sessions we set m equal to €0, but this produced strong risk aversion: a 

substantial proportion of subjects chose (€200, ⅓; €100) over (€x1, ⅓; €0) even for high values of x1. 

As we explained in Section 3, our measurement method amounts to finding values xj+1 for which  

(€xj, ⅓; €100) ~ (€xj+1, ⅓; €40), j = 0,…, 4. In the first iteration of the choice-based elicitation procedure, 

we chose xj+1 so that the two acts (€xj, ⅓; €100) and (€xj+1, ⅓; €40) had equal expected value. Depending 

on the subject’s choice, xj+1 was increased or decreased. After a switch in preference, the change in xj+1 

was reduced and the direction of change was reversed. In this way, we zoomed in on the subject’s 



 12

indifference value of xj+1. The exact procedure followed in this “zooming-in-process” is explained in 

Appendix A. The number of iterations per elicitation depended on the subject’s choices. The probabilities 

p were kept fixed at ⅓ in the elicitation of the standard sequence. To stimulate subjects paying attention to 

the probability dimension, we varied the probabilities of the two states in the filler questions that 

interspersed the elicitation questions.  

Two problems could arise in the elicitation of xj+1. In case a subject violated monotonicity, i.e. one 

of the options gave at least as good an outcome under both states of nature, he was given a warning that 

explained that monotonicity was violated and he was asked to reconsider his choice. If the subject 

persisted in his choice, the experiment ended. Another problem that could arise was that a subject always 

chose (€xj, ⅓; €100) over (€xj+1, ⅓; €40), even when xj+1 was much larger than xj, and indifference 

between the two options would not be reached. To avoid this problem, the experiment ended when a 

subject still preferred (€xj, ⅓; €100) to (€xj + €820, ⅓; €40). In the pilots we observed such extreme 

preferences once. 

 The second stage determined four values of Q(⋅): Q(2/5), Q(3/5), Q(4/5), and Q(1) through the 

chained procedure. We measured Q(⋅) by eliciting the probabilities pj+1 for which subjects were indifferent 

between (€200, pj+1; €xj) and (€xj+1, pj+1; €200), j = 1,…,4. The elicitation procedure was similar to that 

used in the elicitation of u(⋅) and is explained in Appendix A. In contrast with the elicitation of u(⋅), the 

choice-based elicitations did not have to be performed consecutively in the elicitation of Q(⋅). Hence, we 

could intersperse the different iteration processes, thereby obscuring that we were looking for indifference 

values.  

 It was possible that subjects violated stochastic dominance in the second part of the experiment. 

For any acts f and g, f stochastically dominates g if for all outcomes x, the probability that f generates an 

outcome at least as preferred as x is at least as great as the corresponding probability for g and for some 

outcome x the probability for f exceeds the probability for g. For example, f = (€400, ⅔; €200) 

stochastically dominates g = (€200, ⅔; €300). The program kept track of the number of violations of 

stochastic dominance.  
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 Three consistency checks completed the experiment. We repeated the elicitation of p4 to examine 

consistency in subjects’ responses. We also elicited the probabilities pc1 and pc2 that made subjects 

indifferent between (€x3, pc1; €x2) and (€x4, pc1; €200) and between (€x1, pc2; €x3) and (€x2, pc2; €200).4 

The indifference between (€x3, pc1; €x2) and (€x4, pc1; €200) yields after some rearranging and using the 

symmetry and scaling of Q(⋅): 

Q(2/5) =  
pc1

1 − pc1
 .       (8) 

For consistency we should observe that the value of Q(2/5) in Eq. 8 was equal to the value of Q(2/5) 

elicited before. That is, we should observe that 
pc1

1 − pc1
  = 

1 − p2
p2

 , i.e. that pc1 = 1 − p2. The indifference 

between (€x1, pc2; €x3) and (€x2, pc2; €200) yields: 

Q(3/5) = 
pc2

1 − pc2
 .        (9) 

For consistency we should observe that the value of Q(3/5) in Eq. 9 was equal to the value of Q(3/5) 

elicited before, i.e. 
pc2

1 − pc2
  =  

1 − p3
p3

  
1 − p2

p2
  or pc2 =  

(1 − p3)(1 − p2)
1 − p3 − p2 + 2p3p2

 . Systematic inequalities would 

indicate violations of regret theory. 

  

Analyses 

 We present individual and aggregate data for u(⋅) and Q(⋅). In the analysis of the aggregate data, 

we focus on the results based on the medians and only report the results based on the means in case they 

led to different conclusions. Throughout the analyses, significance of differences was tested both 

parametrically (paired t-test) and nonparametrically (Wilcoxon test). Because these tests always led to the 

same conclusion, we only report the nonparametric results. Differences between proportions were tested 

by the binomial test. 

 

                                                 
4 The c in pc1 and pc2 serves as a reminder that these are the responses elicited in the consistency questions. 
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Analysis of u(⋅) 

To investigate curvature of u(⋅) at the individual level, we  computed for each subject the 

differences  

Δgh,lm = (xg − xh) − (xl − xm), g>h, g>l, g − h = l − m,    (10) 

with all xj, j = g,h,l,m, elements of the elicited standard sequence. Because g − h = l − m, it follows from 

the construction of the standard sequence that u(xg) − u(xh) = u(xl) − u(xm). Hence, a positive value of 

Δgh,lm corresponds to a concave part of u(⋅), a negative value to a convex part, and a value of zero to a 

linear part. We could observe 20 values of Δgh,lm. To account for response error, we classified a subject’s 

utility function as concave/convex/linear if at least 12 out of 20 values of Δgh,lm were 

positive/negative/zero.5 Otherwise, a subject was classified as mixed. 

To smoothen out irregularities in the data, we also analyzed the data under specific parametric 

assumptions about utility. We examined two parametric families of utility, the power family and the 

exponential family. Both families are widely used in economics and decision theory. Let a = 1/(x5
r − 200r) 

and b = 200r/(x5
r − 200r). The power family was defined by axr − b if r > 0, by aln(x) − b if r = 0, and by 

−(axr + b) if r < 0. This scaling entailed that u(200) = 0 and u(x5) = 1. It is well known that r < 1 

corresponds to concave utility, r > 1 to convex utility, and r = 1 to linear utility. Let z = (x − x0)/(x5 − x0), 

x∈[200,x5]. The exponential family was defined by (erz  − 1)/(er − 1) if r ≠ 0 and by z if r = 0. The case r < 

0 corresponds to concave utility and the case r > 0 to convex utility. We estimated the power family and 

the exponential family by nonlinear least squares both for the median data and for each subject separately.  

We used the parametric estimates to obtain two other, parametric, classifications of the subjects. 

First, we classified a subject as concave if his power coefficient was below 0.95, as linear if his power 

coefficient was between 0.95 and 1.05, and as convex if his power coefficient exceeded 1.05. Second, 

using the standard errors of the coefficients, we classified a subject as concave if his power coefficient was 

statistically significantly smaller than 1 and as convex if his power coefficient was statistically 

significantly greater than 1. Here we did not use the linear classification because a coefficient that does not 

                                                 
5 Similar criteria were used by Fennema and van Assen 1999, Abdellaoui 2000, and Etchart-Vincent 2004. 
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significantly differ from 1 does not imply that a linear function fits the data particularly well. For the 

exponential function we used the classifications “concave if the exponent was less than −0.05”, “linear if 

the exponent was between −0.05 and 0.05”, and “convex if the exponent was greater than 0.05” and 

“concave if the exponent was significantly less than 0” and “convex if the exponent was significantly 

greater than 0”. The results were very similar for the power and the exponential family. To facilitate 

comparability of our result with earlier studies on utility measurement, we report the results for the power 

family in what follows. The results for the exponential family can be found in the electronic companion to 

this paper.  

 

Analysis of Q(⋅) 

 To investigate curvature of Q(⋅) at the individual level, we  computed the differences  

∇gh,lm = (Q(g/5) − Q(h/5)) − (Q(l/5) − Q(m/5)), g>h, g>l, g − h = l − m,  (11) 

with g,h,l,m∈{0,…,5}. Because g − h = l − m, it follows that a positive value of ∇gh,lm corresponds to a 

convex part of Q(⋅), a negative value to a concave part, and a value of zero to a linear part. We could 

observe 20 values of ∇gh,lm. We classified a subject’s Q(⋅) as concave if at least 12 out of 20 values of 

∇gh,lm were positive and as convex if at least 12 out of 20 values were negative. For reasons that will 

become apparent below, we also studied the behavior of Q(⋅) on [ ,1]. To do so, we considered the subset 

of values of ∇gh,lm for which m > 0. Then we could observe 10 values of ∇gh,lm and we used a cut-off 

value of 6 out of 10.  

 We also fitted the power family and the exponential family to Q(y), y∈[0,1] and to the 

subdomains y∈[0, ] and y∈[ ,1]. For both families Q(⋅) was rescaled to ensure that Q(1) = 1 in the 

estimations on [0,1] and on [ ,1]. In the estimation of Q(y) on [ ,1] we transformed the interval [ ,1] to 

the unit interval by defining z = (y − 1/5)/(4/5) and Q′(z) = (Q(y) − 1)/(Q(1) − 1). To determine the power 

and exponential coefficients on [0, ], we rescaled Q such that Q( ) = 1. The power and exponential 

coefficients were uniquely determined on [0, ] because there was only one degree of freedom for Q, the 

value of Q( ), on this subdomain. 
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As for utility, we used the parametric fittings to obtain two other classifications of subjects based 

on the shape of Q(⋅), the ±0.05 classification and the classification based on statistical significance. On 

[0, ]  the power and exponential coefficients were uniquely determined and, we could not use the 

classification of subjects based on statistical significance.  

For Q we focus on the exponential estimates, because these led to better convergence. As 

explained by Wakker (2006), problems may arise with the power function when zero is included in the 

domain. The exponential function does not have these problems around zero. The results for the power 

function, which were close to those obtained for the exponential function, can be found in the electronic 

companion. 

 

Analysis of error propagation 

 In Section 3 we discussed the danger of error propagation affecting the results. To test for the 

impact of error propagation both in the elicitation of u(⋅), where previously elicited elements of the 

standard sequence were used in the elicitation of successive elements, and in the elicitation of Q(⋅) by the 

chained method, we adopted the error model that was proposed by Fechner (1860/1966). The Fechner 

model was used by Hey and Orme (1994) for decision theory and has also been successfully applied in 

behavioral game theory (McKelvey and Palfrey 1995, Goeree et al. 2003). Essentially, the idea is that 

subjects make errors in computing the true difference in utility between options and that actual choices on 

any particular occasion are made according to the perceived difference in utility, which is equal to the true 

utility difference plus some noise. Two alternative error models have been proposed. The trembling hand 

model (Harless and Camerer 1994) argues that subjects make mistakes in reporting their choices. The 

random preference model (Loomes and Sugden 1995) argues that people are uncertain about their utility 

function and pick one such function at random from a set of utility functions. The trembling hand model 

was found to be inconsistent with empirical evidence (Loomes and Sugden 1998, Loomes 2005), while the 

random preference model was hard to apply to our data. Hence, we did not consider these two error 

models. 
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We operationalized the Fechner model as follows. In the elicitation of u(⋅) we assumed that the 

subject could make an error in the computation of the utility difference between xj+1 and xj. Recall that we 

scaled utility such that u(xj+1) − u(xj) = 0.20. The Fechner model implies that in the each elicitation the 

actual utility difference between xj+1 and xj was equal to the assumed value 0.20 and some error εj+1, j = 

0,…,4: 

u(xj+1) − u(xj) = 0.20 + εj+1.        (12) 

Because u(x0) = 0, we obtain u(x1) = 0.20 +ε1. From Eq. 12, u(x2) = u(x1) + 0.20 + ε2 = 0.40 + ε1 + ε2. In 

general, our error specification gives 

u(xj+1) = 
j+1
5   + ∑

j+1

i=1 εi, j = 0,...,4.      (13) 

 In the elicitation of Q(⋅) we assumed that 

Q(u(xj+1)) = Q(
j+1
5   + ∑

j+1

i=1 εi) =  
1 − pj+1

pj+1
 Q((u(xj))) + φj+1 =      

1 − pj+1
pj+1

 Q( j
5  + ∑

j

i=1 εi) + φj+1 , j = 1,...,4,      (14) 

where we denote the error in the elicitation of Q(⋅) by φ to distinguish it from the error in the elicitation of 

u(⋅). Note that the error in the elicitation of u(⋅) affects the elicitation of Q(⋅). Because Q(u(x1)) = 1, we get 

Q(u(x2)) = 
1 − p2

p2
  + φ2. Substituting this expression in the expression for Q(u(x3)) = 

1 −  p3
p3

  Q(u(x2)) + φ3 

gives Q(u(x3)) = 
1 − p3

p3
 (

1 − p2
p2

  + φ2) + φ3. In general we obtain: 

Q(u(xj+1)) = ∏
j+1

i=2 
1 −  pi

pi
  + ∑

j+1

i=2(φi ∏
j+1

k=i+1 
1 −  pk

pk
 ) +φj+1.    (15) 

 We examined two different error specifications. In the first specification, we assumed that the 

errors εj and φj were normally distributed with mean 0 and constant standard deviation of 0.05. The size of 

the standard deviation is not important as the purpose of our analysis was to examine whether small 

response errors were propagated into large errors in the elicited values of  u(⋅) and Q(⋅). The assumption of 

constant variance may be too restrictive as it is likely that subjects are more error-prone the larger the 

difference between the outcomes. We therefore also examined a model in which the errors were 
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heteroskedastic and the size of the errors varied with the difference between the outcomes of the standard 

sequence. In this model the standard deviation of the errors was assumed equal to σ(xj+1 − xj) where we 

normalized such that the standard deviation for the median subject was 0.05 in the first elicitation of the 

standard sequence.  In contrast with the constant error specification, the heteroskedastic error specification 

excludes violations of monotonicity, which were not allowed in our final data. We performed 1000 

simulations both for u(⋅) and for Q(⋅) and for both error specifications. 

  

5. Results 

 Sixteen subjects were excluded because they were extremely risk averse (6 in the elicitation of x1, 

5 in the elicitation of x3, 2 in the elicitation of x4, and 3 in the elicitation of x5). They chose (€xj, ⅓; €100) 

over (€xj+820, ⅓; €40) for some j = 0,…,k−1. Two subjects were excluded because they violated 

monotonicity even after this violation had been pointed out to them by the program, and eight subjects 

were excluded because they violated stochastic dominance. This left 56 subjects (22 female, mean age 

22.1) in the analysis. Note that the 2.4% of subjects violating monotonicity is in line with the results of 

Loomes and Sugden (1998). Moreover, having 10.7% of the subjects violate stochastic dominance when 

stochastic dominance is not immediately obvious is not disturbingly high compared to other studies. An 

overview of the elicited results for the subjects included in the analyses is in Appendix B. 

The subjects who were excluded because they chose (€xj, ⅓; €100) over (€xj+820, ⅓; €40) for 

some j = 0,…,k−1, in the elicitation of u(⋅) were those who were most risk averse. Excluding these 

subjects might bias the results and, therefore, we also analyzed the results while excluding the sixteen 

most risk seeking subjects. To determine the risk attitude of a subject, we recorded how often the value of 

xj+1 that yielded indifference between (€xj, ⅓; €100) and (€xj+1, ⅓; €40) was less than xj + 120, the value 

that ensured that the two acts had equal expected value. Such an indifference value is consistent with risk-

seeking behavior (Rothschild and Stiglitz 1970). It turned out that excluding the most risk seeking subjects 

did not affect the main conclusions and we will, therefore, not discuss these results in what follows. They 

can be found in the electronic companion. 
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Consistency tests 

 The mean and median values of p4 in the actual experiment were nearly equal to those in the retest 

(the medians were both 0.42, the means were 0.415 and 0.417) and there was no significant difference 

between the two elicitations of p4 (p = 0.767). We also observed no significant difference in the second 

consistency test, i.e. between pc2 and 
(1 − p3)(1 − p2)

1 − p3 − p2 + 2p3p2
 , (p = 0.205). In the first consistency test, we 

observed, however, a significant difference between the median values of pc1 and (1 − p2) (0.740 versus 

0.595, p < 0.01). We discuss this difference in further detail in Section 7. 

Recall from Section 4, that after each choice-based iteration process we repeated the first choice 

of this iteration process and that the iteration process was started anew if the subject did not make the 

same choice. For u(⋅), 78.2% of the elicitations required only one iteration process, 12.9% of the 

elicitations required the iteration process to be repeated once, and 8.9% of the elicitations required the 

iteration process to be repeated twice. In the elicitation of Q(⋅), these proportions were 70.5, 16.1, and 

13.4. The data do not suggest important differences in volatility across the elicitations.  

 

The elicitation of u(⋅) 

Concavity of u(⋅) was the dominant pattern at the individual level with 29 subjects having concave 

utility, 11 having convex utility, and 2 having linear utility. The remaining 14 subjects could not be 

classified. The proportion of concave subjects was significantly higher than the proportion of convex 

subjects (p < 0.01).  

The classification of the subjects based on their fitted power coefficients confirmed that concave 

utility was more common than convex utility. In the first parametric classification of subjects, the 1 ± 0.05 

classification, 29 had concave utility, 19 had convex utility, and 8 had linear utility; in the second, the 

classification based on statistical significance, 22 had concave utility and 13 had convex utility. In both 

parametric classifications, the proportion of concave subjects was only marginally higher than the 

proportion of convex subjects (p = 0.083 in the 1 ± 0.05 classification and p = 0.064 in the classification 



 20

based on statistical significance). The median of the individual estimates of the power coefficient was 

equal to 0.94. 

Our method for eliciting utility is also valid under prospect theory (Kahneman and Tversky 1979, 

Tversky and Kahneman 1992).  The proportions of concave, linear, and convex subjects that we observed 

were comparable to those observed in other studies using the tradeoff method (Abdellaoui 2000, 

Abdellaoui et al. 2005).   

Money
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1
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Figure 3: The elicited utility function
 based on the median data

 

We also analyzed the data at the aggregate level. In many decision contexts policy makers are 

interested in aggregate data. An important example is the economic evaluation of health care, where 

recommendations have to be made about the reimbursement of new treatments, and where typically the 

preferences of a representative sample from the general population are elicited and the interest is in the 

mean or median preferences. At the aggregate level utility was close to linear. Figure 3 shows the shape of 

the utility function u(⋅) for the median data. The dotted line is drawn for comparison and represents the 

case of linear utility. Consistent with linearity of u(⋅), we observed no significant differences between 

(xj+1−xj) and (xj−xj−1) for j = 1,…,4 (p > 0.10 in all pairwise tests). Parametric fitting also confirmed that 
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u(⋅) was close to linear: the power coefficient based on the median data was equal to 0.96 and was not 

significantly different from 1, the value corresponding to linear utility (p = 0.106). The power coefficient 

based on the mean data was equal to 0.88, indicating more concavity, and was significantly different from 

1 (p < 0.01).  

Compared with earlier papers that measured utility under prospect theory, our aggregate findings 

were close to those reported in Tversky and Kahneman (1992), Abdellaoui (2000), Abdellaoui et al. 

(2005), Schunk and Betsch (2006), and one of the estimates in Abdellaoui et al. (forthcoming-a) where the 

estimates for the power coefficient varied between 0.88 and 0.91. The estimates of Gonzalez and Wu 

(1999), Abdellaoui et al. (forthcoming-b), and two other estimates in Abdellaoui et al. (forthcoming-a) 

were, however, lower; they varied between 0.49 and 0.77 and indicated more concavity of utility. 

 

The elicitation of Q(⋅) 

 Table 1 displays the elicited median probabilities and their interquartile ranges. The table shows 

that the probabilities were generally far from zero and, hence, the problems associated with small 

probabilities that we discussed in Section 3 did not cause serious problems. There were only three 

probabilities less than 0.15 in the data 

 

Table 1: The elicited probabilities 

 Median Interquartile range 

p2 0.40 0.32-0.44 

p3 0.40 0.38-0.43 

p4 0.42 0.40-0.45 

p5 0.43 0.40-0.46 

 

 At the individual level, convexity was the dominant pattern with 30 subjects being classified as 

convex and 12 as concave. The remaining 14 subjects displayed a mixed shape for the regret function. No 

subject was classified as linear, the case corresponding to expected utility. The proportion of convex 

subjects was significantly higher than the proportion of concave subjects (p < 0.01).  
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Convexity of Q(⋅) was also the dominant pattern when we looked at the individual parametric 

estimates. In the 0 ±0.05 classification, 33 subjects were classified as convex, 21 as concave, and 2 as 

linear. In the classification based on statistical significance, 22 subjects were convex and 13 were concave. 

In both classifications the difference between convex and concave was only marginally significant (p = 

0.053 and p = 0.062, respectively). The median of the individual exponential estimates was equal to 0.19.  

The conclusion of predominant convexity needs to be qualified, however. Convexity requires that 

Q(2/5)>2*Q(1/5) and, hence, that p2 < ⅓. There were only 15 subjects for whom this was true suggesting 

that for most subjects Q(⋅) started off concave. The proportion of subjects for whom p exceeded ⅓ was 

significantly larger than the proportion for whom p was less than ⅓ (p < 0.01). 

Utility Difference
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Figure 4: The elicited function Q(.)
 based on the median data

 

 The initial concavity of Q(⋅) was confirmed when we looked at the aggregate data. Figure 4 

displays the shape of Q(⋅) for the median data. The dotted line serves as the benchmark of linear Q(⋅). The 

figure shows that Q(⋅) was generally convex except for the first part of the function where it was concave. 

Consistent with concavity on [0, ], Q(2/5) − Q(1/5) was significantly smaller than Q(1/5) − Q(0) = 1 (p < 

0.01). Consistent with convexity of Q(⋅) on [ ,1], Q((j+1)/5) − Q(j/5) was always significantly larger than 
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Q(j/5) − Q((j−1)/5), j = 2,..,4, (p < 0.01 in all pairwise tests). The exponential coefficient based on the 

median data was 0.45, indicating slight convexity of Q(⋅). The exponent was significantly different from 0, 

the value corresponding to expected utility (p = 0.043).6  

 

Results on subdomains 

 Because the above analysis suggests that the curvature of Q is different on [0, ] than on [ ,1], 

we analyzed these two subdomains separately. On [0, ], 41 subjects were classified as concave and 15 as 

convex (p < 0.01). On [ ,1], 42 subjects were classified as convex and only 9 as concave with the 

remaining 5 subjects classified as mixed. The proportion of convex subjects was significantly higher than 

the proportion of concave subjects (p < 0.01).   

The parametric classifications were similar to the nonparametric classifications. On [ ,1], 44 

subjects were convex, 8 were concave and 4 were linear (p < 0.01) based on the 0 ± 0.05 classification. 

Based on the statistical significance classification 38 subjects were classified as convex and 6 as concave 

(p < 0.01). The median of the individual exponential coefficients was equal to 1.13. On [0, ], the median 

of the individual exponential coefficients was −1.28.7 

On [0, ], the exponential based on the median data was also −1.28. On [ ,1], the exponential 

estimate based on the median data was 1.01, which was significantly different from 0 and indicated more 

pronounced convexity on [ ,1] than on [0,1]. 

  

Results on error propagation 

Tables 2 and 3 show the effect of error propagation on the results. The Tables display the effects 

of the homoskedastic error specification on the elicited values of u(⋅) and Q(⋅). The results under the 

heteroskedastic error specification were similar and can be found in the electronic companion.  

The effect of error propagation was small. Remember that we ran 1000 simulations to analyze the 

impact of error propagation. For each simulation we computed the medians of the individual values of 

                                                 
6 When the 16 most risk-seeking subjects were excluded the exponent based on the median data did not differ 
significantly from 0, however (p = 0.716).  
7 The classification of subjects was the same as the nonparametric classification because we computed rather than 
estimated the power coefficient on [0, ]. 
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u(xj) and Q(j/5), j=1,…,5.  Tables 2 and 3 show the medians of these 1000 medians (second column), their 

standard deviations (third column), and their interquartile ranges (fourth column). The tables show that 

introducing errors does not lead to large variation in the elicited values of u(xj) and Q(j/5), j=1,…,5. Even 

though the standard deviations increased over the elicitation of u(⋅) they remained modest compared to the 

initial standard deviation of the error term of 0.05. This was also reflected in the interquartile ranges, 

which were small and always less than 0.05. For Q(⋅), the standard deviations and the interquartile ranges 

were somewhat larger but they remained comparable to the initially selected standard deviation of 0.05, 

suggesting that error propagation was no major problem in the elicitation of Q(⋅) either. 

 
Table 2: Impact of error propagation on u(⋅) 

 Median Standard deviation Interquartile range 

u(x1) 0.200 0.008 0.194-0.205 

u(x2) 0.400 0.012 0.392-0.409 

u(x3) 0.600 0.014 0.589-0.610 

u(x4) 0.800 0.016 0.788-0.810 

u(x5) 0.999 0.018 0.986-1.012 

 

 To illustrate the modest impact of error propagation on the measurement of Q(⋅) we re-estimated 

the optimal exponential coefficients for Q(⋅) by combining the 25% interquartile ranges of u(x1), u(x2), and 

u(x3) with the 75% interquartile ranges of Q(u(x1)), Q(u(x2)), and Q(u(x3) and the 75% interquartile ranges 

of u(x4) and u(x5) with the 25% interquartile ranges of Q(u(x4)) and Q(u(x5).8  This “bad case scenario” 

will make the elicited shape of Q(⋅) more concave. As a result, the estimated exponential coefficients fell 

slightly from 0.45 to 0.29 on [0,1] and from 1.01 to 0.89 on [ ,1]. On [0,1] the exponential coefficient 

was no longer significantly different from 0 (p = 0.170). 

  

                                                 
8 That is we based the estimations on (0.194,1), (0.392,1.561), (0.589,2.282), (0.810,3.118), and (1.012,4.287). 
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Table 3: Impact of error propagation on Q(⋅) 

 Median Standard deviation Interquartile range 

Q(2/5) 1.547 0.022 1.532-1.561 

Q(3/5) 2.257 0.036 2.236-2.282 

Q(4/5) 3.159 0.060 3.118-3.197 

Q(1) 4.343 0.085 4.287-4.398 

 

 

6. Predictions and Implications 

 In this Section we will elaborate on some predictions and implications of our findings. First we 

will show that our findings predict a well-known violation of expected utility, the common consequence 

effect. Kahneman and Tversky (1979) observed the following preferences. In a comparison between 

prospect A giving 2400 Israeli pounds for sure and prospect B giving 2500 Israeli pounds with probability 

0.33, 2400 Israeli pounds with probability 0.66 and nothing with probability 0.01, 82% of their subjects 

preferred A. In a comparison between prospect C giving 2400 Israeli pounds with probability 0.34 and 

nothing otherwise and prospect D giving 2500 Israeli pounds with probability 0.33 and nothing otherwise, 

83% of their subjects preferred D. It is well-know that these preferences violate expected utility. When we 

substituted Euros for pounds9, our estimates implied that 54% of our subjects preferred A to B and 64% 

preferred D to C.10 Hence, our estimates predict the common consequence effect. That we observe the 

common consequence effect to a lesser degree than Kahneman and Tversky should not come as a surprise. 

In the elicitation of u(⋅) and Q(⋅) we used only questions in which both prospects are risky. It is well-

known that deviations from expected utility are less pronounced when both prospects are risky (Starmer 

1992) than when one of the prospects is riskless as in the comparison between prospects A and B. 

                                                 
9 This seems reasonable as 2500 Israeli pounds was close to a family’s monthly income at the time of Kahneman and 
Tversky’s study and so was 2500 Euros at the time of our study. 
10 For some subjects we had to extrapolate outside the domain within which we had elicited u(⋅). We selected these 
pairs of prospects because we wanted to check whether we could predict preferences that had been observed in the 
literature and for these pairs the need for extrapolation was modest compared with other pairs that have been used in 
the literature. 
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 A distinguishing feature of regret theory is that it allows for intransitive preferences. We show 

next that our estimates are consistent with intransitive preference cycles. Consider our median data, which 

can be interpreted as representing the representative subject from this study, and the following three 

prospects with ε > 0: 

 

Probability 
Act 

10% 6% 10% 6% 68% 

A 810 810 200 200 200 

B 610 610 610 200 200 

C 610 200 610 − ε 610 200 

 

For our median data, we have A ê B and, provided that ε is small, C ê A.11 Obviously, B ê C and, hence, 

we obtain a preference cycle. This preference cycle is similar to the one observed by Starmer (1999) and 

cannot be explained by most of the other nonexpected utility models, including new prospect theory 

(Tverksy and Kahneman (1992). The only theory that can also explain this cycle is original prospect 

theory (Kahneman and Tversky (1979). 

 In our study convexity of Q(⋅) leads to less risk averse behavior. To see this, consider the 

elicitation of Q(⋅). There we determined the probability pj+1 for which subjects were indifferent between 

(€200, pj+1, €xj) and (€xj+1, pj+1, €200). By stochastic dominance the indifference probability must be less 

than ½ and the closer it is to ½, the more risk averse is a subject. Let p *
j+1 denote the probability 

corresponding to linear Q, i.e. expected utility. To have convex Q(⋅) the indifference probability must be 

less than p *
j+1. Consequently, convex Q(⋅) entails a shift of the indifference probability away from ½ and, 

hence, less risk aversion. That the presence of regret leads to less risk averse behavior was also observed 

by Larrick and Boles (1995) in an experimental study on negotiation. Interestingly, Larrick and Boles 

(1995) concluded that the presence of regret might improve decision making in organizations because 

                                                 
11 For our median data, u(810) − u(610) = 1/5, u(610) − u(200) = 2/5, Q(3/5) = 2.25, Q(2/5) = 1.53, and Q(1/5) = 1. 
We obtain that 0.16*Q(u(810) − u(610)) − 0.10*Q(u(610) − u(200)) = 0.07 > 0, and, thus, A ê B. If ε = 0, 
0.10*Q(u(810) − u(610)) + 0.06*Q(u(810) − u(200)) − 0.16*Q(u(610) − u(200)) = −0.01 and, therefore, Cê A. If ε is 
sufficiently small then Cê A will still hold. 
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organizational researchers typically find that organizations are too risk averse and recommend that they 

encourage risk neutral attitudes. 

 Let us finally turn to the relevance of our findings for field data. A well known phenomenon in 

finance is that investors appear reluctant to realize losses and eager to realize gains. This disposition 

effect, as it is called, has been observed for stocks (Grinblatt and Keloharju 2001), the exercise of options 

(Heath et al. 1999), and the sale of residential housing (Genesove and Mayer 2001) and cannot be 

explained by portfolio rebalancing and transaction costs (Odean 1998). Much of the literature has 

suggested that the disposition effect can be explained by loss aversion, but Hens and Vlcek (2006) and 

Barberis and Xiong (2006) have recently shown that loss aversion mostly does not predict the disposition 

effect. Muermann and Volkman (2007) have shown that regret theory can explain the disposition effect 

provided that Q(⋅) is convex. Our findings of predominantly convex Q(⋅) provide empirical support for 

their theoretical analysis and suggest that the disposition effect may indeed be caused by regret. 

                                                                                                                                                                                                  

7. Discussion 

 Our findings on utility were in line with other studies that used the tradeoff method in spite of the 

differences in experimental stimuli. This lends support to the robustness of utility measurements by the 

tradeoff method. Most subjects had concave utility. At the aggregate level utility was, however, close to 

linear. A possible heuristic that subjects could have applied in the elicitation of u(⋅) by the tradeoff method 

would be to select a fixed difference between xj and xj+1 and to choose option A if the difference was less 

than this value and B if it exceeded this value. Applying this heuristic consistently throughout the 

elicitation would result in linearity of u(⋅). There was little indication that subjects applied this heuristic: 

only two subjects displayed constant differences between successive elements of the standard sequence. 

The heuristic did not show up in the classification of the individual subjects either: even allowing for 

response error, few subjects were classified as having linear utility. It could of course be that subjects did 

not base their answers solely on this heuristic but that it nevertheless biased their responses in the direction 

of linearity of u(⋅). Abdellaoui et al. (forthcoming-a) compared the utilities elicited by tradeoff method 
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with those of other elicitation methods, which are less vulnerable to this heuristic, and found no significant 

differences.  

 In keeping with the predictions of regret theory, Q(⋅) was found to be convex on [ ,1]. On [0, ] 

Q(⋅) was concave. One explanation for the initial concavity of Q(⋅) is that regret aversion is not a universal 

phenomenon and that for small money amounts people do not feel regret (remember that the elicitation of 

Q(⋅) on [0, ] involved the lowest money amounts). Regret is an emotion, which may only be triggered if 

the amounts at stake are sufficiently important. That previous studies found regret aversion for small 

money amounts does not challenge the above conjecture as the results from these studies were confounded 

by event-splitting effects. 

 There was little evidence in the data that the initial concavity of Q(⋅) was caused by systematic 

biases in the elicited values of the elements of the standard sequence x1,…,x5. If x1 were overstated 

relative to x2 then this could explain the initial concavity of Q(⋅). For 24 subjects x1 − 200 exceeded x2 − x1 

and for 21 subjects x2 − x1 exceeded x1 − 200. The proportions are not significantly different (p = 0.766). 

Of course, the modal preference of concave u(⋅) would imply that more subjects had x2 − x1 larger than x1 

− 200. The degree of concavity of u(⋅) was, however, modest in our study and, hence, we do not believe 

that an overstatement of x1 relative to x2 is the main reason for the initial concavity of Q(⋅). 

A more plausible explanation for the initial concavity of Q(⋅) might be that other factors besides 

regret affected subjects’ choices and that these factors tended to bias Q(⋅) downwards on [ ,1]. Such a 

bias would exist if the elicited indifference probability pj+1, j = 1,…,4, were too high. Recall that we 

elicited Q(⋅) through a series of choices between (€200, pj+1; €xj) and (€xj+1, pj+1; €200), j = 1,…,4. A 

plausible strategy to facilitate these choices was to cancel the common outcome €200, consistent with 

Kahneman and Tversky’s (1979) isolation effect, and to reframe the decision problem as a choice between 

€xj+1 with probability pj+1 and €xj with probability 1−pj+1. Subjects could then have anchored on pj+1 = 0.50 

and subsequently have adjusted pj+1 downwards to account for the fact that xj+1 exceeded xj. Psychological 

evidence indicates that such an anchoring and adjustment strategy leads to insufficient adjustment 
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(Hershey and Schoemaker 1985, Johnson and Schkade 1989), which in our case would lead to too high a 

value of pj+1 and, consequently, to too low a value of Q(
j+1
5  ).12 

 Our study used forced choices: subjects always had to choose one of the options and indifference 

was not allowed. This was done to stimulate subjects to think hard about the choices and to avoid “lazy 

responses”: subjects might just state indifference because it is an easy option. The problem with the use of 

forced choices is that if subjects are truly indifferent they still have to choose one of the options. If they 

break ties in a random manner then there is no problem. If they use a specific rule to break ties, however, 

then the use of forced choices may have biased the results. It turned out that selecting a specific rule for 

breaking ties had no effect on u(⋅). For the elicitation of Q(⋅), however, it might have had an effect. 

Breaking ties by consistently choosing option A (B) somewhat biased the elicitation of Q(⋅) in the 

direction of concavity (convexity). If subjects applied a consistent rule to break ties, then it is more 

plausible that they would do so by choosing A because A was the less risky option and most subjects were 

risk averse. Hence, we are inclined to believe that if the use of forced choices has biased the results then 

this bias is in the direction of concavity of Q(⋅) and our finding of predominantly convex Q(⋅) cannot be 

attributed to the use of forced choices. 

 Regret theory assumes that people evaluate probabilities in a linear manner. Many studies have 

shown, however, that people are not well able to handle probabilities and evaluate them in a nonlinear 

manner. These studies have also shown that there is little probability transformation for the median 

probabilities that we elicited, which were all between 0.40 and 0.43. Hence, it seems implausible that 

probability transformation alone can explain the observed shape of Q(⋅). Indeed, prospect theory was not 

entirely consistent with our data either. Because our method for eliciting utility is also valid under 

prospect theory, the median indifference (x2, 0.40, €200) ~ (€200, 0.40, x1), for instance, implied under 

prospect theory that w(0.60) was twice as large as w(0.40). Previous evidence has indicated, however, that 

w(0.60) is only about 1.3 times as large as w(0.40) (Tversky and Kahneman 1992, Gonzalez and Wu 

1999, Abdellaoui 2000, Bleichrodt and Pinto 2000). 

                                                 
12 This evidence suggests that anchoring and insufficient adjustment affects matching tasks in particular. Delquié 
1997 showed, however, that choice-based elicitation can also be vulnerable to some of the biases that affect 
matching. 
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 A troubling finding for regret theory is that one of the consistency tests, the test for Q(2/5), led to 

significantly different results. Recall that Q(2/5) was elicited in the consistency test by determining 

indifference between (€x3, pc1; €x2) and (€x4, pc1; €200). We observed that the indifference value of pc1 

was significantly higher than the value that we would expect based on the elicitation of Q(⋅). One 

explanation for this discrepancy might be reference-dependence. Consider our median subject for whom 

pc1 was determined through choices between (€810, pc1; €610) and (€1000, pc1; €200). Because the first 

option gives the certainty of receiving at least €610, subjects may have taken €610 as their reference point 

and have evaluated the other amounts as gains and losses relative to this reference point. Loss aversion can 

then explain the high value of pc1 that we observed. Such an explanation of our data would be in line with 

prospect theory. Taken together, our findings seem to confirm Loomes and Sugden´s (1982) conclusion 

that “we do not believe that […] utility and regret are the only factors that influence behaviour under 

uncertainty, but just that these factors seem particularly significant.” (p. 819). 

 

8. Conclusion 

 This paper is the first to make regret theory, a popular and influential theory of decision under 

uncertainty that was originally proposed by Bell (1982) and Loomes and Sugden (1982), quantitatively 

observable. We have shown that such a quantitative measurement is feasible and can be performed by 

familiar measurement tools, which will hopefully stimulate future applications of regret theory in 

economics and decision analysis. Our method controlled for event-splitting effects, which have been 

found to distort earlier tests of regret theory. Our findings were to a large extent consistent with the 

predictions of regret theory although some deviations were observed. These deviations underline that 

although utility and regret seem to be important in decision under uncertainty, other factors are relevant as 

well. In the context of our experiment, we conjecture that anchoring and insufficient adjustment and 

reference-dependence may be two such factors. 
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Appendix A: Method for Eliciting the Indifference Values 

In the measurement of u(⋅), xj+1 was elicited through choices between A = (€xj, ⅓; €100) and B = 

(€xj+1, ⅓; €40), j = 0,…,4. The stimulus xj+1 was initially set so that A and B had equal expected value, i.e. 

xj+1 = xj + 120. There were two possible scenarios: 

 

(i) If A was chosen we added 100 to xj+1 until B was chosen. We then subtracted 40 from xj+1. If A was 

chosen 20 was added. If B was chosen we subtracted 20 until A was chosen. The program ended in case A 

was still chosen when xj+1 = xj + 820. 

 

(ii) If B was chosen we subtracted 100 from xj+1. If B was still chosen we subtracted 20, so that A 

dominated B. If subjects still chose B a warning appeared: “You chose B even though A yields at least as 

good an outcome as B under both events. Are you sure you prefer B?” If the subject answered “yes”, the 

experiment ended. If the subject answered “no”, the indifference value was set equal to xj + 10. If A was 

chosen 40 was added. If subsequently B was chosen 20 was subtracted. If subsequently A was chosen 20 

was added until B was chosen. 

 

The recorded indifference value was the midpoint between the lowest value of xj+1 for which B 

was chosen and the highest value of xj+1 for which A was chosen. Table A1 gives an example of the 

procedure for the elicitation of x1 through comparisons between A = (€200, ⅓; €100) and B = (€x1, ⅓; 

€40). In this example, the recorded indifference value was the midpoint of 380 and 360, that is, 370. 

 

Table A1: Example of the elicitation of x1 

Iteration x1 Choice 
1 320 A 
2 420 B 
3 380 B 
4 360 A 

 

The procedure in the second stage was largely similar. We elicited the value of pj+1 for which 

indifference held between A = (€200, pj+1; €xj) and B = (€xj+1, pj+1; €200), j = 1,…,4. We started by 
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selecting pj+1 so that A and B had equal expected value. Each time A was chosen we selected the next 

value of pj+1 as the midpoint between the value of pj+1 in the last iteration and the smallest probability used 

in the previous iterations that exceeded the probability in the last iteration or, if such a probability did not 

exist, as the midpoint between the value of pj+1 in the last iteration and 1.  Each time B was chosen we 

selected the next value of pj+1 as the midpoint between the value of pj+1 in the last iteration and the largest 

probability used in the previous iterations that was smaller than the probability in the last iteration or, if 

such a probability did not exist, as the midpoint between the value of pj+1 in the last iteration and 0. If the 

probability was not a multiple of 0.01 we rounded it upwards to the next multiple of 0.01. Table A2 

illustrates the procedure for xj+1 = €650 and xj = €390. The recorded indifference value is 0.22 in the 

example in the table. 

 

Table A2: Example of the elicitation of pj+1 when xj+1 = 650 and xj = 390 

Iteration pj+1 Choice 
1 0.30 B 
2 0.15 A 
3 0.23 B 
4 0.19 A 
5 0.21 A 

 

 

Appendix B: Overview of the Individual Results 

 
 

x1 x2 x3 x4 x5 p1 p2 p3 p4 p5 
Pow. coeff. 

for u(.) 
Exp. coeff. 

for Q 
1 490 620 730 860 990 0.50 0.47 0.46 0.47 0.48 1.729 -3.314 
2 450 840 1150 1480 1630 0.50 0.40 0.42 0.42 0.44 1.238 -0.064 
3 350 560 750 900 1170 0.50 0.15 0.22 0.32 0.44 0.746 1.795 
4 290 360 470 540 630 0.50 0.42 0.39 0.41 0.41 0.997 0.806 
5 590 800 1010 1300 1490 0.50 0.49 0.49 0.48 0.48 1.346 -5.959 
6 630 940 1470 1940 2490 0.50 0.43 0.43 0.41 0.42 0.799 0.345 
7 650 900 1010 1180 1370 0.50 0.29 0.22 0.42 0.37 1.852 2.114 
8 390 460 590 720 850 0.50 0.41 0.39 0.40 0.43 1.165 0.567 
9 390 580 670 780 970 0.50 0.40 0.47 0.47 0.40 1.204 -0.421 
10 410 580 710 1000 1190 0.50 0.42 0.40 0.41 0.47 0.855 -0.436 
11 670 980 1690 2200 2990 0.50 0.37 0.31 0.21 0.20 0.685 6.829 
12 370 680 1010 1320 1530 0.50 0.21 0.09 0.23 0.14 0.888 8.870 
13 530 620 730 860 990 0.50 0.38 0.43 0.47 0.45 1.821 -1.154 
14 390 400 790 900 1110 0.50 0.51 0.38 0.48 0.50 0.731 -2.953 
15 670 940 1550 2140 2650 0.50 0.49 0.50 0.47 0.50 0.796 -8.359 
16 230 300 490 560 630 0.50 0.31 0.39 0.42 0.40 0.466 1.022 
17 390 600 850 1100 1390 0.50 0.47 0.44 0.44 0.45 0.718 -1.063 
18 490 1060 1490 1600 1770 0.50 0.25 0.19 0.47 0.23 1.884 4.637 
19 530 860 990 1180 1330 0.50 0.48 0.48 0.47 0.45 1.769 -2.671 
20 210 840 1270 1640 2370 0.50 0.01 0.39 0.45 0.42 0.524 0.582 
21 550 800 1010 1520 1830 0.50 0.43 0.37 0.40 0.42 0.837 0.826 
22 490 700 1010 1340 1450 0.50 0.43 0.44 0.41 0.47 1.19 -0.819 
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23 490 600 810 920 1190 0.50 0.48 0.50 0.48 0.41 1.081 -1.874 
24 330 460 590 720 850 0.50 0.36 0.42 0.45 0.46 1.000 -0.861 
25 290 380 510 640 770 0.50 0.32 0.39 0.43 0.43 0.574 0.339 
26 310 500 730 900 1030 0.50 0.49 0.35 0.32 0.37 0.939 2.476 
27 570 900 1230 1600 1890 0.50 0.38 0.47 0.44 0.47 1.082 -1.549 
28 350 500 630 800 1110 0.50 0.40 0.40 0.36 0.34 0.478 2.600 
29 430 500 590 660 750 0.50 0.30 0.43 0.48 0.34 2.091 1.285 
30 310 680 1050 1580 2210 0.50 0.38 0.38 0.48 0.51 0.305 -2.327 
31 370 540 1170 1580 1990 0.50 0.30 0.39 0.40 0.46 0.420 0.178 
32 310 480 910 1280 1530 0.50 0.44 0.44 0.42 0.42 0.39 0.101 
33 330 420 550 680 810 0.50 0.39 0.29 0.44 0.46 0.868 0.107 
34 390 580 790 1000 1310 0.50 0.40 0.45 0.44 0.41 0.685 0.039 
35 210 300 430 500 510 0.50 0.05 0.24 0.40 0.51 1.195 0.123 
36 390 500 650 860 1030 0.50 0.41 0.39 0.43 0.43 0.869 0.186 
37 390 700 990 1360 1790 0.50 0.28 0.41 0.33 0.41 0.579 1.69 
38 390 720 950 1100 1270 0.50 0.30 0.38 0.37 0.37 1.390 2.100 
39 490 620 810 940 1070 0.50 0.47 0.43 0.44 0.45 1.635 -0.943 
40 370 760 950 1060 1170 0.50 0.36 0.21 0.44 0.44 1.978 0.802 
41 570 740 1130 1300 1790 0.50 0.43 0.43 0.45 0.43 0.834 -0.485 
42 610 780 970 1180 1490 0.50 0.47 0.49 0.50 0.45 1.190 -4.292 
43 310 400 630 1000 1530 0.50 0.31 0.35 0.38 0.40 -0.124 1.583 
44 290 460 690 900 1070 0.50 0.48 0.42 0.40 0.47 0.589 -0.634 
45 290 380 490 660 830 0.50 0.44 0.40 0.41 0.39 0.299 1.100 
46 430 660 770 940 1250 0.50 0.36 0.44 0.46 0.38 0.893 0.554 
47 490 860 1190 1560 1830 0.50 0.38 0.42 0.41 0.43 1.019 0.315 
48 330 460 590 720 850 0.50 0.36 0.39 0.42 0.46 1.000 -0.172 
49 450 560 810 1240 1530 0.50 0.47 0.43 0.43 0.41 0.571 0.162 
50 510 680 830 1000 1170 0.50 0.41 0.42 0.43 0.44 1.471 -0.237 
51 370 620 890 1420 1850 0.50 0.32 0.40 0.33 0.40 0.373 1.861 
52 290 440 550 700 850 0.50 0.35 0.43 0.43 0.43 0.676 0.034 
53 410 640 810 940 1070 0.50 0.31 0.31 0.31 0.22 1.552 5.82 
54 350 520 670 840 1010 0.50 0.39 0.40 0.41 0.41 0.921 0.799 
55 370 620 870 1080 1310 0.50 0.36 0.41 0.42 0.43 0.898 0.284 
56 290 380 530 660 790 0.50 0.40 0.38 0.36 0.35 0.584 2.477 
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