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A quantitative version of Kirk’s fixed point
theorem for asymptotic contractions

Philipp Gerhardy
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Abstract

In [J.Math.Anal.App.277(2003) 645-650], W.A.Kirk introduced the
notion of asymptotic contractions and proved a fixed point theorem
for such mappings. Using techniques from proof mining, we develop
a variant of the notion of asymptotic contractions and prove a quan-
titative version of the corresponding fixed point theorem.

1 Introduction

In [3], W.A. Kirk proved a fixed-point theorem for so-called asymptotic
contractions on complete metric spaces, showing that given a continuous1

asymptotic contraction f for every starting point x the iteration sequence
{fn(x)} converges to the unique fixed point of f . The proof is non-elementary,
as it uses an ultrapower construction to establish the fixed point theorem.
Recent alternative proofs by Jachymski and Jóźwik[2], additionally assum-
ing that f is uniformly continuous, and by Arandelović [1], under the same
assumptions as Kirk, are elementary and avoid ultrapowers, but neither of
the three proofs provides explicit rates of convergence.

1In [2, 1], it is discussed that the requirement that f is continuous is a necessary
condition for Kirk’s fixed point theorem. By an oversight the requirement was left out in
the original statement of Kirk’s fixed point theorem in [3]
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Using techniques from proof mining as developed e.g. in [5, 4], we first
derive a suitable generalization of the notion of asymptotic contractivity
and subsequently give an elementary proof of Kirk’s fixed point theorem,
providing an explicit rate of convergence2 (to the unique fixed point) for
sequences {fn(x)}.
In detail, we show that:

• the rate of convergence only depends on the starting point x via a
bound on the iteration sequence {fn(x)},

• the rate of convergence only depends on the function f via suitable
moduli expressing its asymptotic contractivity,

• the continuity of f is only necessary to prove the existence of a unique
fixed point, while the convergence to such a fixed point can be proved
without the continuity of f .

2 Preliminaries

In [3], Kirk defines asymptotic contractions as follows:

Definition 2.1 (Kirk[3]). A function f : X → X on a metric space (X, d)
is called an asymptotic contraction with moduli φ, φn : [0,∞) → [0,∞) if
φ, φn are continuous, φ(s) < s for all s > 0 and for all x, y ∈ X

d(fn(x), fn(y)) ≤ φn(d(x, y))

and moreover φn → φ uniformly on the range of d.

What is needed to prove the fixed point theorem are not so much the moduli
φ, φn, but instead a function η producing a witness of the inequality φ(s) < s
and a modulus of convergence β for φn yielding a K s.t. for all k ≥ K φk

2Since an asymptotic contraction need not be non-expansive (cf. Example 2 in [2]),
convergence need not be monotone, and hence an effective rate of convergence can at most
produce a bound M s.t. fm(x) is close to the unique fixed point for some m ≤ M . We
will discuss the details later.
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is close enough to φ and hence fk is a contraction. For η it is sufficient to
provide a witness for every interval [l, b], for β it suffices to have uniform
convergence on every interval [l, b], in both cases with 0 < l ≤ b < ∞.

Thus, to give an elementary and effective proof of the fixed point theorem
proved by Kirk, we derive the following generalized definition of asymptotic
contractions:

Definition 2.2. A function f : X → X on a metric space (X, d) is called an
asymptotic contraction if for each b > 0 there exist moduli ηb : (0, b] → (0, 1)
and βb : (0, b]× (0,∞) → IN and the following hold:
(1) there exists a sequence of functions φn : (0,∞) → (0,∞) s.t. for all
x, y ∈ X, for all ε > 0 and for all n ∈ IN

b ≥ d(x, y) ≥ ε → d(fn(x), fn(y)) ≤ φn(ε) · d(x, y),

(2) for each 0 < l ≤ b the function βb
l := βb(l, ·) is a modulus of uniform

convergence for φn on [l, b], i.e.

∀ε > 0 ∀s ∈ [l, b] ∀m, n ≥ βb
l (ε) (|φm(s)− φn(s)| ≤ ε),

and (3) defining φ := lim
n→∞

φn, then for each ε > 0 we have that ηb(ε) > 0

and φ(s) + ηb(ε) ≤ s for each s ∈ [ε, b].

All the relevant information is contained in the moduli η and β and we do
not need to refer to φ, φn at all, as the following proposition shows:

Proposition 2.3. Let (X, d) be a metric space, let f be an asymptotic con-
traction and let b > 0 and ηb, βb be given. Then for every ε > 0 there is a

K(ηb, βb, ε) s.t. for all k ≥ K, where K = βb
ε(

ηb(ε)
2

),

b ≥ d(x, y) ≥ ε → d(fk(x), fk(y)) ≤ (1− ηb(ε)

2
) · d(x, y).

Proof: Let K = βb
ε(

ηb(ε)
2

), let a suitable sequence φn be given and let φ :=
lim

n→∞
φn. By the definition of ηb we have that φ(s) + ηb(ε) ≤ 1 for s ∈ [ε, b].

By the definition of βb the function φk is at least ηb(ε)
2

-close to φ for all k ≥ K

and for all s ∈ [ε, b] and hence also φk(s) ≤ 1− ηb(ε)
2

.
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Remark 2.4. Requiring moduli ηb and βb for each individual b > 0 instead
of one pair of moduli for all b > 0 is no restriction. In the proof given in [3],
it is assumed that some iteration sequence of the asymptotic contraction f is
bounded, which allows to prove that every iteration sequence is bounded. As
we will see, to prove the fixed point theorem it suffices to have moduli ηb and
βb for the corresponding b-bounded subsets of (X, d).

Next, we show that Kirk’s notion of asymptotic contractivity implies the
more general notion in Definition 2.2.

Definition 2.5. Let the function φ, a sequence of functions φn and b > 0 be
given. Define:

φ′(s) := φ(s)
s

for s ∈ (0,∞), φ′n(s) := φn(s)
s

for s ∈ (0,∞),
φ′′(s) := max

t∈[s,b]
φ′(t) for s ∈ (0, b], φ′′n(s) := max

t∈[s,b]
φ′n(t) for s ∈ (0, b].

Proposition 2.6. Let φ : [0,∞) → [0,∞) be continuous, let φ satisfy φ(s) <
s for s > 0 and let φn : [0,∞) → [0,∞) be a sequence of continuous functions
converging uniformly to φ. Then

• φ′ and φ′n are continuous on (0,∞), φ′(s) < 1 for all s ∈ (0,∞) and
the sequence φ′n converges uniformly to φ′ on [l,∞) for each l > 0,

• φ′′ and φ′′n are continuous on (0, b], φ′′(s) < 1 for all s ∈ (0, b] and the
sequence φ′′n converges uniformly to φ′′ on [l, b] for each 0 < l ≤ b < ∞.

Proof: Obvious.

Remark 2.7. The moduli ηb, βb may equivalently be given as functions ηb :
IN → IN and βb : IN × IN → IN, where real numbers are approximated from
below by suitable 2−n. Given b > 0, if φ and a modulus β for φn are given as
computable number-theoretic functions, then ηb and βb

l are effectively com-
putable in b.

Proposition 2.8. If a function f : X → X on a metric space (X, d) is an
asymptotic contraction with moduli φ, φn, then the function f is an asymp-
totic contraction with suitable moduli ηb, βb for every b > 0.

Proof: Follows from the above remarks and constructions.
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3 Main results

We are now in position to give an elementary proof of Kirk’s fixed point
theorem. The general idea of the proof is similar to the constructivization of
Edelstein’s fixed point theorem in [5]. We first derive (variants of) a modulus
of uniqueness and of a modulus of asymptotic regularity. These two moduli
combined give us a modulus of convergence for the iteration sequence and
thereby of the convergence to the unique fixed point.

Throughout this section we assume that f : X → X is a self-mapping on a
metric space (X, d). Given x0 ∈ X we write xn for fn(x0) and {xn} for the
corresponding iteration sequence. When there is no ambiguity we will omit
the superscript b from the moduli ηb, βb.

Lemma 3.1. Let (X, d) be a metric space, let f be an asymptotic contraction
and let b > 0 and η, β be given. Then for every b ≥ ε > 0, for all n ≥ N and
all x, y ∈ X with d(x, y) ≤ b

d(x, fn(x)), d(y, fn(y)) ≤ δ → d(x, y) ≤ ε,

where δ(η, ε) = η(ε)·ε
4

and N(η, β, ε) = βε(
η(ε)
2

).

Proof: Let b ≥ ε > 0 be given. Let n ≥ N , then by Proposition 2.3

b ≥ d(x, y) ≥ ε → d(fn(x), fn(y)) ≤ (1− η(ε)

2
) · d(x, y).

Let d(x, fn(x)), d(y, fn(y)) ≤ δ, with δ = η(ε)·ε
4

as described above and as-
sume d(x, y) > ε. Then by the triangle inequality

d(x, y) ≤ d(x, fn(x)) + d(fn(x), fn(y)) + d(y, fn(y))

≤ η(ε)·ε
2

+ (1− η(ε)
2

) · d(x, y)

and hence η(ε)
2
·d(x, y) ≤ η(ε)

2
·ε which implies d(x, y) ≤ ε. But this contradicts

the assumption d(x, y) > ε and therefore d(x, y) ≤ ε.

Lemma 3.2. Let (X, d) be a metric space, let f be an asymptotic contraction
and let b > 0 and η, β be given. Then for every δ > 0, for every x0 ∈ X s.t.
{xn} is bounded by b and for every N there exists an m ≤ M , s.t.

d(xm, fN(xm) < δ,

where M(η, β, δ, b) = k · d( lg(δ)−lg(b)

lg(1− η(δ)
2

)
)e with k = βδ(

η(δ)
2

).
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Proof: Let k = βδ(
η(δ)
2

). Assume for some M0 and all m < M0 we have
d(xmk, f

N(xmk)) ≥ δ, then

d(xM0k, f
N(xM0k)) ≤ (1− η(δ)

2
)M0d(x0, f

N(x0)) ≤ (1− η(δ)

2
)M0 · b

since by assumption d(x0, f
N(x0)) ≤ b.

Solving the inequality (1− η(δ)
2

)M0 ·b < δ w.r.t. M0 yields the described upper
bound M = k ·M0 on an m s.t. d(xm, fN(xm)) < δ.

Remark 3.3. Bounding m by M is in this context optimal. Since fk only
is a contraction with constant (1 − η(δ)

2
) for x, y s.t. d(x, y) ≥ δ, we cannot

be certain, that d(xM , fN(xM)) < δ. If for some earlier m < M we have
d(xm, fN(xm)) < δ, then for these points we no longer have the guarantee
that fk is a contraction, and hence we have no (computable) control over the
next iteration step, i.e. over d(xm+k, f

N(xm+k)).
If the function f and the space (X, d) have a computable representation one
can of course check x0, . . . , xM to find which one is close to the unique fixed
point z.

Theorem 3.4. Let (X, d) be a metric space, let f be an asymptotic contrac-
tion and let b > 0 and η, β be given. Assume that f has a (unique) fixed
point z. Then for every ε > 0 and every x0 ∈ X s.t. {xn} is bounded by b
and d(xn, z) ≤ b for all n there exists an m ≤ M s.t.

d(xm, z) ≤ ε,

where M(η, β, ε, b) = k · d( lg(δ)−lg(b)

lg(1− η(δ)
2

)
)e, k = βδ(

η(δ)
2

), δ = η(ε)·ε
4

.

Proof: By Lemma 3.1 for every ε > 0 there exist δ, N as described above
s.t. if d(x, fN(x)), d(y, fN(x)) ≤ δ then d(x, y) ≤ ε. Any (trivially unique)
fixed point z of f satisfies d(z, fN(z)) = 0 ≤ δ, so if d(x, fN(x)) ≤ δ then
d(x, z) ≤ ε.

Now, by Lemma 3.2 for every δ and every N we can find an m ≤ M as
described above s.t. d(xm, fN(xm)) < δ and hence xm is ε-close to the fixed
point z.

Note, that the rate of convergence does not depend on the starting point x0,
but only on a bound b on {xn}. Also, the rate of convergence only depends
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on f via the moduli η, β. Finally, if we know that a fixed point z exists, we
do not need the continuity of f to prove {xn} converges to z.

Lemma 3.5. Let (X, d) be a metric space, let f be an asymptotic contraction
and let b > 0 and η, β be given. Then for every δ > 0, for every x0 ∈ X s.t.
{xn} bounded by b and for every N there exists an M s.t. for all m ≥ M

d(xm, fN(xm)) < δ.

Proof: By Lemma 3.2 there exists an m s.t. d(xm, fN(xm)) < δ. Either
d(xm, fN(xm)) = 0 – then we are done – or d(xm, fN(xm)) > ε0 for some
ε0 > 0.

Let K = βε0(
η(ε0)

2
), then it follows by Proposition 2.3 that for all k ≥ K

d(xm+k), f
N(xm+k)) ≤ (1− η(ε0)

2
)d(xm, fN(xm)) < δ.

Let M = m + K and the result follows.

Lemma 3.6. Let (X, d) be a metric space, let f be an asymptotic contraction
and let b > 0 and η, β be given. If {xn} is bounded by b then {xn} is a Cauchy
sequence.

Proof: By Lemma 3.1 for every ε > 0 there exists a δ > 0 and an N s.t. for
all x, y ∈ X if d(x, fN(x)), d(y, fN(y) ≤ δ then d(x, y) ≤ ε. By Lemma 3.5
for every δ > 0 and every N there exists an M s.t. d(xm, fN(xm)) < δ for
all m ≥ M . Then d(xm, xn) ≤ ε for all m, n ≥ M .

Theorem 3.7. Let (X, d) be a complete metric space, let f be a continuous
asymptotic contraction and let b > 0 and η, β be given. If for some x0 ∈ X
the sequence {xn} is bounded by b then f has a unique fixed point z, {xn}
converges to z and for every ε > 0 there exists an m ≤ M s.t.

d(xm, z) ≤ ε,

where M is as in Theorem 3.4.

Proof: By Lemma 3.6 every iteration sequence {xn} which is bounded is
a Cauchy sequence. Since (X, d) is complete the limit z of {xn} exists. To
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show that z is a fixed point we show that d(z, f(z)) ≤ ε for every ε > 0.
Every fixed point of f is trivially unique.

Since {xn} is a Cauchy sequence and z is the limit, for every δ > 0 there
is an M s.t. d(xm, z), d(xm, f(xm)) ≤ δ for all m ≥ M . Next, since f is
continuous at z for every ε0 > 0 there is a δ0 > 0 s.t. for all x if d(x, z) ≤ δ0

then d(f(x), f(z)) ≤ ε0.

Let ε > 0 be given, choose δ0 for ε0 = ε/3 and M s.t. d(xm, z), d(xm, f(xm)) ≤
min(δ0, ε/3) for all m ≥ M , then

d(z, f(z)) ≤ d(xm, z) + d(xm, f(xm)) + d(f(xm), f(z))
≤ ε/3 + ε/3 + ε/3 = ε.

The rate of convergence M follows by Theorem 3.4.

Remark 3.8. By Remark 2.4 and Proposition 2.8 this implies Kirk’s fixed
point theorem for asymptotic mappings in [3].

Definition 3.9. A function f : X → X is called quasi-nonexpansive if

∀x, p ∈ X(f(p) = p → d(f(x), p) ≤ d(x, p)).

Corollary 3.10. Let (X, d) be a complete metric space, let f be a continuous,
quasi-nonexpansive asymptotic contraction and let b > 0 and η, β be given.
If for some x0 the sequence {xn} is bounded by b then f has a unique fixed
point z, {xn} converges to z and for every ε > 0 and all n ≥ M

d(xn, z) ≤ ε,

where M(η, β, ε, b) is as in Theorem 3.4.

Proof: By Theorem 3.7 there exists m ≤ M s.t. d(xm, z) ≤ ε where z is the
unique fixed point of f and M is given as in Theorem 3.4. The function f is
quasi-nonexpansive, so for all n ≥ M ≥ m we have that d(xn, z) ≤ d(xm, z)
and hence also d(xn, z) ≤ ε.

Acknowledgements: I am grateful to Ulrich Kohlenbach for many useful
discussions on the subject and helpful suggestions for improving the presen-
tation of the material in this article.
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