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Abstract

Information consumers in online social networks receiferimation from multiple information providers, which
results in confusion. The amount of confusion depends oeetlmain factors{a) attributes of the sourcgp)
characteristics of the consumer afg trust relation between the information provider and thesconer. While
information confusion has been qualitatively observeddnia networks, no quantitative model or analysis was
presented. We present the first quantitative model to asatyinfusion in the presence of multiple information
providers. We address the following fundamental issugsWat is a good model for confusion? (ii) How does
the quality of information degrade due to confusion? (iiih&V are good strategies for the information providers
to control the power or the intensity with which the informoat is transmitted? The scenario is modeled as a
non-cooperative game with pricing, whose Nash equilibripmovides the solution to the questions posed above.
We use data from Twitter (e.g., on full body scan in airpodsy diabetes outreach networks to illustrate the
analysis. We use the solution of the non-cooperative gansudy the confusion levels of consumers, in terms
of the aggressiveness and passiveness of the informatomidprs. Results indicate that confusion levels are high
in networks in networks in which all information providerseaequally trusted. In networks where information
providers are unequally trusted, the confusion levels asderate.

Index Terms- Social networks, information, confusion, aggressionspasess.
. INTRODUCTION

Users using the Internet, or social networks, e.g., Twifidr or diabetes outreach networks [2], etc, seek
information from specific information providers (e.g., bgging a question on the wall of a friend in Facebook
or by searching on Google or from other friends). Howevearafrom the sought primary information provider,
the consumer also receives supplementary information frerother direct or indirect information providers (e.g.,
other friends in Facebook who may respond to the same quetiyeowall or multiple links resulting due to a web
search or information from multiple friends). The suppletagey information can cause confusion to the consumer.
Consider the set of messages in the experiment conductedubyABams [3]. When a consumer sought information

about a particular restaurant, he/she received the fatigwnessages.

1) You should come to this restaurant, it is delicibus
2) The restaurant is average, service was slow.

3) Paul visits this restaurant three times a week.
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The consumer may now be confused about the quality of theuesit. We define information confusion as
the confusion experienced by the consumers due to infoomaéceived from multiple information providers. We
present a quantitative analysis of presenting informatitih appropriate intensities to deal with confusion. Weoals
present a quantitative study of the confusion levels of soress in a network, in terms of the average aggression
levels and the average levels of passiveness of differéotniration providers.

As another example to illustrate the confusion, we coli@dteeets from Twitter users in different regions on
full body scan in airports, using the architecture we depetbin [4]. We counted the number of tweets in Twitter
that were (a) supportive to full body scan, (b) opposed tbtfatly scan and (c) neutral to full body scan using the
sentiment analysis described in [5], [6]. A spatial snapstidhe data is tabulated in Table I. According to Table
I, if a user sends a tweet to a friend who lives in the North Anger region to obtain information on full body
scan, he/she is likely to obtain information which is supiwerof full body scan. However, another user who lives
in the Asian region may provide negative information on fadidy scan. This results in confusion to the consumer
who sought information. Another example is that the web-git [7] claims that social networking sites are the
most popular influences for users where as [8] claims thatg@ois the most trusted site for users. Similarly, in
the field of cellular telecommunications, some studies. (§94) suggest that there are no dangers of cancer due to
the usage of cellular phones while other studies (e.g.) [d0§gest otherwise.

In general, a scenario with multiple providers of inforratican be depicted as shown in Fid, Where a
consumer seeks information from a primary information pewbut receives information not only from the primary
information provider but also fromd/ — 1 other information providers. In the scenario in Fig. 1, theoimation
from other information providers is treated as confusioiga because they can add to the confusion levels of the
information consumer. The quality of information a consumigtains useful information is then degraded because
of the confusion. It then becomes essential to study theulrsefs of the information received by consumers when
they also receive supplementary information from otheorimiation providers.

The concept of “noise” due to multiple providers of inforfioat has been qualitatively listed , e.g., [11], [12].
Kumar et al [11] acknowledged the high amount of noise present in infdiom obtained in social networks

and used graph theoretic models to extract authentic websp&json [12] suggested qualitative techniques, e.g.,

1Although Figs. 1 and 2, representsingle-hopbetween the information provider and the information comsy the actual number of
hops could be more than one. The figures only indicate therirdtion provider and the final destination and not the nunadferops in
between them.



clarity of goals, to deal with the noise. A survey by Brand R [13] mentions that only 10% of the information
obtained is really useful and the rest is noise. While therditure has discussed the noise in social networks and
its correlation to individual performance based on statste.g., [14]), no quantitative means of computing or
mitigating the noise has been studied. Game theoretic appes have been used to study other issues in social
networks, e.g., contribution strategy of players to penfaasks [15].

In this paper, we present a quantitative analysis of thevaelee of information in the presence of confusion
caused due to multiple providers of information. We presetarm,Information-to-Confusion Noise Ratio (ICNR)
that quantitatively represents the quality of the infolimrabbtained by the consumers. The ICNR takes into account,
the trust placed by the consumers on the different providénaformation, the ability of information providers
to present information with different intensities, thecesces available to the information providers to influence
the consumers and the natural ability the consumers haveotegsing information. We determine strategies for
information providers to control the powers or intensitiggh which they transmit information, which results
in maximum relevance of information for all the consumerbeToptimal strategies are obtained as the Nash
equilibrium solution of a non-cooperative game. We use ffata Twitter (e.g., on full body scan in airports) and
diabetes outreach networks to illustrate the analysisulemdicate that information providers tend to transmit
with maximum intensities (i.e., be too aggressive) or witimimum intensities (i.e., be too passive) in networks in
which all information providers are equally trusted. Inwetks where information providers are unequally trusted,
the aggression levels are moderdie the best of our knowledge, this is the first quantitativalysis of information
confusion in social networks.

The rest of the paper is organized as follows. Section Il gtssthe basic formulation and mathematical
representation of the information to confusion ratio (IQNRection 1I-A) and the definition of the problem solved in
this paper (Section 1I-B). The non-cooperative game witbipg and the discussion on the Nash equilibrium using
the M — matrix based approach to the power control problem are pteden Section Ill. Section IV presents some
applications of the proposed research in this paper. Nwaleresults are presented in Section V and conclusions

are drawn in Section VI.



[I. MATHEMATICAL FORMULATION
A. Information to Confusion Noise Ratio (ICNR)

Consider a system witi/ information information providers andy’ intended information consumers as shown
in Fig. 2 (We first consided/ = N and later, we also specify how to address the case wiiea N). In Fig. 2,
Sourcesl, 2, ---, M could represent information providers such as friends iceBaok, friends in Orkut, links to
other web-sites in Twitter/Facebook/Orkut, etc., thatve information on a topic and the information consumers
1,2, ---, N represent people who seek the information. Tfieinformation provider transmits information with a

power or intensity,P;. Intuitively, P; could indicate (but not limited to) one or more of the follogi

« The authenticity of the information (e.g., by referring alMkeown web page or a certified document).

« The aggression (i.e., presenting information in an impezamanner by exploiting any hierarchy like the
personal relation (e.g., parental or friendship) or a psifenal relation (e.g., supervisor) with the end consumer.
Aggression could also include arguing in an intense manner.

« Confidence (e.g., by leveraging past successes or by lengrte knowledge about the consumer posing the
question so that the solution can be tailored accordingly).

« Propaganda (e.g., if the information is political and thiimation providers are political parties).

« Advertisement (e.g., if the information sought is about enpwercially available product or an opportunity).

« Intentional information manipulation by the informationopiders.

The it" information consumer not only receives information frone if* information source, but also receives
confusing “noise” from the other information providers.erbauses for confusion depend on

« the intensity or the power of the information obtained frothew information providers

« the trust placed by the information consumer on the variatmiination providers

« the natural dilemma or confusion a consumer has in procg$sfarmation.

The ' information consumer places a trugt; (0 < hj; < 1) on thejth information provider. The trust
represents the quality of relationship between jHe information provider and theé*" information consumer,
which, in turn, could be due to friendliness or fear of auityoor truthiness of the information provider. Trust
could be a binary variable, i.e., taking values only{in1} , e.g., [16], or could take real values, e.g., [17], or can
take real values if0, 1] as we consider in this paper. Additional trust models canooed in [18]. A trust factor,

hj; = 0 represents no trust and a trust factoy; = 1 represents 100% trust. The effective information recelwed



the i'" consumer from thg'" information provider is thenP;h;;. Thei'* information consumer therefore receives
P;h;; amount of useful information (i.e., from the main infornmatiprovider).

Let vj; (0 <wvj;; < 1) represent the amount of contradiction between the infaomdtom information provider
J and information provider. A value of v; = 0 represents no contradiction whilg; = 1 represents 100%
contradiction. The effective information received by #Heinformation consumer from thg” information provider
for j # i is the confusion perceived by th& consumer due to thg!" information provider. The total confusion
at thes*" information consumer due to information from all infornmati providers,j # i) is then”, ., Pihjivji.

The factory;; is included because the information from information pdevij is a cause for confusion to th&
information consumer when the information is contradigtr that received from information provider

The contradiction between information providers usingdaéa in Table | is measured as described below. The
number of neutral tweets do not bring about any contradicéind hence, can be discarded. Thus, the percentage
of tweets supporting full body scan in USA is 967/(967+7%8H=22%. The corresponding numbers for Europe
and Canada are 69/(69+59)=53.91% and 14/(14+99)=42.4%ectively. If an information consumer then obtains
information from USA on body scan and the same consumeneg@iformation from Europe then the contradiction
factor, v;;, is the probability of obtaining opposite opinions, whigi5622(1 — 0.5391) + 0.5391(1 — 0.5622) =
0.4951. Similarly, the contradiction factor between USA and Can&d0.5094. Consider two region®; and R,
such that all tweets from regioR; supported full body scan and all tweets from regi®n were opposed to full
body scan. Then the contradiction factor between regionsind R, is 1.

Let W; represent the amount of auxiliary resourcesithénformation provider can expend (in the form of efforts
to convince the information consumer) which helps tffeinformation consumer mitigate some of the confusion.
The effort put in by the information provider could be in tharh of providing reference material like books, or
exploiting the knowledge about the past of the informatiomsumer to remind the consumer. Alternatively, the
auxiliary resources can represent the ability of the infsron provider to tailor its information to suit the needs
of the information consumer. Larger amount of auxiliaryorgses represents a better ability of the consumer to
deal with the confusion.

In order to understand the difference between the teftnand W, consider the experiment by P. Adams in [3]
mentioned in Section I. The statemenYotl must visit this restaurafitis imperative and if posted by the business

owner, is representative of the intensity, However, the statementPaul visits this restaurant three times a week



is a referral abouainother customeand is like the auxiliary informationy/;. Other parameters that can incredse

in this case include link to the restaurant’s web page owpést of the items in the menu, any certificates about the

healthy practices of the hotel like the New York city restmirgrades [19] or the price advantages for customers.
The actual value of’; can be a weighted combination of the number of links to thelhtite number of pictures

of the items in the menu, the number of discount offers angcons. For instance, consider three restaurarts,

R2 and R3. Let the parameters that could control the intensity foséheestaurants be according to Table Il. The

normalized intensity (NI) corresponding to the number aké for R1 can be computed a;ﬁ = 0.2. The
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NI corresponding to the discounts Rl is 5555

= 0.33. In a similar way, the NI corresponding to all the
parameters are as listed in Table Ill. Let the weightagesrgio the number of links, health rating, number of
pictures and discounts b, ¢2, ¢3 and ¢4, respectively, such that; + ¢1 + ¢3 + ¢4 = 1. Then, the normalized
intensity for R1 can be obtained a&2¢; + 0.33¢2 + 0.5¢3 + 0.33¢4. Similarly, the normalized intensity faR2 is
obtained a$.5¢1 +0.25¢2 +0.33¢3 +0.42¢,4 and that forR3 can be obtained a%3¢1 +0.42¢5 +0.17¢3 + 0.25¢4.

W; can be computed by obtaining the ratings of the consumerdertraining resources. Alternatively, for
information providers which are reputed journdl®; can be measured using the impact factor of the journal. As
an example, consider the study on diabetes outreach netweorkducted by Corteville and Sun [2]. The authors
obtained ratings provided by users on various informatimviders that help them obtain awareness on diabetes,
on a scale of 1-7. Some of the results obtained in [2] aredigtelable IV. The ratings provide a means to compute
W; for various information providers.

In order to study the effect dil’; in mitigating confusion, we study variation of the infornweat-to-confusion-
noise ratio (ICNR) with respect to the amount of auxiliargaerces. The detailed expression for the ICNR and
its explanation is provided in (1). Consider an example obeiad network with A/ = 10 information providers
and information consumers. For simplicity we maké = W, V . If W;'s are unequal, then it requires an
(M + 1)—dimensional plot, which would be difficult to interpret. Werapute the ICNRx given by (1), for a
particular consumer in this system. We generate uniforndaamvariables in(0,1) to obtaink;; andv;; in the
expression in (1). We compute the ICNR,for W; = W and P, = 1, V i using the expression in (1) and average
them over 100000 samples. Fig. 3 presents the variationeofGNR, = with respect to the amount of resources,
W. It is observed that the ICNRy, increases withl/. Therefore, increasing the number of auxiliary resources

improves the ICNR. A higher ICNR represents lower confuséwel. It is also observed that the differential increase



is larger for small values dil” and smaller for larger values &F. This indicates that beyond a particular threshold,
increasing the amount of auxiliary resources is not so tfieén improving the ICNR. Intuitively, this is because,
the learning capacity of an information consumer is limitedi beyond a particular threshold, more training is not
so effective.

Let r; denote the rate at which th&" information consumer receives information from tH& information
provider in the absence of confusion. The ratg,can represent the usefulness or relevance of the infaymati
projected by the&*” information provider . Alternatively, the rate could repeat the speed (volume of information
per second) at which thé" information provider updates or refines the informatiorransmits. If the relevance at
which information is sent to the consumey, is already large, then the high relevance can reduce teete#ness
of the auxiliary resources, because the information comessmay tend to lose their focus on the information.

Thus, we define a auxiliary gaid; = oY+, which is a factor by which the confusion levels of the consugan

T

be reduced by education or training. The constants a scaling factor.

Apart from the confusing information that a consumer reegifrom other information providers, each consumer
has a natural level of uncertainty about the received inftion due to an individual's dilemma or understanding
levels in processing the information. Other factors likediae society, etc, can cause some confusion too. This
natural dilemma can be exploited by the other informatioovjaters to add to the confusion of the consumer by
using their auxiliary resources. Let the natural dilemmaanfusion experienced by thi& consumer beV;. Then,
the total confusion level suffered by tli& consumer 172 Pihjivji + N;W;. The effective information received
by thei** consumer isP;h;;, as mentioned earlier.

The difference betweel; andr; is as follows. The relevance;, pertains to how information the information
consumer gets from information provider. The terN}, is the natural distraction and dilemma of the information
consumer. As an example, for a diabetic patientould represent the extent to which a patient understaredsl th
effects of a diet with high sugar content, when advised by @atpwhile N; could represent the natural tendency
or temptation of the patient to have food that is high in sugartent.

For thei*" information consumer, We define a term calledormation-to-Confusion-Noise Ratio (ICNRy;,
which quantifies the quality of the information absorbed hyirdormation consumer in the presence of confusion.

The ICNR, z;, obtained by thei’™ consumer who seeks information from th#& information provider can be



written as

PihiiGi
Y jzi Pihjivyi + NiW;’

Ty =

1)

whereG; = oY% represents the auxiliary gain explained earlier. It is ol that the ICNR of thé!” consumer

T

depends on the power or intensity afl the information providers. The ICNR is analogous to the aido-
interference-noise ratio (SINR) in wireless communiaatsystems [20]. Twitalyzer [21] discussed SINR in social
networks based on the ratio between the amount of good iafitom and spams or anecdotes shared with other
consumers [22]. The criterion for computation does not mdue noise due to the presence of other information
providers of useful information.

It is observed that a high ICNKoes not indicate correctness of informatidhonly indicates that the infor-
mation consumer is not confused about the information. hewaedistortion or spread of mis-information can be
incorporated by multiplying the trust term,; in (1) by a fraction3;;, which is 1 if the information is transferred
faithfully without distortion andd < 3;; < 1 if the information is distorted.

Further, theconfusiondiscussed here does not include spam messages. Spam caofpeiated in our model as
follows. Information consumers can use spam detectiomiqales, e.g., [23], [24] to detect spam. Once consumer
i identifies a particular providey, as a spam, then the trust;; placed on that provider is zero, in (1). Therefore,
the information provider does not add to the confusion lefaihe consumer. The “confusion” discussed here is

for the case when the consumer receives authentic but dicttsey information.
B. Problem Definition

The presence of confusion degrades the relevance of therafinn obtained by each information consumer. The
utility, u;, of the information received by th#" consumer which is also the satisfaction level of ttfeinformation
consumer [25], can then be defined as the relevancdegraded by a factor which depends on the ICMR The

effective utility of the informationy;, obtained by the® consumer is
U; = Tiﬂ(xi), (2)

wherer(z;) is an increasing function af; satisfying0 = 7(0) < 7(z;) < 1 = lim,, .o 7(z;). Intuitively, the
expression for; indicates that consumers prefer values of ICNR,that results in larger value of;, i.e., larger
values ofz; according to the Bernoullian utility theory [25]. This alswlicates that information is more effectively

relevant or more satisfying to consumers when the confusigals are relatively lower. The utility; is theeffective



relevance of the information received by e information consumer, from thé&" information providerTherefore,
u; IS a parameter that characterizes the satisfaction levétetransmitting information provider as well as the
information consumer. Therefore, we temy, the utility of thei?* transmit-receive pajrwhich indicates the*"
transmitting information provider and” information consumer.

In order to increase;, it is essential to increase the ICNR;. For increasinge;, the i** information provider
should increase the power or intensify;, However, this increases the confusion at jHeinformation consumer
(j # i), thereby decreasing the ICNR, and hencey;. Therefore, thej” information provider should increase
P; in order to compensate for the loss in ICNR. The increasé’jircauses an increase in the confusion of all
the other information consumers (including consumeiThus, when an information provider increases the power
or intensity with which it transmits the information to arfdrmation consumer, the other information providers
can also increase their respective intensities, addingdaconfusion of the consumer. Therefore, the relevance of
information absorbed by an information consumer can me miaeid by appropriately controlling the power or
intensities ofall the information providers, i.e., by formulating a non-ceogtive game between the information
providers.

Co-operation between information providers can be induideour model, in three ways. One is a constructive
cooperation, where in information providers agree withheather (thus making/;; = 0 in (1)), thus increasing
the ICNR. Another means of cooperation is a malicious caatpey, which, in turn, can be modeled in two ways-
either other information providers all decide to contradie primary information provider (making;; = 1, V
j # i in (1)), thereby reducing the ICNRy;; or when other information providers provide distractingifary
information, i.e, by adding links to a web-page or by sparareby increasingV;, vV j # i, in (1), thus decreasing
the ICNR, z;.

The objective is to develop a non-cooperative game-thigoegtalysis with pricing, to control the power or
intensity of information from different information pralérs in order to provide maximum relevance of information
to all the information consumers in the netwérk is also of interest to determine the confusion levelsimetwork
based on the average aggression level or the average leyelssiveness of all the information providers. The
desired solutions to the objectives listed above, can bairdd from the Nash equilibrium of the non-cooperative

game with pricing. We provide necessary and sufficient dand for the existence of a Nash equilibrium of the

%If a single information provider wishes to maximize the valece of information to its information consumer, all it haglo is to transmit
at its maximum intensity.



proposed non-cooperative game with pricing. The Nash ibguitn solution will also be used to determine the
levels of confusion in the network, based on the averagdd@feaggression of passive behavior of the information
providers. The following section provides the game théor@balysis.

I1l. GAME THEORETICANALYSIS

We now combine the notions of ICNR presented in Sections #r8 that of the utility described in Section II-B
to present a game theoretic analysis to maximize the efeedtility of information,«;, for all the transmit-receive
pairs by controlling the power?; of all the information providers. Since the effective wiliu; depends on the
ICNR of the i*" consumer;;, according to (2), which, in turn, depends on the powerpf all the information
providers, from (1), it is possible to model the assignmérappropriate power (called thRower Control Problem
(PCP) to maximize the effective utility of the information rewed by each of thel/ information consumers,
as a non-cooperative game defined in Appendix A. The set gleaare the set of information providers. The
strategy set is the values of the power3, V i and the utility functions are the values af defined in (2). If
m(x;) IS @ non-negative, non-decreasing concave function; pthenw; in (2) satisfies the properties in (23). An
example is whemr(z;) = 1 — e~ % so thatu; = r; (1 — e~ ). Fig. 4(a) shows the normalized utility function,
as a function ofr;, where the maximum value af; is normalized to 1. It is observed that is a non-decreasing
concave function of;.

Let the vectorp = [Pj],,.,, denote the vector of powers for the PCP. The PCP is a probleabtaining p
that maximizesu;, in (2), V i, which is the Nash equilibrium of the non-cooperative gakive. present a basic
formulation of this problem in Section IlI-A. We then intrade the notion of pricing in Section IlI-B. The game
theoretic formulation is extended to include pricing, inctan 11I-C. Finally, in Section IlI-D, we discuss the
necessary and sufficient conditions for the existence ofNbsh equilibrium to the power control game with
pricing.

A. Basic Game formulation

The Nash equilibrium of PCP game is the solution to the opttidn problem,
maxp u; Vi, 3)
subject to the constraints

0< P < PY, Vi, @)



which follows from the fact that each information provideillvhave a maximum capacity to be confident or
aggressive. Since; in (2) satisfies (23), they are increasing functionszgf and from (1),z; is an increasing
function of P;. Hence,u; is an increasing function af; if all other P;’s are fixed. Hence, the maximum value of
u; OCCUrs\Y ¢ at P; = Péf%x. Therefore, according to Definition A.1 in Section A, the Nasjuilibrium for the PCP

is P, = P,ﬁfgx, Y 4. Intuitively this means that for the PCP, all informatioropiders should transmit with maximum
intensity or power. A large intensity of transmission irat&s large amount of efforts by the information provider
to increase the aggression or confidence levels. This caddltrin high costs for the information providers (in
the form of money or energy or design or infrastructure). ldeo to address this issue, a pricing function can be
used which penalizes transmit-receive pairs with inforamaproviders that unnecessarily transmit informationhwit
larger powers or intensities. The following sub-sectioasgnts a discussion on the pricing that can be posed on

the transmit-receive pairs.
B. Pricing

The price imposed on transmit-receive pairs could be a naopgtrice where the the information provider and
the information consumer are required to pay for the efftaken to increase the intensity. As an example, if the
intensity is increased by giving references to a book, theeprould be the money paid to purchase the book. If
the intensity is increased by advertisements of propagahda the price could be the cost involved in advertising
or the propaganda. Alternatively, the price could be an &mat price, where in, increasing the intensity could
result in weakening the relationship between the inforomafrovider and the information consumer or in terms
of hurting the reputation of the information provider forilg overtly aggressive. However, the intensity of the
it" information provider,P;, should not be the only factor in computing the price for ttetransmit-receive pair,
explained in detail as follows.

When information providers increase the power or intengiihh which they transmit information in order to
meet ICNR requirements, they should be penalized lessarittiarmation providers transmitting at larger powers
despite perceiving a good ICNR at the respective informationsumer. This is because, when the current ICNR
is low, it means that the information consumer experiencest af noise and hence, the information provider is
forced to increase its intensity to maintain acceptable RCMowever, an information provider that transmits at
larger power despite perceiving good ICNR at the respedatifeemation consumer, increases intensity for no valid

reason and also causes noise or confusion to other infa@matnsumers and hence, must be penalized higher.



An alternate means to argue this is to apply the law of dirhinig marginal returns [26] of increasing. In other
words, the pricing function should be a function of the ICNRIaot just the power or intensity of the information.
Let f;(x;) denote the price imposed on th#é transmitter when thé' receiver perceives an ICNR af.. The

“net utility” for the ** transmit-receive pairy;, is then defined as
U = u; — Mi(w;), )

where X is the pricing parameter. The parametercan be interpreted as an index which determines how high
or low the information providers are priced. A higheimplies that the transmit-receive pairs are priced heavily
while a lower)\ indicates lighter pricing. A largek can make the network more passive since information proside
would be averse to being aggressive (i.e., transmit at maxiimtensity), while a smallek encourages information
providers to be more aggressive (by penalizing them lesshfgir aggression), thereby resulting in an aggressive
network. The pricing functionf;(x;) should be an increasing function of because, a consumer with larger ICNR
pay a larger price.

The pricing function,f;(z;) could be a linear function, i.e.,

fz‘(wz') = . (6)

Alternatively, the pricing functionf;(x;), can be a non-linear function af;. Apart from being an increasing
function of z;, fi(x;) is also desired to satisfy; (z;) = % < 1. Although this property is na requirement to
carry out the analysisit encourages transmit-receive pairs to obtain largerRCRhis follows from the principle
that for a rate of change of price less than one, users bugrlapgantities of a commodity because the “per-unit

cost” is lower [26]. A particular choice fof;(x;) is®

2

4 G; \?
file) = 2 = fitw) =1 () ©

i.e., 0 < f/(z;) < 1. Fig. 4(b) shows the pricef;(x;) as a function ofr; for G; = 100.

The non-linear pricing function specified in (7) is motivé&es follows. A higherg; should result in higher price.
Further, for the same ICNRy;, if the intensity of the information from the informationguider forms a larger
fraction of the total received information at an informatioonsumer;, then the intensity of the corresponding

information provider is larger than required and hence,tthesmit-receive pair must be priced higher. However,

3The functionf;(x;) in (7) is only a specific choice and is not a unique functiort Sagisfies the desired properties. Discussion on other
non-linear pricing functions satisfying the required pedfes is beyond the scope of this paper.



for the samer;, if the intensity of the information from the informationguider forms a smaller fraction of the
total received information at an information consumerntktge corresponding information provider transmits with
higher intensity to compensate for the confusion, and héimedransmit-receive pair must be priced lower. With
the above considerationg, can be written as

Pihi;

f; = )
LS P+ NiW;

(8)

From (1) and (8).fi(z;) is given by the expression in (7). The functiofi(x;) in (7) is not the only choice for
non-linear pricing. Any function that satisfies (17) deled later, can be used as a pricing function. Discussions
on other choices foyf;(x;) are beyond the scope of this paper.

The PCP with pricing (called the P-PCP) is then achieved tyirgpthe optimization problem,
maxp @; = maxp [u; — Af;], Vi, 0< P, < Pik Vi, )

whereuw; is the utility function without pricing, given by (2). Notdéat although the pricing function is written as

a function of the ICNRz;, it is also a function ofp from (1).

C. Game with Pricing

The optimization problem in (9) can also be modeled ad&nperson non-cooperative with the payoff function
given by,. In order to determine the Nash equilibrium for the game jn\{& proceed as follows. We re-formulate
the game as a problem of allocation of optimal ICNR'’s to tlems$mit-receive pairs and compute the optirfigs

from the obtained optimal ICNR’s. The optimization problém(9) can be re-written as

max i;(x;) = max [ui(z;) — Afi(x;)], Vi. (10)

;>0
Note that the objective function for each transmit-recede@r depends only on the ICNR of that transmit-receive
pair and not on the ICNR obtained by the other receivers. &thez the optimization problems specified in (10)
can be solved ad/ independent optimization problems in each As an example Figs. 5(a) and 5(b) present
the net utility, 4;(z;), as a function of the ICNRg;, when deploying the linear pricing function in (6) and the
non-linear pricing function in (7), respectively. It is @rsed that for the behavior of; as shown in Fig. 4(a) and

pricing functions as in (6) and (7), the net utility;, is a concave function with a unique maxima. This behavior

also agrees with the “inverse-U" behavior of incentivescdssed in [27].



T
Let x* = [ r] oxy xy - Ty } 4 be the vector of ICNR’s that maximize th& objective functions in

T
(10). The corresponding” = [ pro Py Py o Py } can be obtained by re-writing (1) as
“hiiGi * .
= v = 2 P hgivie = Nid iy Wy Vi (11)

The equations in (11)M{ in total, one for each) represent a system of simultaneous linear equationg wrariables

and can be represented by the matrix equation,
-1
p* = (Ly —Di'A) Dy7'Dy(117 — Ly)w, (12)

where1l is the column vector of lengtli/ with all entries being unity],; is the M x M identity matrix, w =

T
[ Wi Wy Wi - Wy } and A, D; andDs are given by

i O ha1va haivsy . haava ]
hiavis 6] h3211}32 . hh{211}1W2
hysv hosv = Bz
1313 2323 M3VM3
A = hss hss 0 has ; (13)
hivvinmg honpvonm hanvvsnm . 0
L h]w M h]w M h]w M .
. G1 Gy Gs Gy
D1:d|ag Tx w0 x0Ty T & (14)
T Ty Ty Lyg
. N1 Ny N. N
andD2:d|ag <_17_27_37"'7—M) ) (15)
hi1" hoa " h33 harv
where diag(y1, y2, - - - yar) is the diagonal matrix withyy, yo, - -+, yas as the entries along the diagonal.

The game described by (9) has a unique Nash equilibrium ifcartg if one can obtain a unique non-negative
x;, V i that solves (10) and the corresponding power/intensityorep*, obtained from (12) satisfies (4). It is
observed that the value of the optimsl and hencep* depends on the pricing parametatr, In the following
subsection, we provide necessary and sufficient conditons which result in a uniqgue Nash equilibrium for the

game described by (9).

D. Nash Equilibrium

The necessary condition for the existence of the Nash équin is presented in in Section I1lI-D1. Section

I1I-D2 describes the sufficient condition for the existeradea unique feasible Nash equilibrium.

()T represents the transpose of a vector or a matrix.



1) Necessary ConditionsApplying the first order necessary conditions for maxima, value ofz; that maxi-

mizes the objective function in (10);f, can be obtained as the value that satisfies

ui(x}) = Mi(]), (16)

e, L — ff(xi‘)“7(?)(;3)3}93)’”5'@3). Therefore, ifu; and f; satisfy the property

filad)ui (7) — wi(a)) £ (x7) <0, a7)

then =} decreases aa increases. Although (17) appears restrictive, functidmet satisfy (17) can be easily

%
determined. Few examples are listed below.
o If fi(z;) = x; is a linear function as in (6), thefi’(z;) = 0. Sinceu; is a concave function (as specified in
(23)) andf; is an increasing function, (17) is satisfied.
« If fi(z;) is chosen to be a non-decreasing convex function, ffiér), f/(x;) > 0. Sincew; is an increasing

concave function according to (23), the condition in (17%ddisfied.

It is observed that for the pricing functiorf;(z;) specified in (7),f/(z;) = 1 — (IS’;G)Q > 0 and f/(z;) =

2G?
($11+G1:)3

>0, i.e., fi(z;) is a non-decreasing convex functionaf Therefore, (17) is satisfied.
Choosingu; and f; that satisfy (17) provides an upper bound on the pricingpatar, A\, which, in turn, yields

a necessary condition for the existence of a unique NasHileduwin to the power control game with pricing. In

>

order to explain this in detalil, Ie)tgo) = ;Egg be the pricing parameter that results in an optimum $IRs= 0, for

the i** consumer. The following theorem then gives an upper bountherpricing parametek and a necessary

condition for the problem in (9) to have a feasible solution.

2 uj(0)

Theorem 3.1: Let,; and f; satisfy (17),V i and let \,,.x = min; /\(0), whereAgi) 70

)

. Then the necessary

N’

condition for the optimization problem in (9) to have a fédesisolution iSA < Anax-

Proof: If A\ > Apax, then3j, A > )\E.O). When deploying utility and pricing functions that satigfy7), \ is a
decreasing function of?, i.e., azj decreases ak increases. As mentioned earlié\é,o) is the value of\ for which
:nj = 0. Therefore, if\ > /\5-0), :nj < 0. From (1), it is observed that i, > 0, V 4, thenx; > 0. Therefore
z; < 0= 3 J', such thatP;, < 0, which is an infeasible solution according to the consteaspecified in (4).

Hence, the necessary condition for optimization problen@insubject to the constraints in (4) to have a feasible

solution isA < Apax. [ |



Theorem 3.1 can be intuitively interpreted as follovkscan be interpreted as the extent to which consumers are
priced/penalizedA,.; can therefore be considered an upper “cut-off” above whiahsamit-receive pairs suffer
so large a penalty even when the information provider traissat low powers/intensities, that the information
providers prefer not to provide any information at all. Inaxisl network, this could represent a scenario where a
user providing information could face severe criticism acd emotional stress in the form of loss of relationship,
that they refrain from providing any information when soufgr or provide information in an extremely passive
manner.\ > An.x represents a highly passive network because the cost afntitimg information with any
intensity is very large and hence, information providesmsémit with very low or no aggression.

o Foru; as in (2) and for a linear choice gf(z;) (€.9., fi(x;) = xi, Amax = min; ;' (0).

« Foru; as in (2) and for a non-linear choice ¢f(z;) as in (7), \max = 00. Intuitively, this means that even

for a very large pricing parameter, information provideas dransmit at large intensities. This represents a

social network where users tend to be more aggressive irmieg information.

Note that the condition in Theorem 3.1 is not sufficient beeaiti is possible thak < Ay.x = ;7 > 0, V i but
3 j such thatP]fk <0orPr> Péfgx. As an example, consider a network witi = 2. Let A < Apax SO thatz}
andz3 obtained by solving (16) are positive. For this case, (1#luces to

buli Py — hyyvg Py = NiWa
1

18
—h12V12P1+—h2;5GzP2 = NoW (18)

The above can be represented by the matrix equation

—hlj;fcl —ha1v91 P | W, (19)
—higuyy D22l P, | | oW

Ty

which, in turn, can be written aBop = ny, where

h11G, _h
= 21121 N1Ws
B, = 1 andn, = .
2 [ —h1av12 —h2j§;2 ] 2 [ NoWy ]

The optimumP; and P, can then be obtained using matrix inversion [28]pas: B2_1n2, ie.,

1 [ h%fl ha1va1 ] lNlel

P=— h;gl N2W1 (20)

A | higvi
whereA £ hihaaCh G pyohorviarer. It is observed that for sufficiently large valuesaof and a3, it is possible
that A <0, i.e., Pf", Py < 0, thus violating (4). Alternatively, wher > 0, the values of:] andz3 could be so

large that it makes” > Prggx or Py > PI%)X, again violating (4).



In the example discussed above, both the circumstances wideh (4) is violated, occur when] and z3
are large, which, in turn,occurs whenis small. This is because;’ is a decreasing function of whenw; and
fi satisfy (17). It then raises a fundamental questi®imilar to the upper cutoff for the pricing parametar, .
specified by Theorem 3.1, can we obtain a lower cufgff,, for A below which the P-PCP becomes infeasible or
below which pricing is ineffective®/e answer this question in the following subsection, by gipgl the theory of
M-matrices and also provide a necessary and sufficient ¢conditr the existence of a unique Nash equilibrium
for the P-PCP.

2) Sufficient ConditionsFrom (12), (14) and (15), for positive*, D, is positive sinceG; > 0, V i« and Do
is positive since theV;, h;; > 0. Also, from (13), (14) and the definition & — matrix provided in Appendix B,

(IM — D1‘1A) is a Z-matrix. Therefore, re-writing (12) as
(L =D 7'A) p* = D1 'D, (117 — Tyy)w (21)

and applying 4) in Lemma B.1 in Appendix B, we state Theorettizlow.

Theorem 3.2: A non-negative ICNR vectdr® results in a non-negative vectqs;, if and only if theZ—matrix,
(IM — Dl‘lA) is an M-matrix.

Proof: If p* is non-negative, then according to 4) in Lemma B.1 in Appeljithe Z—matrix, (IM — Dl‘lA)

is an M—matrix. If (IM —Dl‘lA) is an M—matrix, then, from 2) in Lemma B.1 in Appendix B, it is non-
singular and(IM - Dl‘lA)_1 > 0, where0 is the null-vector or the null-matrix. Sinc@M — Dl‘lA)_1 >0
and Dl‘l, Do, (11T - IM) andw are all non-negative (i.e., each element in each of thesdamsivectors are
non-negative)p* obtained from (12) is non-negative. [ |
Theorem 3.2 therefore provides a necessary and sufficielittan to obtain non-negative* from a non-negative
ICNR vector,x*. The vectorx*, in turn, depends on the pricing parameter,from (16). Thus, one can obtain
conditions on) that results in a non-negatiyg, by following the sequence of steps listed in Algorithm 1.

In order to achieve Step 1) in Algorithm 1, we prove Lemma 3Hiclv shows that when all receivers obtain
higher ICNR'’s the powers/intensities of all correspondimfigprmation providers increase. The following definition

of increasing functions is used in Lemma 3.1.

SA positive (non-negative) vector or matrix is one in which elements are positive (non-negative). A negative (nositp@) vector or
matrix is also similarly defined.



Algorithm 1 Sequence of steps to obtain a lower bound on the pricing petea, which, in turn, provides a
sufficient condition for the existence of the Nash equilibri

1) First we show that when? increasesy i, P, also increasesy i.

2) We then show that there is some threshold vegtsuch that if even one entry of the vectar; is bigger
than that inx, then it violates the constraints in (4).

3) We combine the results of Steps 1) and 2) with the fact #as a decreasing function of, V ¢ whenu;
and f; satisfy (17), to obtain a lower cut-off,,,;, on A to yield a sufficient condition for the existence of a
unique Nash equilibrium of the P-PCP.

4) Finally the result of Step 3) is combined with Theorem & Dbbtain a necessary and sufficient condition for
the existence of a unique Nash equilibrium.

Definition 3.1: Consider a functiorf :R"— R™. Lety;, y2 € R™ and lety; < y»°. Thenf (y) is said to be
anincreasing functiorif f (y;) < f (y2). A decreasing functioris defined similarly.

Lemma 3.1: Consider two non-negative ICNR vectorsand x, such thatx; < x5 Let p; and p, be the
corresponding vectors obtained from (12) and get be non-negative. Thep; is non-negative angh; < p». In
other words,p is an increasing function of.

Proof: Letf)gl) andf)gz) be the diagonal matrices as defined in (14) correspondirg Bndx,, respectively.
It is observed thaf)gl) > 15§2> sincex; < xs. Any diagonal matrix is &-matrix and any positive diagonal matrix
is an M-matrix according to the definitions & and M-matrices given in Section B. Therefore, from Lemma B.2
in Appendix B,(]ﬁgl))_l < (]5%2))_1. Hence theZ-matrix [IM — (]5%1))_1 A] > [IM - (]5&2))_1 A], another
Z-matrix. Sincep, is non-negative|I,; — (]5&2))_1 A} is an M-matrix by Theorem 3.2. Therefore from Lemma
B.2 in Appendix B, {IM — (f)gl))_l A] is also anM-matrix. Hence, from Theorem 3.B; is non-negative. Also,

. -1 171
from Lemma B.2 in Appendix B{IM — (Dgl)) A}

< [IM - (]f)?))_l A]_l. It then follows from (12) that
pP1 < p2. ]

The next step to obtain a sufficient condition for the exiseeaf the Nash equilibrium is to show the existence
of a threshold ICNR vectots, mentioned in Step 2) in Algorithm 1. The following resulbfin matrix theory will

be used to achieve this.

Lemma 3.2:[28] Let A, B, C andD benxn, nxk, kxn andk x k matrices, respectively. Let the+k) x (n+k)

A B
C D

For anyk such thatl < k < M, let D;(*) and A*) denote thek x k leading principal sub-matrices (i.e., the

block matrix, A= [ ] . Then,det(A)= det(A)det(D — CA~'B).
sub-matrices specified by the firktrows and columns) oD; and A, respectively. IfZ(1) = [1], then fork > 2,

5The relations,>, >, < and < between two vectors or matrices indicate the relation betwthe corresponding elements of the
vectors/matrices.



-1 (k—1)
the Z-matrix Z(*) 2 (I,C - (Dl(’“)) A(’f)) can be written aZ*) = [ ZgT flk ] where
k
_ zThkive Tihielik
Glhll - Gkhkk
_z5huotis _ wihogvor
£, 2 Cialaz andgy = Gk
_xzflhk.kfll/kkfl xzhk—lkyk—lk
Gk*lhkflkfl - Gkhkk
The matrix (IM —Dl‘lA) can be formed by a sequence of matrig@d), Z?, ..., Z(M) The following

lemma provides a property abog{’ (Z(’“‘l))_1 fi., which will be used along with Lemma 3.4 in Theorem 3.3 to
obtain the threshold vectog, mentioned in Step 2) in Algorithm 1.
Lemma 3.3: The functiogz (Z(’“—l))_1 f;, is an increasing function of, V £ such that2 < k < M.

Proof: Consider two positive vectorg; and x, such thatx; < x,. Let 1:351) and 15§2> be the diagonal
matrices as defined in (14) correspondingxtoand xs, respectively. Let(]ﬁgl))(k) and (15?))('“’ be thek x k
leading principal sub-matrices d{" and D{?, respectively. LeZ{") 2 1, — [(159))(’“)}_1% and zJV £
I, — [(ﬁ&”)(k’]_l Aj. Following the steps in the proof of Theorem 3(Z§k_l))_l < (Zg“_l))_l, V k such
that2 < k < M. f,, and g, are decreasing functions of Hence,—f, and —g;. are increasing functions of.
Let f,gl) and gg) be thef), andg; vectors corresponding to ICNR vectgi. Similarly, let f,f) and gf) be the
f;, and g, vectors corresponding t®,. respectively. Sincex; < x» and —f;, and —g; are increasing functions
of x, —f,gl) < —f,§2> and —g,(j) < —g,(f). Therefore,(g,&l))T (ng_l))_l f,gl) = (—g,(cl))T (ng_l))_l (—f,gl)) <
(—g,(f))T (Zg“_l))_l (-£2) = ( ,(f))T (Zg“_l))_lf,f), ie., gl (Z(’f—”)_1 f, is an increasing function of,

V k such that2 < k < M. [ |
Lemma 3.2 will be applied to obtain the following lemma, whidn turn, will be used along with Lemma 3.3
in Theorem 3.3, to obtain the threshold ICNR vectomentioned in Step 2) in Algorithm 1.
Lemma 3.4:(IM — Dl‘lA) is an M-matrix if and only ifg} (Z(’“‘l))_1 fo <1,Vk 2<k<DM.

Proof: From 3) in Lemma B.1 in Appendix B(IM — D1‘1A) is an M-matrix if an only if det (Z(’f)) > 0,

V k, 2 <k < M. From Lemma 3.2det (Z(’“)) = det (Z(’“—l)) (1—gf (Z(’“—l))_lfk). SinceZz(M = [1], by
induction onk, det (Z(’“)) >0,V k 2<k<M,ifan only if g/ (Z(’“‘l))_1 f.<1,Vk 2<k<M. n
The following theorem proves the existence of the threshelttor, %, listed in Step 2) in Algorithm 1.

Theorem 3.3:3 a positive ICNR vectok such that,V x such thatx < x, the vector,p*, obtained from (12)

satisfies constraints, (4) and for > x, at least one constraint in (4) is violated.



Proof: From Lemma 3.3g (Z(’“‘l))_1 f;, is an increasing function of. Also, whenx = 0, g}’ (Z(’“‘l))_1 £, =
0, V k. Hence, for a positive, gl (Z(’f—”)_l f, > 0, V k. Further,gl (Z(’“—l))_l f, is an unbounded function
of x, V k. Hence,3 a positive ICNR vectok such thatg'—kr (Z(’f—”)_l f, = 1 for somek. Hence,V x such
thatx < %, gl (Z(’“‘l))_lfk <1, VE ie, (IM — Dl‘lA) is an M-matrix from Lemma 3.4 and hence:
is non-negative, according to Theorem 3.2. kor X, g} (Z(’“‘”)_1 f;, > 1 for somek and from Lemma 3.4,
(IM — Dl‘lA) is not anM-matrix, i.e., P} < 0 for somek, according to Theorem 3.2, i.gp; violates at least
one constraint in (4).

Consider the case when < x. Sincep* is an increasing function ot from Theorem 3.2, ax increasesp
increases and x/, such that fork € K C {1,2,---,M}, P, = Pk and P; < Pk, j ¢ K. Forx > x/, 3
k € K, such thatP, > P, Letx = min(x’,x), i.e., the vector in which each element is the smallest of the
corresponding elements &' andx. Forx < x, 0 < P, < Péﬁ)x, V k and forx > x, 3 k, such thatP, < 0 or
P > Péﬁi)x, i.e., some constraint in (4) is violated. [ |
Using the threshold vectok, from Theorem 3.3, it is possible to obtain a lower boukg;, on A, below which,
the vectorp obtained from (12) is infeasible (as described in Step 3) igoAthm 1). The following theorem
provides the existence of,;, and also provides a necessary and sufficient conditiondéoexistence of a unique
Nash equilibrium for the P-PCP (thus completing Steps 3) 4nith Algorithm 1).

Theorem 3.4: Let the pricing functiofj(x;) be a non-decreasing convex function. Theén\,;, such that the
game modeled by the optimization problem in (9) subject tsizaints (4) has a unique feasible Nash equilibrium
if and only if A € (Amin, Amax), With Apax @s specified in Theorem 3.1.

Proof: For x* to be positive A\ should be less than,,., according to Theorem 3.1. Conside Apax, SO
thatx* is positive. When they; and f; satisfy (17),«; is a decreasing function of. As )\ decreases;; increases
V ¢ and for some\ = \,in, x = X, Wherex is as specified in Theorem 3.3. Fbr> A\, x < X andp is feasible
(satisfies (4)) according to Theorem 3.3. Similarlyhik A\, x > %X andp is infeasible (violates (4)), according
to Theorem 3.3. Therefor® > \,;, for a positivex to result in intensities that satisfy (4), i.e., in a feasiblash
equilibrium. In other words, the Nash equilibrium is fedsi and only if A € (Amin, Amax)-

When the pricing functionf;(x;) is convex, the net utilityd; = u; — Af;(z;) is concave since:; in (2) is
concave. Therefore the optimunj obtained from (16) is unique [29]. Singe is obtained from (12) by inversion

of a non-singulatM —matrix, the Nash equilibrium is unique. [ |



When f;(x;) is not a convex function, Theorem 3.4 can still be appliedrave the existence of a Nash equilibrium.
If fi(z;) is such thati;(z;) is concave, then the Nash equilibrium is unique. Othervitse Nash equilibrium may
not be unigue. The linear pricing function in (6) and the tiarar pricing function in (7) are both convex functions
and hence, the Nash equilibrium of the P-PCP is unique whplogieg these pricing functions.

Similar to how Theorem 3.1 provided an upper “cut-off” foriging users, Theorem 3.4 intuitively indicates
that there is also a lower “cut-off” for pricing users, belavhich the pricing becomes ineffective. Intuitively,
A < Amin represents a scenario where the pricing is so low that triameoeive pairs suffer no penalty even when
the providers of information transmit with large intensgtior powers. As more information providers transmit with
maximum powers it could result in transmit-receive pairffesing lower ICNR than their required target ICNR
to maximize the utility of the obtained information. A netskowith A < A, therefore represents an aggressive
network because information providers transmit inforaratiith high intensities.

For a social network to be neither extremely aggressive mtemely passive, transmit-receive pairs should
neither be priced too low nor too high. The upper and lowernisufor pricing are provided by Theorems 3.1
and 3.4, respectively. Although Theorem 3.4 proves thetexé® of),,;,, computation of),,;, in closed-form is
difficult. One can then apply the method described by Fiefi6tf to evaluate),,;, numerically. When\ = 0, it
corresponds to the case with no pricing and the the optimaksaof P; is unboundedy i. But, when an upper
bound constraint is posed on the maximum power, titn= Pé@x, V i. The following sub-section presents a
means to control the pricing parametgr,in order to maintain the network (i.e., the information yders in the

network) at a desired level of aggression and passiveness.

E. Controlling the Levels of Aggression and Passiveness

Definition 3.2: A network is said to be—aggressive0 < ¢ < 1), if the average transmit power of all the
transmitters is> eﬁ M, Péf%x. A network is said to be aggressive if it és-aggressive foe = 1.
An e— aggressive network for larger values ofepresents a network where the transmitters transmit viatbec
to their maximum intensity. Since the intensity represém¢sauthenticity or aggression with which information is
presented, an—aggressive network is representative of an aggressiveonletiar larger values ot.

Definition 3.3: A network is said to bey—passive(0 < § < 1), if the average transmit power of all the

transmitters is< 6 M Pl. A network is said to be passive if it i5—passive ford = 0.



A é—passive network for smaller values éfrepresents a network in which transmitters transmit at {eas §
fraction of their maximum intensity, which, in turn, repeesgs a scenario where transmitters are more “passive” as
they tend to present information with very low levels of agggion.

We now address the following questids. it possible to control the pricing parameteX, so that the network
can be made—aggressive o—passive for any desired value 6for ¢? Theorems 3.1 and 3.4 imply that it is
possible to make the network aggressive (by making \.;,) or make it passive (by making > A\,.x). The
following theorems indicate that is it possible to contioé tpricing parameter, in order to make the network,
e—aggressive ob—passivey 0 <¢,6 < 1.

Theorem 3.5:For all ¢, 0 < e <1, 3 A\pin(€) such that the network is—aggressive fol\ < Apin(€).

Proof: The vector,p, is obtained from (12), by the inversion of anf—matrix, and hence, is a continuous
function of x [28]. Also, whenw; and f;(x;) satisfy (17),x is a decreasing function of. From Theorem 3.2,

p is a continuous increasing function af and hence, a continuous decreasing functiomofThe expression,
ﬁzf‘ilﬂ is a continuous increasing function @f and hence, a continuous decreasing functiom\ofVhen
A < Amin, With Api, @s specified in Theorem 3.8, = PISQLX, V i. ThereforeV € € [0, 1], 3 Amin(€) > Amin, SUCh
that - M, P, > e M, Pl i.e., the network is—aggressive. u

Theorem 3.6:For all §, 0 < 6 < 1, 3 Apax(d) such that the network i§—passive forA > A\jax(6).

Proof: The proof is identical to the proof of Theorem 3.5. [ |
Theorems 3.5 and 3.6 therefore imply that it is possible tepkéhe information providers in the network as
aggressive or as passive by controlling the pricing paramet However, the exact values af,,.«(d) and Apin(€)
are very complex to obtain for a specifiédor e. Numerical techniques suggested in [30] can be used torobtai
Amax (0) and Apin (€).

Unequal number of information providers and information consumers: If the system has\/ information
providers andN information consumers)/ < N, then some information providers are primary information
providers to more than one information consumer. If an imfation provider is a primary information provider
to M information consumers, then this information provider ¢enviewed as)/ virtual information providers.
The network then ha®v virtual information providers an@v information consumers and the analysis described
in Section Il can be applied. As an example, Fig. 6(a) pressametwork withA/ = 3 information providers and

N = 4 information consumers. Information provider 3 is a primaxfprmation provider to information consumers 3



and 4. Information provider 3 is then represented as viittfakmation provider 3 and virtual information provider
4 so that the network ha¥ = 4 virtual information providers an& = 4 information consumers. [/ > N, then
some information consumers look for multiple primary imf@tion providers of information. In this case, these
information consumers can be viewed as multiple virtualsconers. The network will then hav information
providers andV/ virtual information consumers and the analysis in Sectibondn be applied. As an example, Fig.
6(b) shows a network witld/ — 4 information providers an&v = 3 information consumers. Information consumer
3 is represented as virtual consumer 3 and virtual consunser #hat the network now hasf = 4 information
providers and\/ = 4 virtual information consumers. In general, wh&h+# N, let M = max(M, N). The number
of transmit-receive pairs then becomes

IV. APPLICATIONS

We now present additional applications of our analysis gmeesd in Section 111-D2. We first discuss a novel
admission control scheme to admit new consumers in the metivased on their ICNR requirements (Section
IV-A). We then present a scenario where our analysis can pkeaigto maximize the efficiency of users performing

tasks assigned by multiple categories of assigners ($ebii®).

A. Admission Control

Consider a network in which transmit-receive pairs arrieguentially. This could be in a chat room or a closed
group discussing some specialized topic. By arrival of adnait-receive pair we mean the arrival of a new provider
of information or a new information consumer or both. Letréhbe k — 1 transmit-receive pairs in the network
and let thek” information provider/information consumer arrive. Thecessary condition for the feasibility of
the powers/intensities of transmission of all informatioroviders is that the matriZ*) in Lemma 3.4 be an
M—matrix, i.e., if an only ifg{ (Z(’“—l))_1 fi. < 1. The ICNR for thek!” transmit receive pairy;, affects only
the vectorg} . Hence using Lemma 3.4, a new transmit receive pair is agldhittto the system only if} > 0 and
gl (Z(k‘l))_lfk <1

Consider a chaotic discussion forum in which different kafdnformation flows. An example could be that of a
room discussing subjective topics such as politics or tsiaility. Here, different users join the discussion onerafte
the other and either seek others’ opinion or provide theiniop on the topic. If a particular consumer enters with
a specific ICNR requirement, then it signifies the level ofritfathe newly entering consumer expects from the

forum. A high ICNR requirement represents a requirementaftrigh level of clarity, which may not be possible



in a discussion forum on subjective topics. The admissiartrobpolicy described in this subsection then enables

a network filter out consumers that have unrealistic expiectsa on the clarity of information in the forum.

B. Prioritizing Tasks to Increase Productivity

Consider an organization or a social structure in which agmaty of M users (called task assigners) assign tasks
to another set ofV users called task assignees. The task assigned by/tressigner carries a priority?;. The
ith task assignee carries out the task assigned by‘thassigner with efficiencyf) < hj; <1 (hj; = 0 represents
0% efficiency in carrying out the task artg; = 1 represents 100% efficiency. Alternatively;; could represent
the influence the/" assigner has on thé" assignee, i.eh;; = 0 represents no influence aig; = 1 indicates
that thei'" assignee carries out the task to the fullest extent. Thenpetea, h;; represents the relation between
the j** assigner and thé&" assignee.

As mentioned in Section I1l-D2, this can be viewed as a systdiim A/ = max (M, N) virtual assigner-assignee
pairs. Thei*" virtual assigner is the primary assigner of tasks. The amofliconcentration theé” assignee has on
the task assigned by the primary assigner is thgn;. The tasks assigned by the other assigners serve as d@igact
to thes*" assignee. Th&" assigner can usd’; amount of auxiliary resources to improve the concentratibthe
ith assignee. These resources could be in the form of rewarckEntiges or penalties. Alternatively the auxiliary
resources cold be in the form of reminders to complete thie. tBise i** assignee sufferd’; amount of natural
distractions (like entertainment, fatigue, etc). The radtulistraction can be scaled by the amount of auxiliary
resources used by the other assigners. Thereforetrassignee suffers a distraction ®F;2; Pihji + N;W; due
to the other assigners in the network. It is then possiblesfind a term calle€Concentration-to-Distraction-Noise
Ratio (CDNR)similar to the ICNR defined in (1).

Each user has a productivity; ( in the absence of distractions) for the task assigned byptimeary assigner.

Analogous to the gaings; defined in Section II-B, it is possible to define a supervisgayn, G; = a‘;V:, which
provides a factor by which the concentration can be imprdwedppropriately deploying auxiliary resources. The
auxiliary resources are not so effective if the productiait the user is already large. The CDNR of #fe assignee,

x;, can then be written as

PihiiG;
> jzi Pihji + NiWj’

(22)

Ty =

which is similar to the ICNR defined in (1). The effective puativity of the i* assignee can then be written as



in (2) wherer; is the productivity in the absence of distraction. The fiortr(z;) then represents the amount of
degradation in the productivity due to distractions.

One can then apply the analysis presented in Section Il teriakine the optimal priorities assigned to each task
so that the productivity on all tasks are maximized. Theipgigparameter), then represents the cost incurred to
maintain the desired concentration levels. Lakgepresents a highly lenient environment and a stha#tpresents
a more strict environment. Theorems similar to Theorems 34, 3.5 and 3.6 can be obtained in order to control
the pricing parameter), so that environment can be made as lenient or as strict agdleShe analysis can be

applied to prioritizing tasks in organizations to increése output of the employees.
V. NUMERICAL EXAMPLES

We collect data from Twitter on various topics like “Haiti'Body Scan”, "Indian Premier League (IPL)”, from
users in different geographical regions, using the archite we developed in [4]. We treat each region as an
information provider. We use this data to measure the cdittian, v;; between the information obtained from
two different information providers, and j, as explained in Section 1.

For any topic, we consider three scenariosD{gtributed Trust:Scenarios when information consumers trust all
information providers almost equally, (iHighly Concentrated Trustnformation consumers trust one information
provider more than all the others (e.g., a consumer may infistmation providers from the USA more than all
other countries) and (iiiModerately Concentrated Trusinformation consumers trust few information providers
more than the others (e.g., a consumer may trust USA and @anace than others) and among the information
providers they trust, they trust all information providergually. We normalize the maximum intensiﬂ?ﬁf&x to
unity, vV . We perform about 100000 C-based experiments on UBUNTU XNatform, and present the averaged
results.

We first study the effect of pricing for the various scenatisted above. We normalize the pricing parameter,
A, so that\,.« in Theorem 3.1 is 1. We also normalize the obtained netwtid that the maximum net utility
obtained over all scenarios and all pricing parameters iBid.. 7 represents the behavior of the net utility for
various values of the pricing parameter under the scenéio§i) and (iii) described in the previous paragraph,
for linear pricing (Fig. 7(a)) as well as non-linear priciffgig. 7(b)). The length of the curves are unequal because
the minimum value of the pricing parametey,;, given by Theorem 3.4 is different in different scenarios.

It is observed from Figs. 7(a) and 7(b) that high net utilitg.( high relevance of information) can be achieved



for lower price in the scenario when consumers trust oneimétion provider more than the others. The achieved
net utility is either low or the price paid is too high in theesario when consumers trust all information providers
equally. This is because, consumers placing equal trustl amf@mation providers suffer larger confusion because
they obtain contradictory information from all the infortitan providers they trust. However, when consumers trust
a single information provider or a set of few information yiders, the confusion caused is low&his does not
mean that consumers obtain correct information when thegtta single information provider. This only means
that the confusion levels suffered by consumers are lowenwiey place more trust on few information providers
(preferably a single information provider) instead of tting all the information providersThis also implies that
the information providers can transmit at relatively lovietensities (i.e., spend less resources on advertising or
providing auxiliary information to make the informationrumer obtain information from them in future) if they
build sufficient trust with the information consumer andodtsiild much higher trust compared to other information
providers.No inference can be conclusively drawn about the behavidinefir or non-linear pricing, from Figs.
7(a) and 7(b) because the presented results are for a spetificce of the non-linear pricing function as in (7).

Fig. 8 presents the aggression level (i.e., average imyeakiransmission) of the transmitters for the scenarios
of distributed trust, moderately concentrated trust amghllgi concentrated trust, discussed earlier in this section
with linear (Fig. 8(a)) as well as non-linear pricing (Figh®. Results are obtained by normalizilﬂéfgx =1,V
i (the results scale for other vaIuesB,ff%x. Also, the pricing parameteh, is normalized so thak,,,,x = 1. Note
that the non-linear pricing function in (7 results Ag,.x = co. For our numerical computations we consider values
of \ so thatP, =~ 0, V i. We found that this is satisfied for ~ 60. We study the specific cases~= 0.85 and
60 =0.1.

It is observed from Fig. 8 that both for linear pricing as wadl for non-linear pricing, the scenario, distributed
trust, drops more quickly from aggressive to passive, wthigescenario where consumers place highly concentrated
trust on one transmitter allows a more gradual decay in tligesgion level of the network. This is because, in
the scenario with distributed trust, the confusion levelfesed by the consumers is larger (as discussed earlier in
this Section in Fig. 7). Therefore, even for larger valuepriding parameters, transmitters transmit with inteasiti
close toP.x in order to mitigate confusion.

Such a scenario represents a network with large levels ofusion because, information providers have to be

optimally too aggressive (meaning that the noise levelslange) or too passive (i.e., have to suffer low ICNR’s



and yet not increase the intensity of transmission due tb pigcing parameters).

For the scenario with moderately concentrated trust andhhigoncentrated trust, the confusion levels suffered
by consumers are lower and hence, the valug sfiould be much lower for transmitters to transmit with isiéas
closer to Pyax. This also results in smaller values 8f, for the same ICNRg;, in the scenario with highly and
moderately concentrated trusts compared to that withiliged trust, i.e., larger values 0f,.«, thus resulting
in smoother decay in the aggression level of the network,paved to the scenario with distributed trust. Figs.
8(a) and 8(b) therefore imply that the scenario with moddyaand highly concentrated trust gather aggression
or passive behavior slowly as compared to that with distedurust, i.e., is more stable because the aggression
exhibits a more smooth decay compared to the scenario wsthlaited trustThese scenarios represent a network
with smaller levels of confusion.

Intuitively Figs. 8(a) and 8(b) imply that in scenarios witlistributed trust, since the consumer trusts all the
providers of information, the information providers ofatié between being overly aggressive and overly passive
too quickly, because the information consumers are easilyanced by the other information providers. On the
contrary, in the scenarios with moderately and highly cotreged trust, consumers trust few information providers
(or one information provider) and hence, the informatiooviers, can be less aggressive and yet provide relevant
information to the information consumers because the aoassido not have many other trust-worthy information
providers. Distributed trust could represent a networkesfnaigers who get easily influenced by all providers of
information and hence, one should be extremely strict withnt at times.

The key insights of our analysis are two fold. For informatiproviders, the understanding of information
confusion presents the optimal intensities to presentiimdtion so that it results in maximum relevance for the
intended information seekers. For information seekeeskély insights are the facts that maximum confusion is likely
to result when they trust all information providers almogti@lly and less confusion results when the information
seekers place concentrated trust of a few information gerygi This means that information seekers should not
arrive at a quick decision about the information they reegifr scenarios where they trust all information providers
almost equally. When the information seekers place higblycentrated trust on fewer information providers, they
experience lesser confusion which enables them to takeckeyuilecision on the information they obtain.

A generalized scenario: It is noted that the numerical examples shown in this papefarthe specific case when

the information providers are Twitter users. As a more ganexample, consider a customer who wishes to buy



men’s apparel. The possible choices of stores could be Wal3®#, Kohls [32], Target [33], Sears [34] and J.
C. Penney [35]. Let this customer post a query in the Facepagle of J. C. Penney on a specific men’s apparel
he/she wishes to buy. The primary provider of informatiod.i€. Penney while the other providers of information
could be his/her Facebook friends, Kohls, Walmart, Tar§eiars etc. This corresponds to the case of multiple
information providers and one receiver discussed at theoéri8kction lIl.

Here, the intensities could be a weighted combination ofrthmber of choices (i.e., the variety), a weighted
sum of the number and percentage of discount offers, the aupnftpictures, etc. The trust factor can be a function
of the customer’s preferences as well as the distance of #aeest store from the customer’s premises. The
auxiliary information includes viewer's rating of the apphkin the stores and testimonials of previous customers.
The analysis presented in this paper can then be used by fiibevatores to optimize their intensities (the number
of advertisements, their discount offers, the number ofupés they post on their web pages).

Computation of P;'s: Since the problem of determining the optimal intensitiestfee information providers is
modeled as a non-cooperative game with complete informattl the information providers know each other’s
strategy sets and pay offs. Therefore all information piexs will be able to use our analysis to determine the
P;’s. In a social network context, the strategies are knownHhaydctions taken by the information providers. For
example, two competing restaurants can follow each othefwatter or be friends in Facebook or follow each
other’'s web pages and learn about thEjis by viewing the pictures of their menus or their pricingaségies, etc.
Similarly, in the example discussed in the previous two geaphs, the various stores (i.e., Kohls, J. C. Penney,
Sears, Target, Walmart) know the number of discount offérs,number of pictures posted, the number of links

to different types of apparel, etc.
VI. CONCLUSION

We presented a quantitative analysis to maximize the ratavaf information in networks with multiple informa-
tion providers. A game theoretic approach for controllintensities of information transmission in social networks
was proposed, so that confusion can be minimized. A linedr ram-linear pricing function was discussed and
necessary and sufficient conditions for the existence ofiguenNash equilibrium were discussed. Applications
of our work to admission control for new consumers and tagbriization were also discussed. Some of the key

inferences drawn were

« The pricing parameter can be suitably adjusted in order &pkbe aggression level of the network as high



or as low as desired.

« Networks in which consumers place concentrated trust orifémformation providers achieve more relevant
information transfer to the consumers (i.e., suffer frossleonfusion), compared to those in which consumers
trust all the information providers in a similar manner.

« Networks in which consumers distribute their trust almagtaly to all the information providers result in
instability of aggression, i.e., oscillate between beiighly aggressive to highly passive, thus representing a
network with high levels of confusion.

Incorporating information flow and diffusion models (e.[86], [37] to study the propagation of confusion is a
topic under investigation. We point out that the numericamaples in the paper does not cover the generalized
scenario when the information providers can be of diffetgpes, e.g., a video, a news article and a message from
another friend. In future, additional experiments can béopmed to collect multi-domain data (e.g., domain blogs,

news articles, tweets) and our analysis can be applied toatee

APPENDIXA
GAME THEORY FUNDAMENTALS

A game[38], G (P, S,U), is defined by a set of player®, = {p1,p2,---,pn}, @ strategy se§§;, for each player
p;i (S = {S1,S2,---,S,}) and a pay off set or a set of utility functiort,= {uy, ua,- - -, u,}, whereu; : S; — R,
is the utility function or pay off function of the player. The objective of a gamé (P, S,U,) is for each player to
choose a strategy; € S; to form an optimal strategy vecter= [ S§1 S2 -+ Sp } such thatu,(s) is maximum
for eachi. The utility or a pay off function in a gamey(x), should be a non-negative, non-decreasing concave

function [38], i.e.,

u(x) >0, ¥x, >0, Vx, ££<0, Vx. (23)
Definition A.1: [38] A strategy vectors = [ S1 S2 -+ Sp } is said to be aNash equilibriumof the game
G(P,S,U,)if,Vie{1,2,---,n},u;(sis-;) > ui(8,s-;),V8 €8S;, wheres_; = [ S1 82 -+t Si—1 Six1 ‘c Sn }

The Nash equilibrium is a strategy vector such that theegjsabf each player is thieest responsto the strategies

of the other players.

APPENDIX B
ON Z— AND M —MATRICES

An n xn matrix B = [b;;] 1<i<. is called aZ—matrix if b;; <0, Vi # j. A Z-matrix, B, is called anM-matrix

1<5<n

if B~! is non-negative. A comprehensive study sfi—matrices (including the following lemma) can be found in



[39].

Lemma B.1:[39] The following statements are equivalent for anyk n Z—matrix, B.

1) B is an M-matrix.

2) B! exists and is positive.

3) All principal and leading principal minors oB are positive.

4) 3 a positive vectoty such thatBy is positive.

Additional properties onM—matrices including the following lemma, can be found in [40]

Lemma B.2:[40] If B is ann x n M-matrix andC is ann x n Z-matrix such thatC > B, thenC is an

M-matrix andB~! > C~1.
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corresponds to deploying the pricing functigfi(x;) in (7).
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Normalized Price

L
Normalized Price

0sl . , i
0.2f RN 4 4
P — S~ —%— Distributed Trust RN
01f Moderately Concentrated Trust| s i 01f —&— Moderately Concentrated Trust] AN 4
— -~ Highly Concentrated Trust TS " Highly Concentrated Trust BN
0 L L L L L L L L L = 0 L L L L L L L L L ~
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Net Utility Normalized Net Utility
(a) Linear pricing (b) Non-linear pricing

Fig. 7. Pricing parameter to obtain various values of ndityitinder different scenarios. The length of the curvesiarequal because the
minimum value of the pricing parametet,in given by Theorem 3.4 is different in different scenarios.



° o o
2 ® ©

o
>

Normalized Average Intensity of Transmission
o o o
& 2 &

o
N

°
2

—+— Distributed Trust

—6— Moderately Concentrated Trust]
Highly Concentrated Trust

8
.

Ly
e-aggressive -

3-passive

.
Normalized Average Intensity of Transmission

Fig. 8. Aggressiveness

5-passive i -passive |
S-passive | d-passive.
1 15 00 0.5 15
Normalized pricing parameter, A Normalized pricing parameter, A
(a) Linear pricing (b) Non-linear pricing

and passiveness level of the netwitinkrespect to the pricing parameter.



TABLE |
SNAPSHOT OF TWEETS COLLECTED FROM WITTER ON FULL BODY SCAN IN AIRPORTS

Geographical Total | Supportive | Opposing | Neutral
Region Tweets Tweets Tweets Tweets
USA 4571 967 753 2852
Europe 304 69 59 176
Asia 168 17 65 86
Oceania 94 17 24 53
Canada 70 14 19 37
South America 34 5 6 23
Middle East 34 10 7 17
Africa 22 3 4 15
TABLE I
PARAMETERS OF RESTAURANTS THAT CAN CONTROLP;.
Parameter Value for R1 | Value for R2 | Value for R3
Number of Links 2 5 3
Health Rating 4 3 5
Numer of Pictures| 15 10 5
Discounts (%) 20 25 15
TABLE Il
NORMALIZED INTENSITY (NI) CORRESPONDING TO VARIOUS PARAMETERS LISTED INABLE || THAT CAN CONTROL P; FOR THE
RESTAURANTS
Parameter NI for R1 | NI for R2 | NI for R3
Number of Links 0.2 0.5 0.3
Health Rating 0.33 0.25 0.42
Numer of Pictures| 0.5 0.33 0.17
Discounts (%) 0.33 0.42 0.25
TABLE IV
EVALUATION OF VARIOUS AUXILIARY RESOURCES BASED ON THE SURVFE IN [2].
Auxiliary Resource Rating Received
Professional Education 5.35
MDON Web-site 5.20
Online Handouts 5.13
Online Directories 5.13
Support Groups 4.84
One-on-one Consultation 4.43




