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ARTICLE

Quantitative single-cell proteomics as a tool
to characterize cellular hierarchies
Erwin M. Schoof 1,2,3,4,5,6,7✉, Benjamin Furtwängler 1,2,4,7, Nil Üresin1,2,4, Nicolas Rapin1,2,4,

Simonas Savickas3, Coline Gentil1,2, Eric Lechman 5,6, Ulrich auf dem Keller3, John E. Dick 5,6 &

Bo T. Porse 1,2,4✉

Large-scale single-cell analyses are of fundamental importance in order to capture biological

heterogeneity within complex cell systems, but have largely been limited to RNA-based

technologies. Here we present a comprehensive benchmarked experimental and computa-

tional workflow, which establishes global single-cell mass spectrometry-based proteomics as

a tool for large-scale single-cell analyses. By exploiting a primary leukemia model system, we

demonstrate both through pre-enrichment of cell populations and through a non-enriched

unbiased approach that our workflow enables the exploration of cellular heterogeneity within

this aberrant developmental hierarchy. Our approach is capable of consistently quantifying

~1000 proteins per cell across thousands of individual cells using limited instrument time.

Furthermore, we develop a computational workflow (SCeptre) that effectively normalizes the

data, integrates available FACS data and facilitates downstream analysis. The approach

presented here lays a foundation for implementing global single-cell proteomics studies

across the world.
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O
ver the last few years, single-cell molecular approaches
such as RNAseq (sc-RNAseq) have revolutionized our
understanding of molecular cell biology1–5. Single-cell

resolution has proven to be of utmost importance, particularly
within cancer biology, where it has long been known that tumors
consist of a multitude of cell types, all acting in concert6–9.
Similarly, in mammalian organs such as the hematopoietic sys-
tem, it is the complex interplay of various cell types and differ-
entiation stages that defines a healthy or malignant state10–17.
While sc-RNAseq methods have been informative about the RNA
landscapes in a plethora of biological systems and have demon-
strated high clinical relevance18–20, their readout is limited as a
proxy for protein levels21,22. Since proteins are the cellular
workhorses, there is much knowledge to be gained from deci-
phering cellular mechanisms at the protein level, either through
enzyme activity, post-translational modifications, or protein
degradation/proteolysis. Detection of proteins in single-cells was
first enabled by antibody-based technologies like Western blot or
flow and mass cytometry; however, these methods depend on the
availability of high-quality antibodies and are inherently limited
in their multiplexing capacity23.

Recent advances in liquid chromatography mass spectrometry
(LC–MS)-based proteomics methods have mitigated major lim-
itations in the sensitivity and throughput required for LC–MS-
based single-cell proteomics (scMS). Budnik and colleagues ori-
ginally proposed the use of isobaric labeling for single-cell pro-
teomics, called ScoPE-MS24 and the development was continued
with ScoPE225. Their goal was not only to increase throughput of
single-cell measurements through multiplexing, but also to make
use of a carrier channel to provide more peptide copies (200-cell
equivalent), and thus ions for peptide identification in addition to
the ions in the low abundant single-cell channels; a similar
strategy to other low-input sample measurements in the past26.
Others have since taken a similar multiplexed approach using a
carrier channel in combination with a cutting-edge sample pre-
paration technique known as NanoPOTS, and demonstrated very
promising results when sample loss is decreased to a
minimum27–29. Although label-free approaches have also shown
promising results30–34, their throughput currently lags behind the
multiplexed approach. Comprehensive evaluations of multiplexed
scMS using an isobaric carrier29,35,36 have further demonstrated
the feasibility of the approach, concluded on the tradeoffs of
increasing the level of signal boosting with the isobaric carrier, and
indicated the importance of estimating the reliability of protein
quantification when implementing the method.

In order for scMS to be a viable alternative to sc-RNAseq, we
argue it needs to (1) be able to process thousands of cells in a
reasonable timeframe, (2) cover a similar order of magnitude in
terms of number of proteins detected, and (3) be easily imple-
mentable in a wide range of cellular systems. Consequently, we set
out to develop a multiplexed scMS workflow that outperforms
existing scMS methods in terms of throughput and proteome
depth and can be implemented with commercially available
resources. To determine whether our experimental workflow
would be able to detect biologically relevant cellular heterogeneity
within a complex cell mixture, we use a primary Acute Myeloid
Leukemia (AML) culture model, termed OCI-AML822737

(Fig. 1a). This model maintains the hierarchical nature of AML
where a small population of self-renewing leukemic stem cells
(LSC; CD34+ CD38−) differentiate to progenitors (CD34+
CD38+ ), that are unable to sustain long-term self-renewal, and
finally to terminally differentiated blasts (CD34-). The OCI-
AML8227 model system provides us with an ideal proof-of-
concept system, as the inherent functional heterogeneity across
differentiation stages has previously been evaluated and is readily
isolated through FACS sorting based on classical CD34/

CD38 stem cell markers37–39. Recapitulating these functional
differences using our molecular data would provide proof-of-
principle that our workflow is able to distinguish differentiation
stages in a complex cellular hierarchy.

Here, we show an experimental workflow that allows global
characterization of single-cell proteomes without relying on
antibodies for protein identification, and conducted a proof-of-
concept study in a primary AML hierarchy. Since multiplexed
scMS data present challenges for computational data analysis and
should ideally be processed in a streamlined and reproducible
manner, we develop SCeptre (Single Cell proteomics readout of
expression); a python package tightly integrated with Scanpy40,
that enables quality control, normalization of batch effects and
biological interrogation of multiplexed scMS data. The method
presented here is inspired by the initial ScoPE-MS efforts and has
evolved to cater to: (1) higher throughput characterizations, (2)
maximum quantitative accuracy, (3) integrating FACS data from
single-cell sorts, and (4) providing a computational workflow for
analysis of resulting scMS data and for deciphering cellular
heterogeneity.

Results
Experimental workflow. Given the ease by which its distinct
subpopulations can be isolated, we reasoned that the OCI-
AML8227 model system was ideal for the development and
showcasing of an easy-implementable scMS approach (Fig. 1b).
Our standard workflow consists of a series of steps. First, single-
cells were FACS sorted into individual wells of a 384-well PCR
plate containing lysis buffer (Fig. 1 c, d). An important feature in
our workflow is the recording of the FACS parameters of each
individual cell (termed index-sorting) and the integration thereof
during data analysis. Furthermore, a key difference to ScoPE2 is
that we use a Trifluoroethanol (TFE)-based lysis buffer, including
reduction and alkylation reagents, rather than pure water. Given
the chaotropic nature of this reagent41,42, cell lysis should be
more efficient and, in our hands, produced more protein and
especially peptide identifications than pure water (Supplementary
Fig. 1). Next, cells were lysed through in-plate freezing and
boiling, and following overnight digestion, single-cells were
labeled using the 16-plex TMTPro technology43,44. The 127 C
channel is left empty due to isotopic impurity contaminations
from the 126 booster channel25,35 (Supplementary Fig. 2). In our
initial experiments, we distributed the remaining fourteen avail-
able TMT channels across the three differentiation stages,
resulting in five LSC, five progenitors, and four blasts per sample.
The booster was prepared separately by sorting 500 cells into each
well of a dedicated 384-well plate, followed by the same pre-
paration steps as for the single-cell plates. The individual wells of
the booster plate were then pooled in a cell-specific manner to
create booster aliquots for the respective cell types. In our initial
experiments, we subsequently opted to make a 1:1:1 equimolar
booster mix of blast, progenitor, and LSC cells to ensure a
homogenous peptide mixture representative of all cell differ-
entiation stages included in our study (see Fig. 1c and Supple-
mentary Data 1 for exact sorting layout). To eliminate the need to
clean-up the single-cell samples, we got rid of any non-volatile
salts from the buffers. However, initial tests without C18 clean-up
of the booster revealed frequent clogging of the analytical LC
column, most likely due to cellular debris. Therefore, the booster
aliquot was cleaned up using C18-based Stagetip technology45. In
the following step, the 14 single-cells were pooled and combined
with a 200-cell equivalent from the booster aliquot; this level of
boosting was previously determined to strike a good balance
between proteome depth and quantitative performance36. Finally,
the sample was dried down using vacuum centrifugation prior to
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Fig. 1 Experimental overview of our scMS workflow. a Overview of the hierarchical nature of an Acute Myeloid Leukemia hierarchy, with leukemic stem cells

(LSC) at the apex, differentiating into progenitors, and subsequently, blasts. b FACS plot of the OCI-AML8227 hierarchy according to their CD34/CD38 surface

marker expression levels. P1 are cells deemed live, P2 excludes doublets and Blasts, Progenitors and LSC are annotated according to CD34/CD38 expression.

c scMS sample creation overview of booster channel samples and single cells; single-cell TMTpro samples were created with four Blast, five LSC and five

Progenitor cells in each pool, labeled randomly using fourteen available TMTpro channels before pooling with a 200-cell equivalent of the 126-labeled booster

sample. d Conceptual overview of our scMS experimental pipeline; single cells are sorted into 384-well plates containing 1ul of lysis buffer, then digested, TMT

labeled and multiplexed. Resulting samples are analyzed with LC–MS via FAIMSPro gas-phase fractionation and Orbitrap detection.
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LC–MS analysis. Every 384-well plate thus gives rise to 24 sam-
ples, representing the analysis of 336 single-cells per plate. For
LC–MS analysis, we used a standard EASY-Spray trap column
LC-setup with relatively low-flow (100 nl/min) and a 3 h LC
method, coupled to an Orbitrap Exploris™ 480 MS with gas-phase
fractionation provided by the FAIMS Pro instrument interface.
This device not only filters out contaminating +1 ion species (i.e
non-peptide contaminants), but it also switches, on-the-fly,
between multiple compensation voltages (CV), each isolating
different ion (i.e. peptide) populations, and has thereby shown to
lead to greater peptidome and proteome depth, and in addition,
to lower levels of co-isolation interference, through the decreased
complexity of each gas-phase fraction46,47. This LC–MS setup
enables a throughput of 112 cells per day, given that 14 cells are
analyzed per sample.

Evaluating the quantitative performance of a booster-based
scMS workflow. In order to strike a favorable balance between
proteome depth and quantitative performance (i.e. accuracy and
precision), we next investigated appropriate MS instrument set-
tings. With the extremely low peptide amounts from single cells,
it is imperative to reach sufficient signal-to-noise (s/n) in the
single-cell channels to ensure accurate quantification. On
Orbitrap-based instruments, this is commonly achieved by using
long injection times (IT) and high corresponding automated gain
control (AGC) target values, which results in the collection of
large ion populations and robust ion counting statistics35. To
investigate this aspect in more depth, we generated 12 single-cell
samples (each consisting of 14 single cells across all three dif-
ferentiation stages plus a 200-cell booster) and pooled them into
one aliquot, thereby creating 12 technical replicates for LC-MS
analysis.

The technical replicate aliquot was injected in triplicate, using
IT settings of either 150 ms (150% AGC), 300 ms (300% AGC),
500 ms (500% AGC), or 1000 ms (500% AGC), in order to
evaluate the impact of increased IT and AGC target values on
quantitative performance. Depicted as a cartoon in Fig. 2a, higher
IT/AGC targets, in principle, samples a larger portion of the
available ion pool, and thus more closely resembles the true
signal. However, this comes with a cost in terms of scan speed due
to the longer cycle time, and is therefore expected to result in
lower proteome depth. Nevertheless, it should lead to improved s/
n values, and consequently, improved quantitative accuracy,
precision and sensitivity. In order to interrogate this more closely,
we investigated the s/n values on protein level and coefficients of
variation (CV) thereof between the triplicates injections across
the range of instrument settings used. As shown in Fig. 2b, a clear
improvement in overall s/n values is observed when greater IT/
AGC target values are used, which conversely reduces the CV
between measurements (i.e. improved precision) (Fig. 2b, c).
Table 1 shows that for all settings except of the 1000ms setting,
AGC target was not reached in >98% of MS2 scans, and thus the
ion collection was only limited by absolute IT rather than ion
count. Importantly, the percentage of proteins displaying a CV <
20% was 14%, 30%, 41%, and 49% for 150 ms, 300 ms, 500 ms,
and 1000 ms respectively, indicating the clear advantage of using
longer IT. However, the trade-off with the sequencing speed
becomes apparent for IT higher than 300 ms as the overall lower
number of acquired spectra, at a constant peptide-spectrum
match (PSM) rate, significantly reduced the absolute number of
proteins and the number of proteins with CV below 20%. To
evaluate the quantitative accuracy, we calculated protein fold
changes between blasts and LSCs in the scMS data using the
mean of the populations, and compared them to bulk-sorted
OCI-AML8227 MS3-level quantification data. For the latter

dataset, LSCs, progenitors, and blasts were sorted in bulk (20,000
cells per population, in triplicate), labeled with TMTPro as 9-plex,
and subjected to high pH fractionation prior to analysis on an
Orbitrap Fusion, operating in SPS MS3 mode48. This resulted in a
bulk proteomics dataset of 6,851 proteins, and provided us with a
reference set to compare our single-cell data to in terms of
accuracy. This comparison showed that the longer ITs result in a
higher correlation of fold changes in scMS with bulk measure-
ments, and further highlighted that when comparing the same
high-coverage proteins, correlations did not increase beyond 300
ms, indicating a saturation effect for these presumably high
abundant proteins (Fig. 2d, Supplementary Fig. 3). Finally, we
evaluated the overall capability of the scMS data to separate blasts
from LSCs by calculating the silhouette coefficients of these cells
in principle component (PC) space (Methods, Fig. 2e) which,
similar to the accuracy, improved with increased ITs and seemed
to reach a plateau for the high-coverage proteins. Taken together,
these results indicate that both 300 ms and 500 ms could result in
biologically meaningful data, and that both settings strike a good
balance between proteome depth and quantitative performance
when applied to real scMS samples.

SCeptre, a computational workflow for the analysis of scMS
data. To evaluate both the interrogative capacity of our experi-
mental workflow and the impact of the ‘medium’ (300 ms) and
‘high’ (500 ms) instrument parameters, we analyzed 24 samples
(one 384-well plate) for each method (Table 2, Supplementary
Table 1). To be able to comprehensively analyze the resulting
data, we developed SCeptre (Single Cell proteomics readout of
expression), a python package that extends the functionalities of
Scanpy to process scMS data. As input, SCeptre takes result files
from Proteome Discoverer and meta information of the indivi-
dual cells, a key feature to link recorded FACS parameters back to
each cell. First, the individual LC–MS measurements were sub-
jected to quality control to ensure that MS performance remained
constant during data acquisition. Next, data was normalized and
batch corrected. With TMT data compiled over multiple samples,
batch effects can occur on a global level as small differences in
sample loading and LC–MS performance shift the overall mea-
sured intensities. Furthermore, differential peak sampling and
selection of different peptides for protein quantification between
sample injections can also lead to protein specific batch effects. A
reference or bridge channel is commonly used to normalize the
intensities across sample injections on individual protein
level49,50, and has been proposed for scMS analysis25. We how-
ever decided to implement a normalization strategy that does not
rely on a reference channel, since we in our initial experiments
employed an actively balanced sample layout, where each sample
contains single cells from all the differentiation stages to be
interrogated. This ensures the true median protein intensity in
each sample to be constant across measurements and enabled
protein-specific batch effects between samples to be corrected by
equalizing the medians (i.e. one correction factor per protein per
sample). Another source of batch effects originates from the
different TMT channels, which can be subject to technical bias.
For example, the 127 N & 128 C channel can still be affected by
126 booster impurities, resulting in a shift of protein intensities
specific to the composition of the booster (Supplementary Fig. 2).
Since we randomized the labeling of the cell differentiation stages
across channels in all samples, we can also apply the same nor-
malization strategy across channels (i.e. one correction factor per
protein per channel). This simple normalization strategy effec-
tively removed batch effects while retaining the biological varia-
bility, as it does not rely on the definition of biological covariates
(Supplementary Fig. 4a). Previously, a decrease in quantitative
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performance of the channels adjacent to the booster channels was
observed35. However, we decided to still utilize these channels as
no batch effects were observed post-normalization. Following the
normalization step of SCeptre, individual cells were subjected to
quality control. Specifically, we found that the total summed
intensity per cell is a suitable parameter to detect outlier cells that
could originate from duplets, empty wells, or sample loss during
preparation (Supplementary Fig. 4b). After normalization and
filtering, the removal of systematic technical biases was verified by
evaluating cell-specific parameters as summed intensity and
number of genes across technical parameters as sample, channel
and row number on the 384-well plate. The importance of this
rigorous quality control was exemplified when we observed a
row-wise batch effect from the sample preparation that resulted
in a separate cluster of progenitors, which could not be corrected
as the row number on the 384-well plate confounded with the
biological variable of cell differentiation stage (Supplementary
Fig. 4c). Removing such cells is crucial to avoid misleading bio-
logical conclusions. Subsequently, a median shift of total intensity
across cells was applied to normalize for cell size and sampling
depth, and finally, data were log2 transformed, yielding the final
protein expression matrix. In order to embed the high-
dimensional data into fewer dimensions, missing values have to
be imputed. However, imputation can introduce noise, especially
from low-coverage proteins, as they tend to be of lower abun-
dance, given that total intensity (i.e. s/n) is used as abundance-
proxy (Supplementary Fig. 5a). We decided on a minimal protein
coverage threshold to exclude low-coverage proteins from con-
tributing to the embedding. This threshold was determined for
each dataset using the resulting silhouette score (mean of all
silhouette coefficients) in UMAP space after imputation (Meth-
ods, Supplementary Fig. 5b). We note that this thresholding
should be carefully evaluated on a case-by-case basis, which is
facilitated by the SCeptre package. Finally, missing values of the

remaining proteins were imputed using the nearest neighbor
algorithm and subsequently scaled to unit variance and zero
mean. Collectively, the SCeptre computational workflow provides
a framework for the analysis of scMS data.

scMS enables detection of cellular heterogeneity in an AML
hierarchy. We next wanted to test the ability of our experimental
and computational workflows to detect known heterogeneity in
the OCI-AML8227 model system. To that end, we compared the
‘high’ and ‘medium’ dataset, and found that both methods
resulted in good separation of the differentiation stages (Fig. 3a).
However, the ‘high’ method outperformed the ‘medium’ method
in terms of separation power (silhouette coefficients) (Fig. 3b). To
avoid bias introduced by different numbers of proteins and cells
between the datasets, we repeated the analysis using the subset of
overlapping proteins and equalized the cell number per cell type,
which produced similar results (Supplementary Fig. 5d, e). Fur-
thermore, the ‘high’ dataset showed higher correlations of fold
changes to bulk data, both across all proteins (Fig. 3c) and for the
most abundant proteins (Fig. 3d). We found that the accuracy of
the fold changes decreased for proteins with lower s/n (Fig. 3e),
however with the ‘high’ method outperforming the ‘medium’

method across the entire intensity range. Overall, fold changes
measured by scMS tend to be lower compared to bulk mea-
surements, indicating a limited dynamic range (Fig. 3f). However,
the ‘high’ dataset seems to suffer less from these issues. Taken
together, these results show that our workflow is able to effec-
tively process multiplexed scMS data, which enabled separation of
the known differentiation stages present in the OCI-AML8227
model system.

Extracting biological information from scMS data. The
apparent improved quantitative accuracy of the ‘high’ method
convinced us to focus on this dataset for the initial biological
interrogation of the scMS data. Overlaying the FACS derived
intensities of the CD34 and CD38 surface markers on each cell
demonstrated that the scMS data can reproduce the observations
of the FACS analysis by separating the three differentiation stages
while also showing a slight separation of CD38+ and CD38-
blasts (Fig. 4a, Supplementary Fig. 6). The successful separation of
cell differentiation stages, combined with a near-perfect recapi-
tulation of the cell distribution as defined by the FACS analysis
(i.e., CD34/CD38 fluorophore levels) encouraged us to investigate
differential protein expression across groups of cells. Here, we
made use of the normalized protein expression matrix, while
ignoring missing values. We compared blasts against the rest of
the cells, which resulted in the identification of differentially
expressed (DE) proteins for blasts and the combined group of
LSC & progenitors (Fig. 4b, Supplementary Data 2). Gene term
enrichment analysis of differentially expressed proteins revealed
enrichment of terms associated with protein translation in LSC &
progenitors whereas terms associated with myeloid differentiation
were enriched in blasts (Supplementary Data 2). Interestingly, we
found that some of the DE proteins were expressed hetero-
geneously in the respective cell differentiation stages, indicating
that our scMS data captures gradual protein expression changes
that would likely not be detected in bulk data (Fig. 4c). Taken
together, these results show that separation of the differentiation
stages is driven by biologically meaningful protein-level signal
and that our workflow is able to uncover some of these changing
proteins.

Unbiased discovery-based multiplexed single-cell proteomics.
Motivated by these results, we next sought to further characterize
the OCI-AML8227 model and test our methods using

Table 2 Comparison of ‘medium’ and ‘high’ method using

single-cell samples.

Medium (300ms) High (500ms)

Protein IDs 2,076 1,790
Peptide IDs 11,111 8,826
PSMs 127,196 89,939
PSM rate (%) 24 25.4
Median s/n in single-cell
channels

5.4 8.75

Mean protein IDs per file 1,287 999
Filtered cells 302 255
Filtered proteins 1,986 1,498
Mean protein IDs per cell 1,076 712.3
Missing values (%) 45.8 52.45

Table 1 Comparison of different IT settings using technical

replicates.

MS/MS
Spectra

PSM
rate (%)

PSMs w. AGC
target
reached (%)

Protein IDs Protein IDs
w. mean CV
< 20%

150
ms

33,002 14 0.5 1538 212

300
ms

22,418 22 1.3 1546 462

500
ms

14,556 24 1.2 1110 459

1000
ms

8,175 24 14.2 692 341
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multiplexed scMS in an unbiased manner by sorting single cells in
bulk, without the preselection of specific populations. Addition-
ally, we tested the use of a bulk booster, as the 1:1:1 booster
requires prior knowledge about the different populations, which
is impractical for discovery-based experiments. Moreover, we

introduced empty wells into parts of the dataset to investigate our
ability to detect them in SCeptre. Lastly, we used the 127 N
channel for a reference channel containing a 10-cell equivalent
with the same composition as the booster, to investigate the need
for and utility of using it for normalization.
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In total, we processed eight bulk sorted single-cell plates
(Supplementary Table 1), three with 1:1:1 booster and five with
bulk booster, resulting in a dataset of 2723 proteins across 2025 cells
with an average of 987 proteins detected per cell (Supplementary
Table 2, Supplementary Fig. 7a). SCeptre successfully removed all
empty wells from the analysis, indicating the validity of the filtering
based on summed intensity (Supplementary Fig. 7b). Furthermore,
we found that our normalization procedure successfully integrated
all plates without the use of a reference channel, irrespectively of the
different booster types used for these plates (1:1:1 & bulk)
(Supplementary Fig. 7c). To annotate the cells with their respective
differentiation stages, we gated the index FACS data in FlowJo and
decided to further subdivide the blasts into CD38+ and CD38−
populations (Supplementary Fig. 7d). As we are now sampling cells
from the entirety of the OCI-AML8227 model, the main fraction of
cells were blasts (1467 CD38−, 467 CD38+ ) while also sampling
76 LSCs and 15 progenitors. As we would expect the dataset to

contain cells with intermediate differentiation stages, we used a
diffusion map51 to embed the protein expression data in 2-d space.
The diffusion map revealed an ordering of cells in striking
accordance with the FACS data with LSCs at the apex, giving rise
to progenitors and blasts (Fig. 5a, Supplementary Fig. 8a).
Surprisingly, we found both CD38+ and CD38− blasts in
proximity to the LSCs and a slight separation of these two types
of blasts along the trajectory, which seemed to terminate in CD38−
blasts. This raised the possibility of the existence of two parallel
differentiation paths towards terminal CD38− blasts rather than
only the classical sequential ‘LSC_progenitor_blast’ path. This was
further exemplified when we computed the diffusion pseudotime52

from the protein data for each cell and observed overlapping cells in
the CD38− compartment (LSC & CD38− blast) as well the CD38
+ compartment (progenitors & CD38+ blast) (Fig. 5b). To further
investigate what drives the observed cell ordering, we plotted
protein expression across cells ordered by pseudotime (Fig. 5c).
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Fig. 5 scMS recapitulates differentiation trajectories. a Diffusion map based on imputed scMS data (2,025 cells, 2,723 proteins) overlaid with FACS

derived cell gating and CD34 and CD38 expression. BLAST= blasts, PROG= progenitors, LSC= leukemia stem cells. b Left: Diffusion map overlaid with

pseudotime, calculated using the scMS data. Middle: Scatterplot of cells with their calculated pseudotime and FACS derived CD38 expression, annotated

with their gating (middle) or CD34 expression (left). c Heatmap of cells in the columns ordered in pseudotime and 479 selected proteins (Methods) in the

rows. Proteins were clustered hierarchically into five clusters. Imputed protein expression values, CD34, CD38 and pseudotime for the ordered cells were

smoothed by applying a moving average across 50 cells. Protein expression is normalized between 0 and 1. d Expression values of all proteins in each

cluster were aggregated to a signature by taking the mean and normalizing between 0 and 1. Top: Signatures are plotted on top of the diffusion map.

Bottom: Scatterplot of cells with their pseudotime and the signature of each cluster, annotated with their gating. Source data are provided as a Source

Data file.
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Hierarchical clustering of proteins revealed coordinated expression
changes along the trajectory. Subsequently, we aggregated the
proteins within each cluster into a mean expression value, and
superimposed these signatures onto the diffusion map (Fig. 5d,
Supplementary Fig. 8b). This revealed not only specific protein
expression patterns in both LSC and terminal blast compartments,
but also suggested that high expression of cluster 3 proteins seems
to correspond to CD38 positivity, suggesting that this cluster is
more strongly associated with the CD34-CD38+ blast compart-
ment. In line with our earlier findings (Fig. 4), proteins of the
early cluster 2 were enriched in gene terms associated with
translation (Ribosome, Peptide chain elongation, Major pathway of
rRNA processing in the nucleolus and cytosol) (Supplementary
Data 2) suggesting that LSCs, like hematopoietic stem cells
(HSCs)53, are endowed with high protein synthesis activity.
Moreover, we also noted that factors such as PRDX1 and HAT1,
which are strongly associated with poor outcome in AML54, were
also found in cluster 2, in line with their enrichment in the LSC
compartment (Supplementary Fig. 9a). Clusters 3-5 represent more
mature differentiation stages as supported by their enrichment of
myeloid-associated gene terms (Neutrophil degranulation, Phago-
some). Consistent with the pseudotime analysis, the small cluster 3
is highly enriched in proteins of primary granula (including

ELANE, CTSG, MPO, AZU1), which are deposited early
during granulocytic differentiation55, and cluster 3 is consequently
enriched for gene terms associated with this early granula
(Antimicrobial peptides, Defense response) (Supplementary Fig. 9b).
In contrast, proteins associated with clusters 4–5 display enrich-
ment of terms representing functional neutrophils (such as ROS,
RNS production in phagocytes) supporting their placement
later in the differentiation hierarchy. Collectively, this analysis
demonstrates the power of scMS in arranging cells along
a differentiation trajectory and suggests the possibility of the
existence of two parallel differentiation paths. Specifically, our
data is compatible with both the conventional ‘LSC_Progenitor_
CD38+ blasts_CD38− blasts’ path and an unconventional
‘LSC_CD38−’ path that appears to bypass both the progenitor
and CD34−CD38+ blast stages. To directly test the possibility of
the existence of two distinct differentiation pathways for LSCs
towards mature CD34-CD38− blasts, we sorted LSCs and
progenitors and assessed their differentiation in culture over a 10-
day period (Fig. 6). Consistent with the conventional path,
progenitors initially generated CD34-CD38+ blasts, which further
differentiated to CD34-CD38− blasts. Conversely, early differentia-
tion (d2) of LSCs were clearly towards CD34-CD38− blasts before
the later formation of progenitors (d4) and ultimate regeneration of
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the entire culture (d10). Hence, these findings support the possible
existence of two distinct differentiation pathways for LSCs and
demonstrate the power of scMS analysis to uncover new biological
mechanisms.

Integration of unbalanced scMS datasets. At this point, we have
demonstrated our ability to detect heterogeneity in complex cell
systems and that our normalization method effectively integrates
samples that contain comparable cell numbers of each popula-
tion. However, the latter would not be the case for the integration
of the pre-enriched ‘high’ samples with the bulk samples, because
the assumption of equal medians for each protein across samples
would not be met. Nevertheless, we would ideally be able to
integrate these two types of datasets, as the bulk approach is
limited when sampling rare populations like e.g. the progenitors.
Integration of heterogeneous datasets is a well-studied problem in
scRNA-seq and we identified Scanorama56 as a promising tool for
unbiased i.e. unsupervised batch correction of unbalanced mul-
tiplexed scMS datasets. Scanorama detects mutual cell types
across dataset and uses them to align the datasets to each other.
To further increase the number of LSCs and progenitors, we
measured an additional 384-well plate with pre-enriched popu-
lations to supplement the ‘high’ dataset (Supplementary Table 1).
Subsequently, we used SCeptre to integrate the two ‘high’, pre-
enriched plates into one dataset, and Scanorama to integrate this
with the ‘bulk’ non-enriched dataset. This resulted in a dataset of
917 proteins across 2514 cells, consisting of 1586 CD38− blasts,
488 CD38+ blasts, 259 LSCs, and 181 progenitors (Supplemen-
tary Fig. 10a, b). Integration of additional proteins through more
extensive imputation resulted in batch effects, indicating that the
application of this tool to multiplexed scMS data should be
evaluated on a case-by-case basis. The diffusion map shows
similar results as in the bulk dataset, with LSCs giving rise to
progenitors, followed by a mix of CD38+ and CD38− blasts
(Fig. 7). Nonetheless, the increased number of LSCs and pro-
genitors strengthened the evidence for the differentiation of LSCs
into progenitors. Furthermore, similar protein expression sig-
natures were identified, thereby supporting the biological rele-
vance of these integrated analyses (Supplementary Fig. 10c, d,
Supplementary Data 2).

Discussion
This work represents a proof-of-concept study, investigating to
what extent current technology and subsequent computational
workflows are able to conduct semi high-throughput single-cell
proteomics analysis on a relevant AML model system. By
spending considerable effort not only on the sample preparation
and data generation methods, but also on the subsequent data
analysis, we managed to establish a scMS workflow which is able
to (1) quantify approximately 1000 proteins per cell, (2) analyze
more than a hundred cells per day of instrument time, (3) nor-
malize, filter, integrate and visualize the data using state-of-the-
art single-cell computational algorithms, and (4) detect hetero-
geneity and cell-specific proteins which may serve as a starting
point for further investigation of yet undiscovered cell states and
potential therapeutic targets or other functionally relevant
candidates.

Single-cell approaches put significant strain on throughput
requirements; usually a high number of cells is required to gain
confidence in biological observations or to identify rare sub-
populations. Therefore, we focused especially on having an
experimental workflow that would allow easy preparation of large
cell numbers and demonstrate the analysis of nearly 3000 single
cells in a limited timeframe. By using standard FACS sorting
methodology, we were able to sort several 384-well plates per
hour and allow for including FACS-based index information in
the data analysis. This allows links to be drawn between fluor-
escent surface markers and expression levels of detected proteins
within the cells. This feature is especially relevant for complex
in vivo systems such as primary bone marrow, where a multitude
of relevant surface markers, to which significant biological
properties have already been assigned, can be integrated.

In line with our overall goal of using standardized lab con-
sumables, we also used conventional chromatography setups to
ensure the adaptation of the workflow in labs across the world. By
including a trap column, we added robustness, which means that
we in general are able to run more than two weeks’ worth of
samples on the same analytical column (>1,500 single cells). In
terms of reagents and consumable costs, excluding the MS
instrument acquisition, our workflow expenses are estimated to
~1USD per cell and thus provide a realistic means of conducting
large-scale scMS studies.
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Compared to the sole other publicly available multiplexed
scMS experimental pipeline using common laboratory consum-
ables, SCoPE2, our workflow distinguishes itself on a few key
points. Besides using TFE as lysis buffer instead of water, we also
opted not to dedicate two TMT channels to a reference sample
and an empty well, as the normalization procedure implemented
in SCeptre was sufficient to correct for any observable batch
effect, and the QC part of the workflow ensured that only data
originating from single-cell wells was used. This results in a
slightly increased multiplexing capacity of 14 single cells per run.
However, the previously observed decrease of quantification
performance in the channels adjacent to the booster channel35

should be considered in future experimental designs, especially
when boosting is increased beyond 200x. This could be the case
for e.g. smaller cells, where more peptide signal is required to
identify a sufficient number of proteins. In general, the amount of
boosting should be carefully evaluated in each experimental set-
ting in terms of its impact on the single-cell quantitative
accuracy35,36. Finally, signal from empty wells should be speci-
fically determined for each experiment.

We demonstrated that with a randomized TMT labeling layout,
the simple normalization strategy included in SCeptre successfully
integrates balanced experimental designs. Further, we identified
Scanorama as a potential integration tool for unbalanced designs.
As shown here, this opens up the possibility to enrich for rare
populations in addition to the unbiased bulk-fashion, and subse-
quently analyze all cells in unison. However, we note that Sca-
norama only succeeded in integrating a subset of high-coverage
proteins, thus highlighting an interesting computational challenge.
Furthermore, Scanorama requires overlapping cell types across
datasets, which should be considered in the experimental design.
Hence, alternative normalization strategies for multiplexed single-
cell proteomics should be readily adapted by the scMS field.

We showed that the frequently used k-nearest-neighbors
imputation can be used on our scMS data and that it can
improve separation of the differentiation stages. However, we
note that imputation should be carefully evaluated in terms of
batch effects and the effect on cell separation, and that this eva-
luation might be complicated by a lack of accurate cell labels.
Nonetheless, as seen in the scRNAseq field, scMS should benefit
from imputation strategies that consider the specific nature of
missing values and noise in isobaric quantification.

In terms of extracting biological meaning from scMS data, it
has to be underlined that this work, for the first time demon-
strates the ability to separate cell differentiation stages from the
same exact starting pool of cells, rather than using separate pools
as starting material for the FACS sort25,28. Moreover, the simi-
larity of AML cells within the hierarchy, and especially between
the LSC/Progenitor populations, requires accurate and sensitive
protein measurements and sufficient proteome coverage in order
to be able to separate them in UMAP space. This is also exem-
plified by the fact that the ‘high’ dataset was slightly better able to
resolve these two populations compared to the ‘medium’ data,
again underlining the importance of high ion count measure-
ments for accuracy. However, balancing proteome depth and
quantification accuracy will remain challenging even when sen-
sitivity of scMS increases and should be evaluated in every specific
experimental setting. Especially in the context of identifying cell
stage-specific proteins, it has to be evaluated how many cells will
need to be sampled in order to reach a meaningful number of
cells for specific biological questions. Nevertheless, by deploying
our workflow on >2,000 single cells sorted as bulk (i.e. non-
enriched), we are able to separate the cell differentiation stages,
interrogate their differentiation trajectories and discover cell-
specific functional differences as highlighted by GO-term
enrichment and diffusion map trajectories.

In conclusion, this work presents the first single-cell analysis of
a leukemia hierarchy using an LC–MS-based proteomics method.
We demonstrate that within our model AML system, we are able
to recapitulate the FACS data using our proteomics data. While
we focus on a single patient leukemia, it should nevertheless be a
good resource for follow-up studies, and paving the way for
studying primary leukemia and other blood-related disorders
using scMS. We build on the original excitement inspired by
ScoPE-MS, and hope this method continues to open up a ple-
thora of research avenues, spanning across many biological fields.
Proteome coverage will only improve as instrument sensitivity
and experimental workflows develop further, closing the current
coverage gap between RNA-based and protein-based approaches
that still exists at single-cell level, with great strides already having
been made in the first few years of a field still in its infancy.

Methods
Cell culture and FACS sorting. OCI-AML8227 cells were grown in StemSpan
SFEM II media, supplemented with growth factors (Miltenyi Biotec, IL-3, IL-6 and
G-CSF (10 ng/mL), h-SCF and FLt3-L (50 ng/mL), and TPO (25 ng/mL) to support
the hierarchical nature of the leukemia hierarchy captured within the cell culture
system. On day 6, cells were harvested (8e6 cells total), washed, counted, and
resuspended in fresh StemSpan SFEM II media on ice at a cell density of 5e6 cells/
ml. Staining was done for 30 mins on ice, using a CD34 antibody (CD34-APC-Cy7,
Biolegend, clone 581) at 1:100 (vol/vol) and CD38 antibody (CD38-PE, BD, clone
HB7) at 1:50 (vol/vol). Cells were washed with extra StemSpan SFEM II media, and
subsequently underwent three washes with ice cold PBS to remove any remaining
growth factors or other contaminants from the growth media. Cells were resus-
pended for FACS sorting in fresh, ice cold PBS at 2e6 cells/ml. Cell sorting was
done on a FACSAria I or III instrument, controlled by the DIVA software package
(v.8.0.2) and operating with a 100 μm nozzle (Supplementary Fig. 11). Cells were
sorted at single-cell resolution, into a 384-well Eppendorf LoBind PCR plate
(Eppendorf AG) containing 1 μl of our custom lysis buffer (80 mM Triethy-
lammonium bicarbonate (TEAB) pH 8.5, 20% 2,2,2-Trifluoroethanol (TFE), 10
mM tris(2-carboxyethyl) phosphine (TCEP) and 40 mM Chloroacetamide (CAA)).
Directly after sorting, plates were briefly spun, snap-frozen on dry ice, and then
boiled at 95 °C in a PCR machine (Applied Biosystems Veriti 384-well) for 5 mins.
Plates were again snap-frozen on dry ice and stored at -80 °C until further sample
preparation. The same procedure was followed for the booster plates and the plate
for the MS3 bulk data, but instead of sorting single cells, 500 cells were sorted in
three-way purity into each well, containing 1 μl of lysis buffer. For the assessment
of LSC and progenitor differentiation trajectories, 50,000 cells (FACS sorted as
above) were used to initiate replicate cultures in 100 μL of media supplemented
with cytokines. Cells were harvested after 2, 4, 6 days, stained with antibodies and
analyzed by flow cytometry as above (BD Aria III). At Day 6, cells were also
counted and re-seeded at 50,000 cells/100 μL. Profiles and proliferation were
reassessed again at Day 10 and Day 17.

Mass spectrometry sample preparation of single-cell samples. After thawing,
protein lysates from the single cells were digested with 2 ng of Trypsin (Sigma cat.
nr. T6567), dissolved in 1 μl of 100 mM TEAB pH 8.5 containing Benzonase
(Sigma cat. nr. E1014) diluted 1:500 (vol/vol) to digest any DNA that would
interfere with downstream processing. For the booster plates, the amount of trypsin
was increased to 10 ng in order to digest the protein content of each well containing
500 cells. Plates were vortexed and kept at 37 °C overnight to complete the protein
digestion. All dispensing steps in this protocol were done using the Dispendix I-
DOT One instrument. After digestion, peptides were labeled with TMTPro
reagents. Some example labeling layouts can be found in Supplementary Data 1. 6
mM of each label was added to the single-cell wells, while the 500-cell booster plate
wells were labeled with 13 mM of TMTPro-126 reagent (in 1 μl volume) in each
well or in case of the reference channel with TMTPro-127N. Subsequently, plates
were kept at RT for 1 h. The labeling reaction was quenched with 1 μl of 2.5%
Hydroxylamine for 15 min, after which peptides were acidified with 1 μl of 2%
TFA. For the empty wells, all steps were the same except no cells were sorted into
the wells. Subsequently, the booster plates were pooled according to cell differ-
entiation stage (blasts, progenitors and LSC), and desalted as five (including two
reference channels: 1:1:1 & bulk) individual pools using a SOLAμ C18 96-well
plate. Eluted and desalted peptides were concentrated to dryness in an Eppendorf
Speedvac, after which they were resuspended in 1% TFA, mixed 1:1:1 in case of the
1:1:1 booster and diluted to a final concentration of the peptide equivalent of 35
cells/μl. Final TMT samples were then mixed from 14 or 13 single cells plus the
equivalent of 200 booster channel cells and in case of the reference channel plus the
equivalent of 10 cells. This pooling was performed using the Opentrons OT-2
liquid handler, except for the ‘medium’ and ‘high’ plates, which were pooled with a
handheld multichannel pipette. The resulting peptide mix was concentrated once
more in an Eppendorf Speedvac, and re-constituted in 1% TFA, 2% Acetonitrile,
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containing iRT peptides (Biognosys AG, Switzerland) for individual Mass Spec-
trometry (MS) analysis.

Mass spectrometry sample preparation of MS3 bulk data. The plate for the
MS3 bulk data was treated the same as a booster plate, with the exception that it
was labeled so that an equal number of wells of each differentiation stage were
labeled with the following channels: blast—127 N, 131 N, 132 C; progenitor—129
N, 131 C, 133 N; LSC—128 N, 130 C, 133 C. This resulted in 60,000 cells being
labeled for each differentiation stage (20,000 per channel in triplicate). All wells of
the plate were pooled together into one aliquot, and desalted using a SOLAμ C18
96-well plate. Eluted and desalted peptides were concentrated to dryness in an
Eppendorf Speedvac, after which they were resuspended in high-pH buffer (5 mM
ammonium bicarbonate, pH 10). 20 µg of peptides were fractionated using an
offline Thermo Fisher Ultimate3000 liquid chromatography system at a flowrate of
5 µl/min over a 60 min gradient (from 5% to 35% acetonitrile), while collecting
fractions every 2 min. The resulting 20 fractions were pooled into 10 final fractions
(fraction 1+ 11, 2+ 12, etc.), concentrated to dryness, and re-constituted in 1%
TFA, 2% Acetonitrile for individual Mass Spectrometry (MS) analysis.

Mass spectrometry data collection of single-cell samples. Peptides were loaded
onto a 2 cm C18 trap column (ThermoFisher 164705), connected in-line to a 15 cm
C18 reverse-phase analytical column (ThermoFisher EasySpray ES804A), with
100% Buffer A (0.1% Formic acid in water) at 750 bar using the ThermoFisher
EasyLC 1200, and the column oven operating at 30 °C. Peptides were eluted over a
160-min gradient at a flowrate of 100 nl/min, using 80% Acetonitrile, 0.1% Formic
acid (Buffer B) going from 8% to 23% over 88 min, to 38% over 42 min, then to
60% over 10 min and to 95% over 5 min, and holding it at 95% for 15 min. Spectra
were acquired with an Orbitrap Exploris™ 480 Mass Spectrometer (ThermoFisher
Scientific) running Tune 1.1 and 2.0SP1 with Xcalibur 4.3, operating in DD-MS2
mode, with FAIMS Pro™ Interface (ThermoFisher Scientific) cycling between CVs
of -50 V and -70 V every 1.5 s. MS1 spectra were acquired at 60,000 resolution with
a scan range from 375 to 1500 m/z, normalized AGC target of 300% and maximum
injection time of 50 ms. MS1 precursors with an intensity > 1.0e4, charge state of
2–6, and that matched a precursor envelope fit threshold of 70% at 0.7 m/z fit
window were selected for MS2 analysis. Here, ions were isolated in the quadrupole
with a 0.7 m/z window, collected to a normalized AGC target of either 150%, 300%,
or 500% or maximum injection time (IT) of 150 ms, 300 ms, 500 ms, or 1000 ms,
fragmented with 32 normalized HCD collision energy and resulting spectra
acquired at 45,000 resolution with a first mass of 110 m/z to ensure appropriate
coverage of the TMTPro reporter ions. Precursors that were sequenced once were
put on an exclusion list for 120 s, exclusion lists were shared between CV values
and Advanced Peak Determination was set to ‘off’. The scMS samples for the
comparison of 20% TFE versus LC–MS grade water as lysis buffer were analyzed on
a Q-Exactive HF-X, operating at 60,000 resolution at MS1, with an AGC target of
3e6 and max IT of 50 ms. Precursors with an intensity greater than 2e4 were
selected for MS2 analysis as a ‘top13’ method, isolated at 1.4 m/z isolation width,
collected at a maximum IT of 150 ms or AGC target of 1e5, then fragmented with a
normalized collision energy of 30 and resulting spectra analyzed in the Orbitrap at
a resolution of 45,000 and first mass set to 110 m/z. Here, peptides were eluted over
a 120-min gradient at 100 nl/min, going from 8 to 23% over 60 min, to 38% over
30 min and to 60% over 10 min, after which 95% buffer B was reached in 5 min and
held for 15 min.

Mass spectrometry data collection of MS3 bulk data. Peptides were loaded onto
a µPAC™ trapping column (PharmaFluidics), connected in-line to a 50 cm µPACTM

analytical column (PharmaFluidics), with 100% Buffer A (0.1% Formic acid in
water) using the UltiMate™ 3000 RSLCnano System (ThermoFisher), and the col-
umn oven operating at 45 °C. Peptides were eluted over a 140-min gradient at a
flowrate of 250 nl/min, using 80% Acetonitrile, 0.1% Formic acid (Buffer B) going
from 4% to 23% over 66min, to 38% over 30min, then to 60% over 10min and to
95% over 4 min, and holding it at 95% for 9 min. Spectra were acquired with an
Orbitrap Fusion™ Tribrid™ Mass Spectrometer (ThermoFisher Scientific) running
Tune 3.4, operating in DD-SPS-MS3 mode, with FAIMS Pro™ Interface (Thermo-
Fisher Scientific) cycling between CVs of -40 V, -60 V, and -80 CV every 2 s.
MS1 spectra were acquired at 120,000 resolution with a scan range from 400 to
1600m/z, normalized AGC target of 100% and maximum injection time on auto.
To filter MS1 precursors, monoisotopic peak determination was set to peptide,
intensity threshold to 5.0e3, charge state to 2–6 and dynamic exclusion to 60 s with
the single charge state option activated. Precursor ions were isolated in the quad-
rupole with a 0.7 m/z window, collected to a normalized AGC target of 100% or
maximum injection time (auto), and subsequently fragmented with 32 normalized
CID collision energy. Spectra were acquired in the ion trap in turbo mode. For the
MS3 spectrum, the 10 most intense fragment ions were selected from the
MS2 spectrum after filtering out the precursor ion with 50m/z below and 5m/z
above the peak and excluding isobaric tag losses of TMTpro. The precursor ion for
the MS3 scan was isolated from the MS1 scan with a 0.7m/z window collected to a
normalized AGC target of 250% or maximum injection time (auto), and subse-
quently fragmented as defined previously. Previously selected fragments were iso-
lated synchronously and fragmented again with 60 normalized HCD collision

energy. MS3 spectra were acquired in the Orbitrap with 50,000 resolution in a scan
range of 100–500m/z.

Mass spectrometry raw data analysis. Single-cell raw files were analyzed with
Proteome Discoverer 2.4 (ThermoFisher Scientific) with the built-in TMTPro
Reporter ion quantification workflows. Default settings were applied, with Trypsin
as enzyme specificity. Spectra were matched against the 9606 homo sapiens data-
base obtained from Uniprot (Swiss-Prot with isoforms, downloaded on 07/11/
2020). Dynamic modifications were set as Oxidation (M), and Acetyl on protein N-
termini. Cysteine carbamidomethyl was set as a static modification, together with
the TMTPro tag on both peptide N-termini and K residues. Spectra were searched
using the Sequest search engine and validated with Percolator. All results were
filtered to a 1% FDR. For the reporter ion quantification, normalization mode and
scaling mode were set to None and average reporter s/n threshold was set to 0.
Isotopic error correction was applied. MS3 bulk data was analyzed using the
standard settings of the Tribrid TMTpro SPS MS3 workflow using Sequest and
Percolator and the Reporter Quantification Consensus workflow. Log2-fold-
changes were calculated by Proteome Discoverer from the three technical replicates
(three reporter channels) per differentiation stage.

Data analysis for the comparison of different IT settings. Technical triplicates
of each of the four methods were first normalized by equalizing the median s/n of
the pooled single-cell channels for each protein across replicates (one correction
factor per protein). For each method, for each protein, 14 CV values were calcu-
lated from the 3 replicated measurements (i.e. 14 pooled single-cell channels). Only
proteins with that were quantified in all 3 replicates were considered for CV
calculation. CV was calculated by dividing the standard deviation of the normalized
s/n of each protein in each single-cell channel across replicates by the mean of the
raw s/n for each protein in each single-cell channel across replicates. To report a
mean CV for each protein in each method, the mean of up to 14 CV values was
calculated. To report a mean log2 s/n for each protein in each method, the mean of
all s/n values of a protein in all 3 replicates was log2 transformed. To calculate the
silhouette coefficient, the normalized data were further processed by a median shift
across cells, log2 transformation and removal of either all proteins containing
missing values across all methods, or across the individual method. Subsequently,
protein data was transformed into the 20 first principal components (PCs). The
silhouette coefficients of blast and LSCs were calculated per method using the
‘silhouette_samples’ function from Scikit-learn57, providing the differentiation
stage as labels and the first 20 PCs as matrix.

Computational analysis of single-cell data. FACS.fcs files were processed in
FlowJo 10.7.1 with the IndexSort 2.7 plugin to apply bi-exponential transform and
to gate the cells. FACS data and sort- and label layouts were used to create the
metadata for each cell. Metadata and the Proteome Discoverer protein table were
loaded into a Scanpy AnnData object. Analysis was performed with python 3.7.9
and Scanpy version 1.6.1.dev102+ g8d9eec4c. FACS data were normalized
between zero and one. Potential contaminant proteins were removed. Failed raw
files were removed and for the ‘high’ plate, rows I and J were removed. The SCeptre
normalization method equalized the median protein expression values across files
and channels in an iterative manner58 until the highest change in the matrix
compared to the previous matrix was below s/n of 1.1, which is slightly above the
noise level. Missing values were ignored during the calculations. After normal-
ization, values below 1.1 were set to missing. To remove outlier cells, upper and
lower bounds for the log2 sum s/n were determined by MAD-based outlier
detection and a minimum protein per cell cutoff was applied. Proteins quantified in
less than 3 cells were removed. Subsequently, a median shift of total intensity across
cells was applied to normalize for cell size and sampling depth, and finally, data
were log2 transformed. Before imputation, the optimal threshold to remove low
coverage proteins was determined by testing many thresholds with the extremes
being (i) the removal of all proteins with any missing value, and (ii) keeping all
proteins. The optimal threshold was selected based on the separation of differ-
entiation stages measured as silhouette score (mean of all silhouette coefficients) in
UMAP space (first 2 dimension). Data were imputed using the k-nearest neighbors
method with 5 nearest neighbors. Subsequently, protein expression was scaled to
unit variance and zero mean. To embed the protein data, principal component
analysis (PCA) was performed, from which a cell-neighborhood graph was cal-
culated. The neighborhood graph was embedded using UMAP59, Force-directed
graph drawing60 or a diffusion map51. For the analysis of differential protein
expression between two groups, the previously stored normalized log2 transformed
protein expression matrix was used. For each protein, a two-sided Welch’s t-test
was performed, excluding missing values. P-values were corrected via the
Benjamini–Hochberg procedure and a cutoff of 5% FDR was applied. All protein
log2 fold-changes were calculated using the normalized raw data. For the analysis
of enriched terms, the protein annotations provided by Proteome Discoverer were
used, a hypergeometric test was performed, p-values were corrected via the
Benjamini–Hochberg procedure and a cutoff of 5% FDR was applied. For the
heatmap analysis in Fig. 5, a subset of 479 proteins was selected that showed
changes across the trajectory by performing leiden clustering61 on the cell-
neighborhood graph and subsequently performing a differential expression test on
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each cell cluster against all other cells, using the normalized but non-imputed raw
data. Proteins were filtered to be detected in at least 200 cells and to have a log2
fold-change of at least 0.15 at a significance level below 0.05. Using all proteins for
the analysis lead to similar results. For the integration of unbalanced datasets, the
‘high’ and ‘enriched’ datasets were processed together in SCeptre as described.
Before imputation, only proteins were retained that had at least 40% valid values
across cells. The same threshold was applied on the ‘bulk’ dataset. This resulted in
917 proteins overlapping between both datasets. Subsequently, Scanorama was
applied with standard settings. All proteins were used for the embedding. For the
heatmap, a subset of 481 proteins was selected that showed changes across the
trajectory by performing leiden clustering on the cell-neighborhood graph and
subsequently performing a differential expression test on each cell cluster against
all other cells, using the imputed, normalized, and scaled data. Proteins were
filtered to have a fold-change of at least 1.03 at a significance level below 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository62 with
the dataset identifier PXD020586. All data is also available from the corresponding
authors, and all relevant source data are provided with this paper.

Code availability
The SCeptre package is available with https://doi.org/10.5281/zenodo.463170763 under
the MIT license on Github (www.github.com/bfurtwa/SCeptre), containing the complete
analysis performed in this study as multiple Jupyter notebooks.
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