
UC Davis
IDAV Publications

Title
A Quantitative Performance Analysis Model for GPU Architectures

Permalink
https://escholarship.org/uc/item/8gp0x7tc

Authors
Zhang, Yao
Owens, John D.

Publication Date
2011

DOI
10.1109/HPCA.2011.5749745

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gp0x7tc
https://escholarship.org
http://www.cdlib.org/

A Quantitative Performance Analysis Model for GPU Architectures

Yao Zhang and John D. Owens

Department of Electrical and Computer Engineering

University of California, Davis

{yaozhang, jowens}@ece.ucdavis.edu

Abstract

We develop a microbenchmark-based performance

model for NVIDIA GeForce 200-series GPUs. Our model

identifies GPU program bottlenecks and quantitatively ana-

lyzes performance, and thus allows programmers and archi-

tects to predict the benefits of potential program optimiza-

tions and architectural improvements. In particular, we use

a microbenchmark-based approach to develop a through-

put model for three major components of GPU execution

time: the instruction pipeline, shared memory access, and

global memory access. Because our model is based on the

GPU’s native instruction set, we can predict performance

with a 5–15% error. To demonstrate the usefulness of the

model, we analyze three representative real-world and al-

ready highly-optimized programs: dense matrix multiply,

tridiagonal systems solver, and sparse matrix vector mul-

tiply. The model provides us detailed quantitative analysis

on performance, allowing us to understand the configura-

tion of the fastest dense matrix multiply implementation and

to optimize the tridiagonal solver and sparse matrix vec-

tor multiply by 60% and 18% respectively. Furthermore,

our model applied to analysis on these codes allows us to

suggest architectural improvements on hardware resource

allocation, avoiding bank conflicts, block scheduling, and

memory transaction granularity.

1 Introduction

Since 2002, the massively parallel GPU has evolved

from a graphics-specific accelerator to a general-purpose

computing device. With the advent of C-based program-

ming environments like CUDA [1] and OpenCL [2], an ac-

tive research and development community has formed to

develop high-performance general-purpose applications for

GPUs [3]. However, compared to an enormous amount of

efforts devoted to application development, little has been

done on supporting tools for performance profiling and

analysis. Commercial program profiling tools such as ATI

Stream Profiler [4] and NVIDIA Parallel Nsight [5], along

with academic GPU functional simulators [6, 7], are lim-

ited to providing program statistics only, but do not relate

these statistics to program performance. Therefore, the hard

work of identifying program bottlenecks and estimating the

benefits of potential optimizations is done by programmers’

paper-and-pencil analysis. As well, GPU architects need to

evaluate their architecture designs against real-world appli-

cations to help guide architectural improvements.

In this paper, we describe a workflow that analyzes GPU

program performance in a quantitative way, and thus allows

programmers and architects to identify the performance bot-

tlenecks and their causes, and predict the benefits of poten-

tial program optimizations and architectural improvements.

In particular, we make the following contributions in this

paper. First, we develop a microbenchmark-based perfor-

mance model for three major components of GPU applica-

tion runtime: the instruction pipeline, shared memory ac-

cess, and global memory access. Second, we demonstrate

how the model could guide programmers to optimize three

representative real-world applications respectively limited

by these three components. Third, by analyzing the perfor-

mance of these applications, our model suggests architec-

tural improvements on hardware resource allocation, avoid-

ing bank conflicts, block scheduling, and memory transac-

tion granularity. Fourth, to the best of our knowledge, this is

the first modeling work based on a native GPU instruction

set, which is critical for the accuracy of our model.

Baghsorkhi et al. [8] and Hong and Kim [9] recently

authored excellent studies on GPU performance modeling.

We see several major differences between these studies and

our work. First, instead of trying to build an analytical

model based on an abstraction of GPU architecture and then

verifying the model by microbenchmarks, we adopt the re-

verse strategy. We first design microbenchmarks, observe

the benchmark results, and then derive a simple throughput

model respectively for instruction pipeline, shared memory,

and global memory costs. This microbenchmark-based ap-

proach allows us to observe and consider only the archi-

tecture and programming factors that are most relevant to

performance, and make sure our model complies with the

real program behavior. Second, the focus of these previ-

ous two studies is the prediction of program execution time,

while our focus is on identifying performance bottlenecks in

a quantitative way and guiding programmers and architects

for optimizations. Third, our model is based on a native

GPU instruction set instead of the intermediate PTX [10] as-

sembly language or a high-level language. Simulating only

the PTX instruction set leads to poor accuracy, because PTX

code is not run directly on GPU hardware but instead is fur-

ther compiled to native machine instructions where signif-

icant compiler optimizations are applied [6]. Fourth, these

two studies are mainly based on static program statistics,

while ours is based on dynamic program statistics collected

from the Barra simulator, which enables us to handle data-

dependent applications.

Compared to a set of recent studies on performance auto-

tuning by empirical search [11, 12, 13, 14, 15], we provide

an alternative optimization solution. Certainly search-based

approaches are a powerful tool for optimization, but we note

two disadvantages of such an approach. First, they provide

little insight into real program behavior and architectural

evaluation. Second, they require programmers to write pro-

grams in a parameterized way to accommodate various tun-

ing parameters such as the granularity of parallelism, flex-

ible memory access patterns, the level of loop unrolling,

and application-specific parameters. In contrast, our goal

is to build a performance model that guides programmers to

write the right program directly, rather than write all possi-

bilities of a program and then search for the best.

The rest of the paper is organized as follows. Section 2

reviews the GPU architecture and programming model.

Section 3 describes our modeling methodology. Section 4

conducts micro-benchmarks for GPU performance mod-

eling. Section 5 demonstrates the usefulness our model

against three case studies. Section 6 concludes and de-

scribes future work.

2 GPU Architecture and Programming

Model

Modern GPUs are throughput-oriented devices made up

of hundreds of processing cores. They maintain a high

throughput and hide memory latency by multi-threading be-

tween thousands of threads. The GPU is a two-level hi-

erarchical architecture. It is made of vector processors at

the top level, termed streaming multiprocessors (SMs) for

NVIDIA GPUs and SIMD cores for AMD GPUs. Each vec-

tor processor contains an array of processing cores, termed

scalar processors (SPs) for NVIDIA GPUs and stream pro-

cessing units for AMD GPUs. All processing cores inside

one vector processor can communicate through an on-chip

user-managed memory, termed shared memory for NVIDIA

GPUs and local memory for AMD GPUs.

The CUDA [1] and OpenCL [2] APIs share the

same SPMD (Single Program Multiple Data) programming

model. CUDA virtualizes SMs as blocks (equivalent to

work-groups in OpenCL) and SPs as threads (equivalent

to work-items in OpenCL), which enable programmers to

run thousands of threads and blocks across different gener-

ations of GPUs regardless of the number of physical pro-

cessors. A key concept of the CUDA programming model

is the warp, equivalent to the wavefront in AMD GPUs. A

warp is a group of 32 threads that execute in lockstep in a

SIMD fashion. Because the GPU architecture shares a sin-

gle instruction unit for all threads in a warp, a warp is the

smallest unit of work a GPU issues. As a result, problems

with less than 32-way parallelism will still have 32 threads

running, some of which will not do useful work.

In this paper, although we focus on the CUDA-enabled

NVIDIA GTX 285 GPU, we believe our performance mod-

eling methodology is also applicable to any GPU architec-

ture and GPU programming API. However, certain adapta-

tions may be required. For example, AMD GPUs use VLIW

(not scalar) cores in each vector processor. In this case, we

need to add the ability to handle packed VLIW instructions.

3 Performance Modeling and Analysis

Methodology

The traditional GPU performance model widely used for

program optimization is at the algorithmic level. In this

work, we redefine this model at the instruction execution

and GPU architecture level for more accurate performance

analysis. In the traditional model, programmers calculate

the sustained computational rate and memory bandwidth

based on the measured program’s execution time and al-

gorithmic complexity. From this, they infer if the program

is compute-bound or memory-bound by comparing the sus-

tained compute/memory performance with the peak GPU

performance. If the program is memory-bound, possible

optimizations are to reduce the number of memory transac-

tions, or to trade computations for memory bandwidth, and

vice versa for compute-bound program.

However, this high-level model can only give a rough

idea of performance and in many cases fails to identify per-

formance bottlenecks. We note several reasons for this.

First, instructions used for actual computations are only a

part of the entire executed instruction sequence; others in-

clude instructions for control, address calculation, mem-

ory operation, and so on. Therefore, a program can be

instruction-throughput-bound instead of compute-bound if

it has a low computational density. Second, a set of mem-

ory transactions at an algorithmic or program level may

split into multiple transactions at the hardware level if they

are not in a continuous memory segment. Third, the tradi-

General program Barra Dynamic instructions
(GPU native code) Info extractor

Number of instructions of
each type, shared memory

transactions, and global
memory transactions

Performance
model

Runtime prediction for each component
Bottleneck component

Instruction/memory throughput
Instruction time breakdown

Computational density
Coalescing efficiency
Bank conflicts penalty

Number of warps per SM

NVCC

Number of warps per SMRegister, shared
memory usage

Instruction pipeline and shared
memory micro-benchmarks

Hardware resources

Synthetic global memory benchmarkCUBIN
Generator

Start

Figure 1: Our performance modeling workflow. Tools in italics are developed by us. The CUBIN generator generates synthetic benchmarks based on GPU

native code. The info extractor takes the dynamic instruction count from Barra and generates inputs for the three components of our performance model:

the instruction pipeline, shared memory, and global memory.

tional model does not take into account the effects of on-

chip shared memory and bank conflicts.

To address these issues, we develop a performance

model at an instruction and architecture level. Our model

simulates the performance of three major components of

GPU performance: the instruction pipeline, shared memory

access time, and global memory access time. By estimat-

ing the time spent on each component, our model identifies

the program bottleneck as the component spending most

of the time. We assume the time spent by non-bottleneck

components is covered by the bottleneck component, based

on two reasons, (1) the GPU allows simultaneous instruc-

tion, shared-memory, and global-memory operations, and

(2) the design philosophy of GPU is to hide memory la-

tency by context switching between independent warps, and

thus able to achieve near-perfect overlapping, instead of be-

ing held by intra-warp dependencies. This assumption will

under-estimate the total execution time when there are in-

sufficient warps and scarce independent instructions inside

a warp. We divide a program into multiple stages by syn-

chronization barriers. If there is only one block on a stream-

ing multiprocessor (SM), we serialize all stages divided by

synchronization barriers, and identify a performance bottle-

neck for each stage. Because GPU synchronization is local

to a block, if there are multiple blocks, we assume different

stages could still be overlapped, and we estimate a single

performance bottleneck for the whole program. This treat-

ment of synchronization’s effect on multiple blocks will

give better-than-reality performance as we will show later

in the case studies, because synchronization decreases the

number of independent warps in a block and thus drops the

instruction and shared memory throughput.

We base each component’s model on micro-benchmarks.

For instruction pipeline modeling, we classify instructions

into different types based on how expensive they are. Then

we run micro-benchmarks to estimate the pipeline through-

put of each instruction type at a different amount of warp-

level parallelism. For a given general program, we calculate

its execution time as a linear combination of the time spent

on each instruction type. For shared memory modeling, we

measure the sustained bandwidth at different amounts of

warp-level parallelism. For a given general program, we

first use bank conflict information to correct the number

of memory transactions derived by program statistics, and

then we estimate the time by using the bandwidth at a cor-

responding amount of warp-level parallelism. To estimate

the global memory bandwidth of a given general program,

we run a synthetic benchmark of the same configuration.

We develop a memory transaction simulator to compute

the number of transactions at the hardware level. We use

the functional simulator Barra [6] to generate the dynamic

program execution information on how many times each

instruction is executed. Then we use this information to

generate the number of dynamic instructions of each type,

the number of shared memory transactions, the number of

global memory transactions, and the number of stages di-

vided by synchronization barriers. Figure 1 shows our per-

formance modeling workflow.

Our model guides programmers and architects by pro-

viding them detailed quantitative performance informa-

tion on each of the architecture components: instruction

pipeline, shared memory, and global memory. By compar-

ing the time spent on each component, we identify which

component is the performance bottleneck. We can further

infer if this bottleneck is removed, what will be the next

component that becomes the new bottleneck. After a bot-

tleneck is identified, we provide information to track down

the causes of the bottleneck. For instruction-pipeline-bound

programs, we can identify the following possible causes:

(1) low computational density, (2) expensive instructions

such as rcp, cos, log, and (3) insufficient parallel warps.

For shared-memory-bound programs, the possible causes

are: (1) bank conflicts, (2) shared memory traffic generated

by bookkeeping instructions, and (3) insufficient parallel

warps. For global-memory-bound programs, the causes can

be: (1) insufficient parallelism to cover the memory latency,

and (2) uncoalesced memory accesses and large memory

transaction granularity. By identifying these causes of the

bottleneck, our model motivates programming or architec-

tural solutions.

Table 1: Instruction types

Instruction type Number of functional units Example instructions

Type I 10 mul

Type II 8 mov, add, mad

Type III 4 sin, cos, log, rcp

Type IV 1 double precision floating point

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Type I Type II Type III Type IV

Instruction throughput (Giga instructions / sec)

Number of warps per SM

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Bandwidth (GB/sec)

Number of warps per SM

Figure 2: Instruction throughput for various instruction types (left) and shared memory bandwidth (right) as a function of warps per SM.

4 Performance Modeling

In this section, we describe the micro-benchmarks we

designed to understand and model the performance of the

instruction pipeline, shared memory, and global memory.

Since the instruction set of native machine code is not pub-

licly documented, we use the disassembler Decuda devel-

oped by van der Laan [16], on which Barra [6] is based as

well. With the assistance of Decuda, we build a tool to mod-

ify the original binary instructions, assemble the modified

instructions back to the binary code sequence, and finally

embed the modified code into the execution file. This tool

enables us to avoid compiler interference such as dead code

elimination, and thus to develop binary code that exercises

the GPU exactly the way we intend.

4.1 Instruction Pipeline

GPUs hide pipeline and memory latency by executing

many parallel threads in an interleaved fashion. If the in-

struction pipeline is fully saturated, we know it runs at

around the peak performance. The difficulty of modeling

the instruction pipeline performance lies in the non-ideal

situations, when the pipeline is under-utilized. The goal of

this section is to explain how we model these under-utilized

situations.

As discussed in Section 2, the smallest unit of work a

GPU issues is a warp of 32 threads. The GPU primarily re-

lies on inter-warp, rather than intra-warp, instruction-level

parallelism, and the instruction window inside a warp is

very small. Therefore, the major source of insufficient in-

structions to feed the pipeline is from insufficient warps.

The GPU architecture we study here has several hardware

ceilings per SM (streaming multiprocessor) that may limit

the number of available warps to run: 16,384 registers;

16 kB of memory; 512 threads; 8 resident blocks; and 32

warps. Programs that reach these limits, either within one

or across many blocks on a single SM, cannot launch more

work.

We classify all instructions by the number of functional

units that can run that instruction in an SM as shown in Ta-

ble 1. Note that there are 10 multipliers in a SM (8 from

the floating point units and 2 from the special functional

units). The theoretical peak throughput of an instruction

is calculated by
numberFunctionalUnits·frequency·numberSM

warpSize
. For ex-

ample, the peak throughput of MAD (fused multiply-add)

is 8·1.48 GHz·30
32

= 11.1 Giga instructions/s. Since one MAD

is 2 floating point operations, the theoretical peak floating-

point performance is 11.1 · warpSize · 2 = 355.2 · 2 =
710.4 GFLOPS. Each type of instruction has a different

cost depending on how many functional units there are for

this instruction. We write micro-benchmarks that repeat-

edly run an instruction of each type. By choosing the size

of blocks and the number of blocks, we can control the num-

ber of warps resident in a SM. We measure the instruction

throughput for various amounts of parallel warps as shown

in Figure 2, left. Note that the more functional units there

are, the more parallel warps we need to cover the pipeline

latency. The saturation point of type II instructions is 6

warps, which suggests the number of instruction pipeline

stages is around 6.

4.2 Shared Memory

Each SM has 16 KB of shared memory organized in 16

banks. The theoretical peak throughput is calculated as

numberSP ·numberSM · frequency ·4 B = 1.48 GHz ·8 ·30 ·

4 B = 1420 GB/s. The shared memory micro-benchmarks

repeatedly move data from one shared memory region to

another. We measure the shared memory throughput for

various numbers of warps (Figure 2, right), as we did for

modeling the instruction throughput. Comparing the two

graphs in Figure 2, we notice that shared memory has a

longer memory pipeline than the instruction pipeline, and

thus needs more parallel warps to cover its latency.

In shared memory, adjacent 4-byte words are stored in

adjacent banks. If multiple threads access different loca-

tions in the same bank, all memory accesses will be serial-

ized. For example, if 3 threads read from different locations

in the same bank, there would be 3 memory transactions, in-

stead of 1 in the case they read from different banks. Since

the functional simulator Barra [6] does not collect bank con-

flicts information, we wrote an automated program to de-

rive the effective number of shared memory transactions by

specifying the degree of bank conflicts of each shared mem-

ory access.

4.3 Global Memory

Since global memory is shared across SMs, we do not

model it against the number of parallel warps as we did

for the instruction pipeline and shared memory. We found

that the global memory bandwidth is sensitive to three ma-

jor factors: the number of blocks, the number of threads

per block, and the number of memory transactions per

thread, as shown in Figure 3. To saturate the bandwidth,

we need a sufficient number of total memory transactions,

which we can increase by using either more blocks, or

more threads per block, or more memory requests per

thread. The theoretical peak bandwidth is calculated as
memoryFrequency·busWidth

8 bits/byte
= 2.484 GHz·512 bits

8 bits/byte
= 160 GB/s. The

30 SMs on the GTX 285 are grouped into 10 clusters, where

the 3 SMs in a cluster share a single memory pipeline. This

is why we see sawtooth patterns with a period of 10 when

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31 36 41 46 51 56

512T, 256M
256T, 256M
256T, 128M
128T, 256M
128T, 128M
64T, 256M
512T, 2M
256T, 2M

Bandwidth (GB/sec)

Number of blocks

Figure 3: Global memory throughput at various block sizes, numbers of

blocks, numbers of memory transactions per thread. In the legend, T stands

for threads, and M stands for memory transactions per thread.

the bandwidth is near the peak, and for the best through-

put, the number of blocks should be a multiple of 10. The

figure also suggests that blocks are scheduled uniformly to

the clusters. When the number of blocks is getting larger,

this leftover effect becomes weaker (note the figure shows

that the fluctuation becomes smaller as the number of blocks

grows). When there are insufficient memory transactions to

cover the latency of the memory pipeline, it is almost free

to have more memory transactions. This is why the plot is

almost linear with the number of blocks when it is far below

the peak bandwidth.

Since the global memory behavior is fairly complex, it is

hard to accurately simulate it with a simple model at a high

level as we did for the instruction pipeline and shared mem-

ory. To accurately estimate the global memory bandwidth

of a general program, we instead run a synthetic benchmark

of the same number of blocks, block size, and the number

of memory transactions per thread. However, this approach

does not tell the whole story, because a memory transac-

tion at instruction level may split into multiple transactions

at hardware level based on the memory coalescing rule. To

address this issue, we developed a memory transaction sim-

ulator to simulate the number of hardware transactions.

CUDA issues memory transactions at a granularity of

a half-warp. For CUDA architectures of version 1.2 and

1.3, the following coalescing protocol is used: (1) for each

memory transaction, find the memory segment that con-

tains the address requested by the lowest numbered thread;

(2) find all other threads whose requested address is in this

segment; (3) reduce the segment size if possible; (4) re-

peat the above process until all threads in a half-warp are

served. Currently the minimum segment size CUDA sup-

ports for floating point numbers is 32 bytes. We implement

this protocol in our transaction simulator whose input is the

requested memory addresses of all threads.

Table 2: Register and shared memory (smem) usage per thread for various sub-matrix sizes in dense matrix multiply, and the number of blocks that can fit

into one multiprocessor given the particular per-thread constraint. The maximum number of blocks per multiprocessor is 8. A block consists of 64 threads

or 2 warps for all three cases.

sub-matrix size register smem # blocks (register) # blocks (smem) # blocks # active warps

8×8 16 348 16 47 min(16, 348, 8) = 8 8 · 2 = 16

16×16 30 1088 8 15 min(8, 15, 8) = 8 8 · 2 = 16

32×32 58 4284 3 3 min(3, 3, 8) = 3 3 · 2 = 6

5 Case Studies

In this section, we use our performance model to study

and optimize three applications: dense matrix multiply,

tridiagonal systems solver, and sparse matrix vector mul-

tiply. These three applications represent classes of appli-

cations that are respectively bound in performance by the

instruction pipeline, shared memory, and global memory.

5.1 Dense Matrix Multiply

We show in this section that our model identifies the

performance bottlenecks for various sub-matrix sizes, and

demonstrates the additional costs of shared memory ac-

cesses for larger sub-matrices. The model further suggests

hardware optimizations to improve performance.

We study a computational procedure developed by

Volkov and Demmel [17]. The procedure divides the re-

sult matrix into sub-matrices, with each sub-matrix mapped

to a block. The major improvement introduced by Volkov

and Demmel is reordering the computational loops so that

the sub-matrix of only one input matrix needs to be stored

in shared memory, instead of sub-matrices from both input

matrices. However, their implementation uses a sub-matrix

of fixed size 16x16. It is not obvious why this size out-

performs other sizes. Furthermore, this computational pro-

cedure only achieves 56% of GPU peak performance, and

lacks a performance analysis on why this is the case. The

goal of this section is to answer these questions.

We first measure and simulate the performance of 8×8,

16×16, and 32×32 sub-matrix sizes. Ideally a larger sub-

matrix would increase the performance for two reasons: (1)

it decreases the redundant memory loads; Figure 4(a) shows

that the number of global memory transactions are reduced

by 45% and 40% respectively from 8×8 to 16×16 and from

16×16 to 32×32, and (2) it increases the computation den-

sity; Figure 4(a) also shows that the total dynamic instruc-

tion count decreases as we use larger sub-matrices, while

the MAD instruction count remains constant (matrixSize3

warpSize
).

However, in reality, a size of 16×16 actually achieves the

best performance (Figure 4(b)).

Figure 4(b) also shows the simulated performance for

the three sub-matrix sizes. We note that for the sub-matrix

sizes 8×8 and 16×16, the performance is bottlenecked by

the instruction pipeline, but for the sub-matrix size 32×32,

the performance bottleneck shifts to shared-memory access.

Although the 32×32 case has a similar shared memory

count as the 16×16 case (Figure 4(a)), its total time spent on

shared memory access is significantly larger (Figure 4(b)).

The reason for this lies in the hardware resource usage for

the three cases shown in Table 2. The register and shared

memory demands for the 32×32 case are so high that the

number of resident blocks in a multiprocessor is reduced

from 8 to 3, which is equivalent to 6 warps. This leads to

insufficient parallelism to hide the latency of the instruc-

tion pipeline and the shared memory pipeline, with a corre-

sponding decrease in performance.

Now that we know how many warps can run per

SM (streaming multiprocessor), how does this translate to

overall performance? For this, we return to the micro-

benchmarks we calculated earlier (Figure 2). For {6, 16,

32 (max)} active warps per block, we expect an instruc-

tion throughput of {8.39, 9.05, 9.33} gigainstructions/s and

a shared memory bandwidth of {870, 1112, 1165} GB/s.

Note the sustained memory bandwidth with 6 warps for the

32×32 case is considerably lower than that with 16 warps

for the 8×8 or 16×16 cases. We also note that shared mem-

ory is more vulnerable to insufficient parallelism than the

instruction pipeline, since the instruction throughput does

not drop much from 16 warps to 6 warps. It is also worth

mentioning that our simulated time is about 14% less than

the measured time, as shown in Figure 4(b), because we did

not consider the synchronizations’ effects on performance.

Synchronization barriers in a block hold the matrix compu-

tation until all necessary data is loaded to shared memory,

so the actual amount of parallel warps is fewer than the to-

tal number of warps, which results in even lower instruction

and shared memory throughput in reality.

Finally, we can also address the reasons why matrix mul-

tiply only achieves 56% of its theoretical peak performance:

(1) the sustained instruction throughput is only 81% of the

peak throughput, because the instruction pipeline is not per-

47.02

41.71
38.81

33.55 33.55 33.55
34.43 34.28 34.17

4.75
2.65

1.61
0

5

10

15

20

25

30

35

40

45

50

8x8 16x16 32x32

Instruction MAD Shared Global

Number of instructions (x1,000,000)

(a) Numbers of total instructions, MAD, shared memory and global

memory transactions (measured per warp).

5.2
4.6 4.64.4

2.5

1.5

4.0 3.9

5.0

6.0
5.4 5.6

0

1

2

3

4

5

6

7

8x8 16x16 32x32

Instruction

Global

Shared

Measured

Time (milliseconds)

356 GFLOPS

399 GFLOPS 397 GFLOPS

(b) Measured performance and simulated performance breakdown in

terms of instruction execution, shared memory access, and global

memory access.

Figure 4: Performance and program statistics comparison for various sub-

matrix sizes: 8×8, 16×16, and 32×32. The two input matrices have the

same dimensions of 1024×1024.

fectly saturated, and (2) although 80% of the total instruc-

tions are MAD instructions that are used for actual compu-

tations, the rest are bookkeeping instructions used for pro-

gram control, address calculation, and memory operations.

With these results, we can draw two conclusions for pos-

sible architectural improvements. First, although the max-

imum number of resident warps in a multiprocessor is 32,

the maximum number of resident blocks is only 8, which

limits the number of blocks to 8, or the number of warps to

16, for the 8×8 and 16×16 cases. If the maximum number

of blocks was increased to 16 (without changing any other

resources), there would be more resident parallel warps to

achieve better instruction and shared memory throughput.

Second, if we increase the register and shared memory re-

sources per multiprocessor, we can fit more warps onto a

multiprocessor to keep the same shared memory throughput

for the 32×32 case, but achieve better performance because

1 2 3 4 5 6 7 8

2' 4' 6' 8'

4'' 8''

8'''

4 threads
2-way bank conflicts

2 threads
4-way bank conflicts

1 threads
8-way bank conflicts

8 equations

Figure 5: Communication pattern of cyclic reduction (forward reduction

phase only) for solving an 8-equation system. A dot stands for an equation

and n′ stands for an updated equation n.

of its higher computational density.

5.2 Tridiagonal Solver

In this section, we demonstrate our model’s usefulness

on simulating shared memory throughput, quantifying the

effects of bank conflicts on performance, and estimating

the potential benefit of an optimization technique to remove

bank conflicts. We further verify that this technique does

improve performance by 1.6× as expected. Our perfor-

mance analysis also indicates a need for hardware improve-

ments on avoiding bank conflicts and block scheduling.

Tridiagonal linear systems are of importance to many

problems in numerical analysis and computational fluid dy-

namics, and cyclic reduction is one of the most popular par-

allel algorithms to solve such a system. A traditional either-

compute-or-memory bound performance analysis approach

is not applicable to this application, because the application

is neither computation-bound nor memory-bound, and can

only achieve a computational rate of 6 GFLOPS and a band-

width of 7 GB/s.

In previous work in this area, Zhang et al. [18] note that

GPU-based cyclic reduction suffers from shared memory

bank conflicts and propose a more complex hybrid solver

that combines cyclic reduction and its variant to alleviate

this problem. Goeddeke et al. [19] instead propose an inter-

leaving addressing scheme to completely eliminate the bank

conflicts. Alternatively, we propose and evaluate a simple

but effective padding technique to remove bank conflicts.

Cyclic reduction has two phases: forward reduction and

backward substitution. Because the two phases have a sim-

ilar communication pattern, we only show the forward re-

duction phase in Figure 5. For a system of size n, forward

reduction requires log2(n) steps to consecutively reduce the

original system to a 1-equation system. All systems are first

loaded into shared memory, then solved on chip. As the

memory access stride doubles every step, the number of

bank conflicts are doubled as well, from 2-way bank con-

flicts in step one, to 4-way in step two, to 8-way in step

three, and so on.

Figure 6(a) shows the simulated performance breakdown

for pure cyclic reduction (CR). In this example, we solve

512 512-equation systems in parallel with systems mapped

to blocks and equations mapped to threads. There are

0

0.01

0.02

0.03

0.04

0.05

0.06

step 0 step 1 step 2 step 3 step

4/5/6/7/8/9

Global Shared Instruction

Time (milliseconds)

8 warps 8 warps 4 warps 2 warps 1 warp

(a) Cyclic reduction

0

0.01

0.02

0.03

0.04

0.05

0.06

step 0 step 1 step 2 step 3 step

4/5/6/7/8/9

Global Shared Instruction

Time (milliseconds)

8 warps 8 warps 4 warps 2 warps 1 warp

(b) Cyclic reduction with no bank conflicts

Figure 6: Simulated performance breakdown for CR and CR-NBC for

solving 512 512-equation systems (forward reduction phase only). Step

0 loads the system into shared memory. The system solving begins at Step

1.

log2(512) = 9 steps to reduce the system to a 1-equation

system. In the first step, 256 parallel threads work on 256

even-indexed equations and their two neighbors. In the sec-

ond step, the number of parallel threads is reduced to 128.

The algorithm reduces the amount of parallel threads each

step until it reaches a single thread. However, since the min-

imum unit of work on the GPU is a warp of 32 threads, steps

4–9 have identical performance characteristics, so we show

them together in Figure 6. Note that Figure 6(a) shows that

a pure cyclic reduction implementation has a large cost from

shared-memory access.

Due to the limited amount of shared memory, we can

only fit one block per multiprocessor. Since there is only

one resident block on a multiprocessor, and we must place a

synchronization barrier between loading a system to shared

memory and solving the system, the global memory loads

and subsequent computations are serialized. This is in con-

trast to the previous matrix multiply example, in which

global memory access and computation are overlapped,

1,029

723

470

330
397

0

200

400

600

800

1000

1200

step 1 step 2 step 3 step

4/5/6/7/8/9

average

Shared memory bandwidth (GB/s)

(a) Sustained shared memory bandwidth under various numbers of

parallel warps.

139,264 139,264 139,264 139,264

69,632

34,816

17,408
8,704

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

step 1 step 2 step 3 step

4/5/6/7/8/9

With bank conflicts No bank conflicts

Number of shared memory transactions

(b) Number of shared memory transactions for the algorithmic steps

in forward reduction.

Figure 7: Sustained shared memory bandwidth and the number of shared

memory transactions.

because of multiple resident blocks (although there are

synchronization barriers as well). Because of additional

synchronization barriers between neighboring algorithmic

steps, all steps are serialized. As shown in Figure 6(a), the

performance of CR is bound by global memory access in

step 0, by instruction throughput in step 1, and by shared

memory access in all subsequent steps.

As the algorithmic step keeps reducing the amount of

work by half each step, the number of shared memory trans-

actions should have been reduced by half as well. However,

because the number of bank conflicts doubles each step, the

number of shared memory transactions remains constant, as

illustrated in Figure 7(b). Making this bad situation worse,

the sustained shared memory bandwidth drops, as there are

fewer and fewer active warps after each step (Figure 7(a)).

The average sustained bandwidth is only 397 GB/s; steps 4–

9 suffer from the lowest sustained bandwidth. Figure 6(a)

shows that if we could remove the bank conflicts, the new

bottleneck for steps 2–9 would be the instruction pipeline,

0.757

0.468

0.796

0.434

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Measured Simulated Measured Simulated

Measured total time Shared Global Instruction

Time (milliseconds)

CR CR-NBC

Figure 8: Measured and simulated performance of CR and CR-NBC.

and the performance could be significantly improved.

We implemented a new CR with no bank conflicts (CR-

NBC) by a padding technique. Since there are 16 shared

memory banks, we pad 1 element per 16 elements, which

redirects all conflicted accesses to available banks. Fig-

ure 6(b) shows that for CR-NBC, the first step is bound

by instruction throughput because of its more complex

addressing calculation, and now all subsequent steps are

bound by instruction throughput as well because bank con-

flicts are removed. CR-NBC effectively removed all bank

conflicts and at the same time introduced minimal extra in-

struction overhead: CR-NBC has a similar instruction count

to CR. The padding technique has shifted the bottleneck

from shared memory to the instruction pipeline, which im-

proves the performance of CR by 1.6×. However, the ef-

fective computational rate is still low because of two rea-

sons: (1) the insufficient warp-level parallelism during the

later stages of CR’s forward reduction phase, and (2) the

low computational density of CR/CR-NBC (there are only

about one tenth of total instructions are doing actual com-

putations).

Figure 8 shows the measured and simulated perfor-

mance, which agree closely within a 7% error. The time of

CR is mainly dominated by shared memory access and the

time of CR-NBC is mainly dominated by instruction exe-

cution. There is a small amount of time for global memory

access that cannot be overlapped by instruction execution,

and a small amount of instruction execution time from step

1 in CR when bank conflicts have not yet become a bottle-

neck.

It is fair to say that the current shared memory organi-

zation is well-suited for simple, structured problems, but

as GPUs increasingly target more irregular, complex prob-

lems, our performance model can help identify the impact

of changing this organization. Two architectural improve-

ments could deliver better performance: (1) change the

number of shared memory banks from 16 to a prime num-

(a) A 12x12 sparse matrix.

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 9

Thread 10

Thread 11

Thread 12

(b) Matrix stored in the ELL for-

mat. Padded entries are repre-

sented as squares.

Thread 1

Thread 1

Thread 1

Thread 2

Thread 2

Thread 2

Thread 3

Thread 3

Thread 3

Thread 4

Thread 4

Thread 4

(c) Straightforward ELL storage

with block processing. Rows

are divided into three interleaved

groups, each specified by a gray

level.

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 3

Thread 4

(d) Interleaved ELL storage with

block processing. Rows of the

same group are placed together.

Figure 9: ELLPACK (ELL) storage formats.

ber to avoid bank conflicts; (2) introduce a mechanism to re-

lease unused hardware resources early as a block uses fewer

and fewer threads. With this, we could schedule subsequent

blocks onto SMs to increase warp-level parallelism and de-

liver better instruction and shared memory throughput.

5.3 Sparse Matrix Vector Multiply

In this section, we use a memory-bound application to

show our model’s ability to simulate the number of hard-

ware transactions. This ability enables us to make an opti-

mization that otherwise would not be noticed. Our model

also suggests that a smaller transaction granularity would

improve performance further.

Sparse matrix vector multiply (SpMV) lies in the heart

of iterative methods for numerous scientific computing ap-

plications. Bell and Garland [20] experimented with a vari-

ety of matrix formats to increase SpMV performance on the

GPU. They found that the ELLPACK (ELL) format [21]

enjoys coalesced memory access, and generally achieves

superior performance for matrices with more uniform num-

bers of row entries. The state-of-the-art work by Choi et

al. [14] improved the performance of ELL format by using

a blocked ELLPACK format (BELL). In this section, we

will show how our performance analysis tool guides us to

further improve the performance of BELL by 18%.

Figure 9(a) and Figure 9(b) respectively show a sparse

 Index 1 2 3 4 5 6 7 8 9 10 11 12
Thread 1

Thread 2

Thread 3

Thread 4

(a) Memory access order for straightforward vector storage

 Index 1 2 3 4 5 6 7 8 9 10 11 12
Thread 1

Thread 2

Thread 3

Thread 4

(b) Memory access order for interleaved vector storage

Figure 10: Memory access order for straightforward vector storage and

interleaved vector storage. The vector entries grouped in a square share the

same memory transaction. In this example, we use a memory transaction

granularity of 8 bytes and a transaction issue granularity of 2 threads.

matrix and the same matrix stored in the ELL format. In

the ELL format, we first compress the matrix entries to the

left side and then pad all rows so that we have a rectangular

ELL matrix. We store this ELL matrix column by column,

and pad at the end of each column to meet the alignment re-

quirement. We also store the corresponding column index

for each matrix entry. The GPU program maps each row

to a thread. The column-by-column matrix storage allows

coalesced memory access, because each continuous thread

accesses a continuous memory region (Figure 9(b)). To pro-

cess each matrix entry in the ELL format, we load three

values from global memory: a matrix entry, a column in-

dex, and a vector entry. The goal of the BELL format is to

reduce the amount of memory loads if a matrix has a block

structure. In the BELL format, we only store the column

index of the top-left entry for each block, and each GPU

thread processes a row of blocks. For the matrix shown in

Figure 9(a), to process each 3x3 block, we load 9 matrix en-

tries, 1 column index, and 3 vector entries. Thus the BELL

format reduces the column index loads to 1/9 and vector

entry loads to 1/3 of the ELL format.

Since each thread processes three continuous rows and

continuous threads access different memory regions, mem-

ory access becomes uncoalesced (Figure 9(c)). For coa-

lesced memory access, we must reorder the rows in an inter-

leaved fashion, so that continuous threads access contiguous

memory regions (Figure 9(d)). This interleaving technique

is natural for the matrix storage and is the same as what

Choi et al. suggest in their work [14].

Our tools indicated that global memory access was the

key to SpMV performance and specifically, that a signif-

icant impediment to peak throughput was the number of

uncoalesced memory accesses to vector entries. Thus we

4.00 4.00 4.00

4.00

0.44 0.44

6.69

5.01

2.33

4.00 4.00 4.00

4.00

0.44 0.44

4.55

3.63
2.01

4.00 4.00 4.00

4.00

0.44 0.44

4.00

1.33 1.33

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

32 16 4 32 16 4 32 16 4

Matrix entry Column index Vector entry

Number of bytes

ELL BELL+IM BELL+IMIV

(a) Simulated average number of bytes per matrix entry processing.

0

0.05

0.1

0.15

0.2

0.25

ELL BELL+IM BELL+IMIV

Measured Global 32 Global 16 Global 4 Instruction Shared memory MAD

Time (milliseconds)

(b) Measured performance and simulated performance breakdown for

three storage formats.

Figure 11: Simulated number of memory transactions, performance break-

down, and performance comparison. 32, 16, 4 respectively denote a mem-

ory transaction size of 32 bytes, 16 bytes, and 4 bytes. IM stands for

interleaved matrix. IV stands for interleaved vector. The analysis is for the

single precision case, in which we use 4 bytes per matrix/vector entry.

concentrated on optimizing these accesses. The key insight

from this focus was that it is better to store not only the

matrix but also the vector in an interleaved way. Memory

access to vector entries is uncoalesced anyway and depends

on the sparsity of the matrix. However, the intuition here is

that neighboring rows have similar entry positions, and the

more apart two rows are, the less chance they will share a

single memory transaction for vector entries. Interleaving

scatters the vector entries around so that they have a better

chance to be grouped in a single memory transaction.

Figure 10 shows the effects of interleaving. In this ex-

ample, for simplicity, we use a memory-transaction-issue

granularity of 2 threads, instead of 16 threads in the CUDA

case. We also use a memory transaction size granularity

of 8 bytes (2 4-byte vector entries), instead of 32 bytes in

the CUDA case. Figure 10(a) shows which vector entries

are accessed by each thread, which is decided by the sparse

15.9

23.4 23.4

32.0
33.7

37.7

0

5

10

15

20

25

30

35

40

ELL BELL+IM ELL+Cache BELL+IM+Cache BELL+IMIV BELL+IMIV+Cache

Performance (GFLOPS)

Figure 12: Performance comparison for different combinations of opti-

mization techniques in single precision.

matrix in Figure 9(a). In this case, there are no memory

transactions shared by the first group of two threads or the

second group of two threads. For example, the first element

accessed by thread 1 (entry 1) is too far from the first ele-

ment accessed by thread 2 (entry 7) to be grouped in a single

contiguous 8-byte memory transaction. However, the inter-

leaved vector storage shows 6 memory transactions shared

by thread 3 and thread 4 (Figure 10(b)). The distance be-

tween the first element accessed by thread 1 and the first

element accessed by thread 2 is decreased as well.

Figure 11(a) shows the average number of bytes required

to process a matrix entry generated by our memory transac-

tion simulator. We use a naturally 3x3 blocked sparse ma-

trix named QCD, from the benchmark suite of 14 sparse ma-

trices used in prior work by others [14, 20, 22]. In an ideal

situation, where all memory accesses are coalesced (equiv-

alent to a memory transaction size granularity of 4 bytes),

the ELL format requires 4 + 4 + 4 = 12 bytes to process

a single matrix entry. However, in reality the CUDA mem-

ory transaction size is 32 bytes, and the memory access to

vector entries is uncoalesced. This results in a memory ac-

cess requirement of 6.69 bytes per vector entry. We also

simulated a smaller transaction size, 16 bytes, which is not

supported by the current GPU. The smaller size reduces

the average number of bytes per vector entry to 4.55 bytes.

For the BELL format, because 3 × 3 = 9 entries share a

single column index, the bytes per column index is reduced

to 1/9. The interleaved vector storage significantly reduces

the bytes per vector entry. Figure 11(b) shows the measured

performance and simulated performance breakdown. The

error between the measured and the simulated performance

of bottleneck factor is within 5%. In all three cases, the

performance is bottlenecked by global memory access. We

also show that with a smaller transaction size of 16 bytes,

the performance would be improved. If the time of global

memory could be reduced even further, the new bottleneck

would be the instruction pipeline. However, we will be still

far from the peak GFLOPS rate of the GPU, because the

computational density of the program is so low that only

about 1/10 of total instructions (all of them are MAD in-

structions) are devoted to actual computations.

Although we have not built a texture cache simulator

into our model, we tried using texture cache for vector en-

tries, as what the two previous studies [14, 20] did. Fig-

ure 12 compares the performance of ELL, BELL+IM, and

BELL+IMIV in two cases, using texture cache or without

using texture cache. ELL+Cache and BELL+IM+Cache re-

spectively represents the best performance achieved by Bell

and Garland [20] and Choi et al. [14]. Our vector interleav-

ing optimization BELL+IMIV is very effective and it out-

performs the previous method even without using the tex-

ture cache. Our BELL+IMIV+Cache is 18% faster than the

the previous best BELL+IM+Cache.

6 Conclusion

Our quantitative performance model for the GPU allows

programmers and architects to identify optimization possi-

bilities in modern GPU programs and architectures. Today,

programmers do not know how effective an potential opti-

mization will be until they try it out. In contrast, our per-

formance analysis tool enables programmers to identify the

performance bottlenecks, foresee the benefit of removing a

certain bottleneck in a quantitative way, and decide if a po-

tential optimization is worth the programming efforts. From

an architecture design point of view, our performance analy-

sis tool is able to identify architectural shortcomings against

real-world applications, and suggest architectural improve-

ments on hardware resources allocation, block scheduling,

memory transaction granularity, and so on.

We believe our model has captured the GPU’s primary

performance factors, and we have showed a simulation ac-

curacy within 5–15% on three representative case stud-

ies. Our work has several limitations that we hope to ad-

dress with future research: (1) incorporate a cache model in

memory system simulation (for texture memory and Fermi

hardware caches), (2) develop a bank-conflict simulator

for more general cases, (3) model the synchronization bar-

rier’s effects on warp-level parallelism, and (4) identify and

model situations of non-perfect overlap of instruction exe-

cution, shared memory, and global memory access.

Acknowledgments

Thanks to Sylvain Collange for his support on the Barra

simulator, without which this work is impossible. Thanks

to Anjul Patney, Shubho Sengupta, Jonathan Cohen, Peng

Wang, Nathan Bell, Paulius Micikevicius, Everett Phillips,

and the anonymous reviewers for their helpful discussions

and suggestions. Thanks also to our funding agencies, the

HP Labs Innovation Research Program, the National Sci-

ence Foundation (Award 0541448), and the SciDAC Insti-

tute for Ultrascale Visualization, and to NVIDIA for equip-

ment donations.

References

[1] “NVIDIA CUDA compute unified device architecture,

programming guide,” http://developer.nvidia.com/.

[2] “The OpenCL specification,” http://www.khronos.org/

registry/cl/.

[3] “General-purpose computation using graphics hard-

ware,” http://www.gpgpu.org/.

[4] “ATI Stream Profiler,” http://developer.amd.com.

[5] “NVIDIA Parallel Nsight,” http://developer.nvidia.

com.

[6] S. Collange, D. Defour, and D. Parello, “Barra, a par-

allel functional GPGPU simulator,” Université de Per-

pignan, Tech. Rep. hal-00359342, Jun. 2009.

[7] G. Diamos, A. Kerr, and M. Kesavan, “Translat-

ing GPU binaries to tiered SIMD architectures with

Ocelot,” Georgia Institute of Technology, Tech. Rep.

GIT-CERCS-09-01, 2009.

[8] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D.

Gropp, and W. W. Hwu, “An adaptive performance

modeling tool for GPU architectures,” in Proceedings

of the 15th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP 2010).

ACM, Jan. 2010, pp. 105–114.

[9] S. Hong and H. Kim, “An analytical model for a GPU

architecture with memory-level and thread-level par-

allelism awareness,” in Proceedings of the 36th Inter-

national Symposium on Computer Architecture (ISCA

2009), Jun. 2009, pp. 152–163.

[10] A. Kerr, G. Diamos, and S. Yalamanchili, “A charac-

terization and analysis of PTX kernels,” in Proceed-

ings of the 2009 IEEE International Symposium on

Workload Characterization (IISWC 2009), Oct. 2009,

pp. 3–12.

[11] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton,

S. Z. Ueng, S. S. Baghsorkhi, and W. W. Hwu, “Pro-

gram optimization carving for GPU computing,” Jour-

nal of Parallel and Distributed Computing, vol. 68,

no. 10, pp. 1389–1401, Oct. 2008.

[12] Y. Liu, E. Z. Zhang, and X. Shen, “A cross-input adap-

tive framework for GPU program optimizations,” in

Proceedings of the 2009 IEEE International Sympo-

sium on Parallel Distributed Processing (IPDPS ’09),

May 2009.

[13] J. Meng and K. Skadron, “Performance modeling and

automatic ghost zone optimization for iterative sten-

cil loops on GPUs,” in ICS ’09: Proceedings of the

23rd International Conference on Supercomputing,

Jun. 2009, pp. 256–265.

[14] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-

driven autotuning of sparse matrix-vector multiply on

GPUs,” in Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP 2010). ACM, Jan. 2010, pp.

115–126.

[15] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,

J. Ramanujam, A. Rountev, and P. Sadayappan, “A

compiler framework for optimization of affine loop

nests for GPGPUs,” in ICS ’08: Proceedings of the

22nd Annual International Conference on Supercom-

puting, Jun. 2008, pp. 225–234.

[16] W. J. van der Laan, “Decuda and Cudasm, the cu-

bin utilities package,” 2009, http://github.com/laanwj/

decuda.

[17] V. Volkov and J. W. Demmel, “Benchmarking GPUs

to tune dense linear algebra,” in Proceedings of

the 2008 ACM/IEEE Conference on Supercomputing,

Nov. 2008, pp. 31:1–31:11.

[18] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal

solvers on the GPU,” in Proceedings of the 15th ACM

SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP 2010), Jan. 2010, pp.

127–136.

[19] D. Göddeke and R. Strzodka, “Cyclic reduction tridi-

agonal solvers on GPUs applied to mixed precision

multigrid,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 22, pp. 22–32, Jan. 2011.

[20] N. Bell and M. Garland, “Implementing sparse matrix-

vector multiplication on throughput-oriented proces-

sors,” in SC ’09: Proceedings of the 2009 ACM/IEEE

Conference on Supercomputing, Nov. 2009, pp. 18:1–

18:11.

[21] J. R. Rice and R. F. Boisvert, Solving elliptic problems

using ELLPACK. New York, NY, USA: Springer-

Verlag New York, Inc., 1984.

[22] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,

and J. Demmel, “Optimization of sparse matrix-vector

multiplication on emerging multicore platforms,” in

SC ’07: Proceedings of the 2007 ACM/IEEE Confer-

ence on Supercomputing, 2007, pp. 38:1–38:12.

