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Machine learning (ML) models, such as artificial neural networks, have emerged as a complement to high-

throughput screening, enabling characterization of new compounds in seconds instead of hours. The

promise of ML models to enable large-scale chemical space exploration can only be realized if it is

straightforward to identify when molecules and materials are outside the model's domain of applicability.

Established uncertainty metrics for neural network models are either costly to obtain (e.g., ensemble

models) or rely on feature engineering (e.g., feature space distances), and each has limitations in

estimating prediction errors for chemical space exploration. We introduce the distance to available data

in the latent space of a neural network ML model as a low-cost, quantitative uncertainty metric that

works for both inorganic and organic chemistry. The calibrated performance of this approach exceeds

widely used uncertainty metrics and is readily applied to models of increasing complexity at no

additional cost. Tightening latent distance cutoffs systematically drives down predicted model errors

below training errors, thus enabling predictive error control in chemical discovery or identification of

useful data points for active learning.

1. Introduction

Machine learning (ML) models for property prediction have

emerged1–8 as powerful complements to high-throughput

computation8–13 and experiment,14–16 enabling the prediction

of properties in seconds rather than the hours to days that

direct observations would require. Using large data sets, trained

interpolative potentials17–21 and property prediction models1–8

have achieved chemical accuracy with respect to the underlying

data.22 Predictive models hold great promise in the discovery of

new catalysts5,6,23,24 and materials8,25–31 by enabling researchers

to overcome combinatorial challenges in chemical space

exploration. While application of ML to chemical space explo-

ration is increasingly becoming a reality, a key outstanding

challenge remains in knowing in which regions of chemical

space a trained ML model may be condently applied.32

While trained ML models are fast to deploy to large

compound spaces, many models (e.g., articial neural networks

or ANNs) are typically trained only aer acquisition of thou-

sands33 to millions17,34 of data points. Quantitative uncertainty

metrics are most critical in applications of active learning35,36

where the model is improved by acquisition of selected data.

Although some models (e.g., Gaussian process regression)

inherently provide estimates of model uncertainty,37,38 uncer-

tainty quantication for models suited to handle large data sets

(e.g., ANNs) remains an active area of research.39–41

One approach to estimating model uncertainty is to train an

ensemble of identical architecture models on distinct partitions

of training data to provide both amean prediction and associated

variance (Fig. 1). While widely employed in the chemistry

community,19,39,40,42,43 ensembles increase the model training

effort in proportion to the number of models used (typically an

order of magnitude, ESI Text S1†). Although this additional effort
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may be practical for some models (e.g., networks with only a few

layers), the training effort becomes cost-prohibitive44 during

iterative retraining for active learning or for more complex

models that are increasingly used in chemical discovery, such as

those using many convolutional45,46 or recurrent47,48 layers. Thus,

ensemble uncertainty estimates have been most frequently

applied19,40 in the context of simpler networks, especially in

neural network potentials that are trained in a one-shot manner.

A key failing of ensemble metrics is that with sufficient model

damping (e.g., by L2 regularization), variance over models can

approach zero41 for compounds very distant from training data,

leading to over-condence in model predictions.

Another approach to obtain model-derived variances in

dropout-regularized neural networks is Monte Carlo dropout

(mc-dropout)50 (Fig. 1). In mc-dropout, a single trained model is

run repeatedly with varied dropout masks, randomly eliminating

nodes from the model (ESI Text S1†). The variance over these

predictions provides an effective credible interval with the

modest cost of running the model multiple times rather than the

added cost of model re-training. In transition metal complex

discovery, we found that dropout-generated credible intervals

provided a good estimate of errors on a set aside test partition but

were over-condent when applied to more diverse transition

metal complexes.7,8 Consistent with the ensembles and mc-

dropout estimates, uncertainty in ANNs can be interpreted by

taking a Bayesian view of weight uncertainty where a prior is

assumed over the distribution of weights of the ANN and then

updated upon observing data, giving a distribution over possible

models.51 However, if the distribution of the new test data is

distinct from training data, as is expected in chemical discovery,

this viewpoint on model uncertainty may be incomplete.

A nal class of widely applied uncertainty metrics employs

distances in feature space of the test molecule to available

training data to provide an estimate of molecular similarity and

thus model applicability. The advantages of feature space

distances are that they are easily interpreted, may be rapidly

computed, and are readily applied regardless of the regression

model7,8,41,52 (Fig. 1). We used7,8 high feature space distances to

successfully reduce model prediction errors on retained points

while still discovering new transition metal complexes. Limi-

tations of this approach are that the molecular representation

must be carefully engineered such that distance in feature space

is representative of distance in property space, the relationship

between distance cutoff and high property uncertainty must be

manually chosen, and this metric cannot be applied tomessage-

passing models that learn representations.53,54

A chief advantage of multi-layer neural network models over

simpler ML models is that successive layers act to automatically

engineer features, limiting the effect of weakly-informative

features that otherwise distort distances in the feature space

(Fig. 1). Thus, for multi-layer ANNs, feature-based proximity can

be very different from the intrinsic relationship between points

in the model. Such ideas have been explored in generative

modeling where distances in auto-encoded latent representa-

tions have informed chemical diversity55,56 and in anomaly

detection with separate models57,58 (e.g., autoencoders59–61 or

nearest-neighbor classiers62,63) have enabled identication of

‘poisoned’ input data.64 However, the relationship between

latent space properties and feature space properties has not

been exploited or understood in the context of error estimation

for property prediction (i.e., regression) ML models.

In this work, we propose the distance in latent space, i.e., the

distance of a test point to the closest training set point or points

in the nal layer latent space, as a new uncertainty metric

(Fig. 1). The advantages of this approach are that (i) it intro-

duces no overhead into model training or evaluation, (ii) it can

work just as easily with both simple and complex ANN models

that have been used for chemical property prediction (e.g.,

hierarchical,65 recurrent,47,48 or convolutional46,66–69), and (iii) it

naturally ignores distances corresponding to features to which

the model prediction is insensitive, obviating the need for

feature engineering to develop an estimate of test point prox-

imity to prior training data. We show that these attributes yield

superior performance over other metrics in chemical discovery.

2. Results & discussion

To demonstrate the advantages of the latent space distance

metric in a quantitative fashion, we compare to three

Fig. 1 Schematic of an ANN annotated with the four uncertainty

metrics considered in this work. Two points are compared in terms of

their feature space distance (i.e., the difference between two points in

the molecular representation) on a t-distributed stochastic neighbor

embedding map49 (t-SNE) of data in the input layer (top, left, annota-

tions in orange) and the latent space distance (i.e., the difference

between two points in the final layer latent space) on a t-SNE of the

data in the last layer (top, right, annotations in green). The standard

ANN architecture (middle) is compared at bottom for Monte-Carlo

dropout (i.e., zeroed out nodes) and ensemble models (i.e., varied

model weights) at bottom left and right.
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established uncertainty metrics. This assessment is particularly

motivated by the nature of chemical discovery applications,8

where data set sizes are oen smaller and have more broadly

varying chemistry than typical applications in neural network

potentials19,40 or in quantitative structure–property relation-

ships in cheminformatics.41,52 To mimic chemical discovery

efforts, we train neural networks to predict transition metal

complex spin state energetics7 and test them on diverse tran-

sition metal complexes from experimental databases. To

conrm the generality of our observations, we also compare

uncertainty estimates for neural network models trained on

a very small subset (i.e., 5%) of QM9,33 a widely used22,65,70–75 data

set in organic chemistry ML.

For open shell transition metal chemistry, we use 1901

equilibrium high (H)/low (L) spin splitting energies (i.e., DEH-L)

for octahedral rst-row transition metal (i.e., M(II) or M(III)

where M ¼ Cr, Mn, Fe, or Co) complexes generated in prior

work7,8 using density functional theory (DFT). We use the

previously introduced7 full set of revised autocorrelation (RACs)

descriptors (i.e., RAC-155) to train a fully connected ANN with

three 200-node hidden layers (see Computational Details and

ESI Text S2, Table S1, and Fig. S1†). RACs have been demon-

strated for training predictive models of transition metal

complex properties,7,8,25,76 including spin splitting, metal–ligand

bond length, redox and ionization potentials, and likelihood of

simulation success.

To mimic chemical discovery application of this model, we

extracted a set of 116 octahedral, rst-row transition metal

complexes that have been characterized experimentally (i.e.,

from the Cambridge Structural Database or CSD77) as an out-of-

sample test set (Fig. 2, ESI Text S2 and Fig. S2–S5†). We selected

these CSD complexes to be intentionally distinct from training

data, as is apparent from principal component analysis (PCA) in

the RAC-155 (ref. 7) representation (Fig. 2). Several complexes in

the CSD test set fall outside the convex hull of the training data

in the rst two principal components (ca. 50% of the variance)

and are distant from training data, as judged by the Euclidean

distance in the full RAC-155 feature space (Fig. 2 and ESI

Fig. S6†). High distances are observed for complexes containing

elements rarely present (e.g., an S/N macrocycle for a Co(II)

complex, CSD ID: FATJIT) or completely absent from our

training data (e.g., B in boronated dipyrazole ligands of the Fe(II)

complex CSD ID: ECODIM and as in thioarsenite ligands in an

Mn(II) complex, CSD ID: CEDTAJ) as well as ligand topologies

(e.g., acrylamide axial ligands in an Mn(II) complex, CSD ID:

EYUSUO) not present in training data (Fig. 2).

Due to the distinct nature of the CSD test set from the

original training data, the 8.6 kcal mol�1 mean absolute error

(MAE) of the RAC-155 ANN on the CSD data set is much larger

than the 1.5 kcal mol�1 training set MAE (Fig. 2 and ESI Table

S2†). Use of ensemble- or mc-dropout-averaged predictions

unexpectedly78 worsens or does not improve test MAEs

(ensemble: 9.0 kcal mol�1; mc-dropout: 8.5 kcal mol�1), which

we attribute to noise in averaging due to the relatively hetero-

geneous training data (ESI Fig. S7–S9†). The relative error

increase on diverse data is consistent with our prior work where

we achieved low errors on test set partitions of 1–3 kcal mol�1

(ref. 7) that increased7 to around 10 kcal mol�1 on sets of diverse

molecules (e.g., 35 molecules from a prior curation7 of the

CSD77). These observations held across feature sets7 (e.g.,

MCDL-25 vs. RAC-155) and model architectures7,8 (e.g., kernel

ridge regression vs. ANNs) for DEH-L property prediction.

Despite the increase in MAE, errors are not uniformly high

across the 116 molecules in our new CSD data set (Fig. 2). A

signicant number (24 or 21%) of the complexes have errors

within the 1.5 kcal mol�1 training MAE, a substantial fraction

are within the 3 kcal mol�1 test set error described in prior

work7 (41 or 35%), and a majority (61 or 53%) have errors

Fig. 2 (left) Comparison of inorganic training and CSD test data in the dominant two principal components of the RAC-155 representation of the

training data set. The density of training data is shown as gray squares shaded as indicated in inset count colorbar. CSD test data points are shown

as circles colored by the 10-nearest-neighbor-averaged Euclidean distance in RAC-155 space, as shown in dist. inset color bar. Four repre-

sentative high-distance structures are shown in circle insets in ball and stick representations: (top left inset, CSD ID: FATJIT) a Co(II) complex with

S/N macrocycle and axial Br� ligands, (top right inset, CSD ID: EYUSUO) Mn(II) tetra-chlorophenyl-porphyrin with acrylamide axial ligands,

(bottom left inset, CSD ID: CEDTAJ) a Mn(II) complex with thioarsenite ligands, and (bottom right inset, CSD ID: ECODIM) an Fe(II) complex with

boronated dipyrazole and thiolated phenanthrene ligands. (right) Distribution of absolute CSD test set model errors for DEH-L (in kcal mol�1, bins:

2.5 kcal mol�1) with the MAE annotated as a green vertical bar and the cumulative count shown in blue according to the axis on the right.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 7913–7922 | 7915
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5 kcal mol�1 or below (Fig. 2 and ESI†). At the same time,

a number of outlier compounds have very large absolute errors

with 31 (27%) above 10 kcal mol�1 and 12 (10%) above

20 kcal mol�1 (Fig. 2 and ESI†). Large errors are due to both

underestimation of DEH-L by the ANN (e.g., Fe(II) complex CSD

ID: CEYSAA, DEH-L,ANN ¼ �23.8 kcal mol�1, DEH-L,DFT ¼

26.6 kcal mol�1) and overestimation (CSD ID: Mn(III) complex

CSD ID: EYUSUO, DEH-L,ANN ¼ 5.7 kcal mol�1, DEH-L,DFT ¼

�46.4 kcal mol�1, see Fig. 2). Given the heterogeneity of

observed errors, we apply uncertainty metrics to this data set

with the aim to (i) systematically drive down error on predicted

data points by only making predictions within the model's

domain of applicability and (ii) identify data points that should

be characterized and incorporated into the model training set

in an active learning setting.

For heavily engineered feature sets (i.e., MCDL-25 (ref. 7)), we

showed the Euclidean norm feature space distance to the

closest training point could be used to control ANN errors in

inorganic complex discovery,7,8 typically limiting discovery

MAEs to only slightly larger (i.e., 4–5 kcal mol�1) than the

original test MAE. This approach required that we select a cutoff

over which distances were deemed too high, a quantity that can

be sensitive to the nature of the feature set and the number of

nearest neighbors used in the average (ESI Fig. S10 and S11†).

Averaging Euclidean norm distances in RAC-155 (ref. 7) or

a feature-selected subset7,25 over the nearest (i.e., 1–10) neigh-

bors in the training data and only predicting on points suffi-

ciently close to training data systematically eliminates the

highest error points (ESI Fig. S11†). Consistent with prior

work,7,8 this approach allows us to achieve sub-6 kcal mol�1

MAE on over half (64 of 116) points in the CSD set, but further

improvement of predicted-data MAEs below 5 kcal mol�1 is not

possible (ESI Fig. S11†).

In the large, non-engineered feature spaces typically used as

input to neural networks, feature space distances may be

insufficient for identifying when predictions lack support by

data in the model. Thus, we turn to the latent space distance

evaluated at the nal hidden layer (Fig. 1). Using high distances

in latent space as the criterion for prediction uncertainty, we

drive down MAEs on predicted data nearly monotonically, well

below the 5 kcal mol�1 MAE that could be achieved using

feature space distances (ESI Fig. S11†). This difference in

performance is motivated by the distinct, higher effective

dimensionality of the principal components in the latent space

over the feature space (ESI Fig. S6†). With the distance in latent

space as our guide, 76 points can be identied as falling within

model domain of applicability (i.e., sub-6 kcal mol�1 MAE), and

3 kcal mol�1 MAE can be achieved on over 25% of the data (ca.

30 points), indicating a close relationship between high latent

space distance and model error (ESI Fig. S11–S13†). The

distance in latent space has the added advantage of being less

sensitive to the number of nearest neighbors over which the

distance evaluation is carried out than feature space distances

(ESI Fig. S11†). Our approach is general and not restricted to the

distance in the latent space described here. In future work, we

could move beyond potential ambiguities79 in measuring high-

dimensional similarity with Euclidean distances and compare

to alternatives, including averaged properties55 or those that

incorporate other geometric features of the latent data

distribution.

Having conrmed that distances in latent space provide

signicant advantages over feature space distances at no addi-

tional cost, we also would like to consider the performance with

respect to mc-dropout and ensemble-based uncertainty metrics

(ESI Fig. S14 and S15†). To do so, we overcome the key incon-

venience that the distance measure itself does not provide an

error estimate in the units of the property being predicted. Aer

model training, we calibrate the error estimate by tting the

predictive variance to a simple conditional Gaussian distribu-

tion of the error, 3, for a point at latent space distance, d:

3ðdÞ � N

�

0; s1
2 þ ds2

2
�

(1)

where the error is assumed to be normal with a baseline s1
2

term and a growing term s2
2. Selection of s1 and s2 using

a simple maximum likelihood estimator on a small subset (ca.

20 points) of the CSD test set is robust, leading to property-

derived uncertainties (Fig. 3, ESI Fig. S16, Tables S3 and S4†).

Over the 116-complex CSD test set, this latent space-derived

metric spans a large 8–24 kcal mol�1 range and correlates to

absolute model errors as strongly as ensemble and mc-

dropout standard deviation (std. dev.) metrics (ESI Fig. S13†).

Although not unique and dependent on the training process

of the model, the distance in latent space-derived energetic

uncertainties provide a superior bound on high error points

(Fig. 3). Observed errors reside within one std. dev. in the

majority (77%) of cases, and only a small fraction (8%) exceed

two std. dev. ranges (Fig. 3). In comparison, less than half of

errors are within one std. dev. evaluated from the ensemble

(44%) or mc-dropout (37%), and a signicant fraction of errors

exceed two std. dev. (23% and 34%, respectively, Fig. 3). When

the ensemble or mc-dropout uncertainty metrics are used as

cutoffs to decide if predictions should be made, model over-

condence leads to inclusion of more high error (i.e.,

>12 kcal mol�1) points than when using the latent distance (ESI

Fig. S17†). The ability to smoothly transition between high

cutoffs where more points are characterized with the ML model

(e.g., to achieve 8 kcal mol�1 MAE) vs. conservative where the

error is small (e.g., 2 kcal mol�1) but only a minority of

predictions are made is important for predictive control; here,

the latent distance provides the more robust separation

between these two regimes, thus enabling greater distinction

between the two (ESI Fig. S15†).

There are numerous cases where both ensemble and mc-

dropout are relatively condent on very high error points in

comparison to latent distance. For example, an Fe(II) complex

with ethanimine and alkanamine ligands (CSD ID: DOQRAC) is

predicted erroneously by the model to be strongly high spin

(DEH-L,ANN ¼�34.7 kcal mol�1 vs. DEH-L,DFT ¼ �1.4 kcal mol�1),

but this point has a low std. dev. from the ensemble

(4.3 kcal mol�1) in comparison to a relatively high

17.2 kcal mol�1 std. dev. from the latent space distance.

Conversely, there are no cases where the latent distance

uncertainty is uniquely over-condent, but there are cases

7916 | Chem. Sci., 2019, 10, 7913–7922 This journal is © The Royal Society of Chemistry 2019
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where all metrics are overcondent. For example, an Mn(II)

complex with four equatorial water ligands and two axial,

oxygen-coordinating 4-pyridinone ligands is expected by all

metrics to be reasonably well predicted (std. dev. ensemble ¼

2.5 kcal mol�1, mc-dropout¼ 2.7 kcal mol�1, and latent space¼

9.4 kcal mol�1), but the DFT preference for the high-spin state is

underestimated by the ANN (DEH-L,ANN ¼ �45.5 kcal mol�1 vs.

DEH-L,DFT ¼ �77.4 kcal mol�1). Although the latent distance

error estimate does not bound all high error points predicted by

the model, it provides a high delity, no cost uncertainty esti-

mate for >90% of the data.

To assess the generality of our observations on inorganic

complexes for other chemical data sets, we briey consider the

approach applied to atomization energies computed with

hybrid DFT (i.e., B3LYP80–82/6-31G83) for a set of organic (i.e., C,

H, N, O, and F-containing) small molecules. The QM9 data set33

consists of 134k organic molecules with up to 9 heavy atoms

and has been widely used as a benchmark for atomistic

machine learning model development,22,70–72 with the best

models in the literature reporting MAEs well below

1 kcal mol�1.22,65,70,73–75 As in previous work,7 we employ stan-

dard autocorrelations (ACs)84 that encode heuristic features85 on

the molecular graph and perform well (ca. 6 kcal mol�1 MAE)

even on small (<10%) training set partitions for QM9 atomiza-

tion energies,7 exceeding prior performance from other

connectivity-only featurizations.70 For this work, we trained

a two-hidden layer residual ANN using AC features and passing

the input layer forward in a ResNet-like architecture86 to

improve performance over a fully-connected architecture

(Computational Details and ESI Fig. S18, Tables S5 and S6†). We

use only 5% (6614) of the data points for training, reserving the

remaining 127k molecules for our test set to mimic chemical

discovery in a single random partition, the choice of which does

not inuence overall performance (ESI Table S7†).

Baseline model performance for QM9 atomization energies

with the ANN is improved over our prior work for both train

(4.6 kcal mol�1) and test (6.8 kcal mol�1) MAE, with some

further improvement of test MAE with an ensemble model

(6.1 kcal mol�1, see ESI Tables S7 and S8†). A wide distribution

of errors is observed with some outlier points such as hexa-

uoropropane (error ¼ 120 kcal mol�1) having very large errors

for both the single and ensemble models (ESI Fig. S19†). For the

residual ANN, the mc-dropout uncertainty has not been derived,

and so we compare only the other three uncertainty metrics. We

observe ensemble and latent space distance uncertainty metrics

to have similar correlations to model errors and both to

outperform feature space distance in this regard (ESI Fig. S20†).

Selecting either the distance in latent space or ensemble

uncertainty as a cutoff, we systematically drive down MAEs on

the predicted data fraction, and latent distance again provides

superior control when error tolerance is low (ESI Fig. S21†). For

example, setting a tolerance of 3.5 kcal mol�1 for the MAE leads

to a pool of over 4200 points retained with the latent space

distance metric vs. few points (74) for the ensemble std. dev.

(ESI Fig. S21†).

We again observe that the AC feature space distance is a poor

indicator of increasing model errors, with as many high error

points occurring at low distances as at high distances (Fig. 4). In

contrast to feature space distance, ensemble std. dev. and latent

distance both grow with increasing error (Fig. 4). Calibration of

the latent space distance to the output property enables direct

comparison to ensemble uncertainties (ESI Table S9†). As in the

inorganic data set, the ensemble std. dev. values are over-

condent, capturing a smaller amount (44%) of the errors

within a single std. dev. in comparison to the distance in latent

space (77%) metric (Fig. 4 and ESI Fig. S22†). For the ensemble

uncertainty, a signicant fraction (28%) of points have errors

larger than twice the std. dev., whereas only a small fraction

(5%) do so for the distance in latent space (Fig. 4 and ESI

Fig. S22†).

For both the CSD test set and the QM9 set, a systematic

reduction in baseline error can be observed in a practical use

case where the user adjusts the applied uncertainty metric to

become more conservative (Fig. 5). Smooth reductions in MAE

on data inside the uncertainty cutoffs can be achieved across

a wide range of latent distance cutoffs, with errors nearly

Fig. 3 Relationship between spin-splitting ANN model errors (in kcal mol�1) on a 116 molecule CSD set and three uncertainty metrics all

in kcal mol�1: latent model energetic, calibrated std. dev. (left), mc-dropout std. dev. (middle), and 10-model ensemble std. dev. (right). The

translucent green region corresponds to one std. dev. and translucent yellow to two std. dev. The points with model errors that lie inside

either of these two bounds are shown in black, and the percentage within the green or yellow regions are annotated in each graph in green

and yellow, respectively. The points outside two std. dev. are colored red, and the percentage of points in this group is annotated in each

graph in red. Three points are omitted from the ensemble plot to allow for a consistent x-axis range.

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 7913–7922 | 7917
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monotonically approaching the training data MAE, which may

be recognized as a qualitative lower bound on our test set error

(Fig. 5). Combining all error metrics to choose the most

conservative result does not improve upon the single latent

space distance metric (ESI Fig. S23†). PCA or uniform manifold

approximation and projection (UMAP)87 analysis of the latent

space distance indicates that a large number of the latent space

dimensions are needed for error estimation (ESI Fig. S24 and

Table S10†). For either data set, at the point on which half of all

possible predictions are made, predicted data MAE is less than

half of that for the excluded points (Fig. 5).

The latent distance also shows promise for application in

active learning, where a model is trained iteratively by acquiring

data in regions of high model uncertainty. To mimic such an

application in the context of inorganic chemistry, we returned

to the CSD data set and identied the 10 least condent points

based on the distance in latent space, retrained the ANN using

the same protocol, and re-evaluated model MAE (ESI Table

S11†). Incorporating these data points during retraining

reduced model errors from 8.6 to 7.1 kcal mol�1, whereas

simply removing these points only reduced model MAE to

7.7 kcal mol�1 (ESI Table S11†). This effect is particularly

signicant considering the relatively small change in the

number of data points (i.e., 10 added to 1901 or 0.5%) and an

even larger reduction in root mean square error is observed (ESI

Table S11†). When compared to an ensemble or mc-dropout

cutoff, selection of retraining points based on latent space

distance results in the largest reduction in model MAE while

also simultaneously only requiring a single model retraining

(ESI Table S11†).

Although we have focused on applications in chemical

discovery with fully connected neural networks, application to

other network architectures is straightforward. We trained

convolutional neural networks for image classication tasks on

two standard benchmarks, MNIST88 and Fashion-MNIST.89

Incorrectly classied images are observed at higher latent

distances in both cases (ESI Text S3, Table S12, and Fig. S25†).

3. Conclusions

We have demonstrated on two diverse chemical data sets that

the distance in the latent space of a neural network model

provides a measure of model condence that out-performs the

best established metrics (i.e., ensembles) at no additional cost

beyond single model training. The distance in latent space

Fig. 4 Model errors (in kcal mol�1) for 127k QM9 atomization energy test points shown as contours as a function of uncertainty metrics. The

three uncertainty metrics compared are: feature space distance (in arb. u., left, with top left color bar), latent space distance (in arb. u., middle,

with top right color bar), and 10-model ensemble std. dev. (in kcal mol�1, with top right color bar). One standard deviation cutoffs are shown as

orange lines for the latent space distance from the calibrated error model (center) and directly from the ensemble (right).

Fig. 5 MAE for predicted points (inside cutoff, green squares) and

those not predicted (outside cutoff, orange squares) compared to the

training data MAE (blue horizontal dashed line) along with data fraction

in each set for the inorganic CSD test set (left) and organic QM9 set

(right). The most distant point in the test set is scaled to have a latent

distance of 1.0 for comparison across data sets but the x-axis range is

then truncated to focus on the range of latent distance cutoffs that

affect most of the data.
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provides an improved approach to separating low- and high-

condence points, maximizing the number of retained points

for prediction at low error to enable extrapolative application of

machine learning models. We introduced a technique to cali-

brate latent distances that required only a small fraction of out-

of-sample data, enabling conversion of this distance-based

metric to error estimates in the units of the predicted prop-

erty. In doing so, >90% of model errors were bounded within 2

std. dev. of latent distance estimates, in signicant improve-

ment beyond typically over-condent ensemble estimates. Like

ensembles or mc-dropout, the latent space distance could still

be challenged by unstable models, such as those trained on

highly discontinuous properties. The latent space distance

metric is general beyond the examples demonstrated here and

is expected to be particularly useful in complex architectures

that are normally time-consuming and difficult to train or in

active learning approaches where rapid, iterative model

retraining may be needed.

4. Computational Details

Neural networks were trained for this work with hyper-

parameters selected using Hyperopt90 followed by manual ne-

tuning in Keras91 with the Tensorow92 backend (ESI Fig. S17,

Tables S5 and S13†). Model weights are provided in the ESI.†

The DEH-L energy evaluation protocol for inorganic chemistry

training data and the curated CSD77 test set used molSimplify8,11

to automate hybrid (i.e., B3LYP80–82) DFT calculations, with

more details provided in ESI Text S2.† For the organic chemistry

test, the QM9 atomization energy data set was obtained from

the literature.33 In all cases, we normalized the representations

and properties to make the training data have zero mean and

unit variance. For calculating ensemble properties, we

employed 10 sub-models trained on 10-fold cross-validation

splits of the training data. For mc-dropout, we used the same

8.25% dropout as in training with 100 realizations, and we

employed maximum likelihood to optimize the baseline

uncertainty parameter, s (ESI Text S1 and Table S2†). We did not

apply mc-dropout to the organic test case because it has not

been developed for residual-connectivity networks. For feature

space distance, we measured Euclidean distance in the

normalized feature space (e.g., RAC-155 (ref. 7)) directly. Fea-

turizations of relevant complexes are provided in the ESI.† For

latent distances, we used the latent space aer the last hidden

layer, which has the dimensionality of the model (i.e., 200 for

spin splitting, 120 for the organic model).
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