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1. Introduction. Let

(1.1) F (x, y) =
m∑

i=0

n∑
j=0

ai,jx
iyj

be a polynomial with rational integer coefficients of degree m > 0 in x and
n > 0 in y which is irreducible in Q[x, y]. We say that F satisfies Runge’s
Condition unless the following conditions hold for F :

(C1) ai,n = am,j = 0 for all non-zero i and j,
(C2) ai,j = 0 for all pairs (i, j) satisfying ni + mj > mn,
(C3) the sum of all monomials ai,jx

iyj of F for which ni + mj = nm is
a constant multiple of a power of an irreducible polynomial in Z[x, y].

We note that (C2) is a stronger condition than (C1). The reason that
(C1) is included above will be made clear in the statement of Theorem 1.
We will make reference to the following condition which, together with (C1),
is stronger than (C2) and (C3):

(C4) the algebraic function y = y(x) defined by F (x, y) = 0 has only one
class of conjugate Puiseux expansions.

In 1887 Runge [14] showed that if F is a polynomial for which at least one
of (C1), (C2), (C3) or (C4) does not hold, then the diophantine equation
F (x, y) = 0 has only a finite number of solutions in rational integers x
and y. Runge’s method of proof is effective, and upper bounds for the size
of integer solutions to these equations were obtained by Hilliker and Straus
in [10]. They showed that any integer solution of F (x, y) = 0 satisfies

max{|x|, |y|} <

{
4(h + 1)2 if d = 1 ,

(8dh)d2d3

if d > 1 ,

where d = max{m,n} and h = maxi,j |ai,j |. In their work, Hilliker and
Straus use a quantitative version of Eisenstein’s theorem on power series
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expansions of algebraic functions. Dwork and van der Poorten [4] have
recently refined a quantitative result of Schmidt [16] on Eisenstein’s theorem.
In Theorem 1 we apply the result of Dwork and van der Poorten to Runge’s
method, and thereby improve on the result of Hilliker and Straus.

In what follows let F (x, y) be the irreducible polynomial given in (1.1),
d = max{m,n}, d0 = min{m,n}, and h = heightF = maxi,j |ai,j |. As well,
define

B(h, n) = 4.8(8e−3n4+2.74 log ne1.22nh2)n for n ≥ 1 .

Theorem 1. Assume that (x, y) ∈ Z2 is a solution of the diophantine
equation F (x, y) = 0.

1. If am,j 6= 0 for some non-zero j, or more generally , if (C4) does not
hold , then

(1.2)
|x| ≤ B(h, n)2mn3(n+1)(2h(m + 1)(n + 1))12mn4

,

|y| ≤ B(h, n)2m2n2(n+1)(2h(m + 1)(n + 1))12m2n3
.

2. If (C1) holds and either (C2) or (C3) does not , then

(1.3)
|x| ≤ B(h, d0)2mn2d0(d0+1)(2h(m + 1)(n + 1))12mn2d2

0 ,

|y| ≤ B(h, d0)2m2nd0(d0+1)(2h(m + 1)(n + 1))12m2nd2
0 .

Corollary. If F (x, y) satisfies Runge’s Condition, then all integer
solutions of the diophantine equation F (x, y) = 0 satisfy

(1.4) max{|x|, |y|} < (2d)18d7
h12d6

.

Thus, the main improvement on the result of Hilliker and Straus is the
removal of the double exponential in d. This corresponds to the fact that
the recent quantitative versions of Eisenstein’s theorem in [4] and [16] im-
prove on earlier versions by a similar margin. We note that Theorem 1 also
improves on the special case of Runge’s theorem proved in Theorem 3.31 of
[10] except for finitely many equations of each degree d. The factor B(h, n)
in Theorem 1 is that which arises in the work of Dwork and van der Poorten.
Any further quantitative improvements in this direction should reduce the
bounds given in Theorem 1.

Grytczuk and Schinzel [8] have recently used a method of Skolem to
obtain upper bounds for integer solutions to the same class of diophantine
equations. In particular, if F is as in Theorem 1 and (m,n) denotes the
greatest common divisor of m and n, then they have shown that:

1. If am,j 6= 0 for some non-zero j, then

|x| ≤ ((m + 1)(n + 1)(mn + 1)2/nh)2n(mn+1)3 ,

|y| ≤ ((m + 1)(n + 1)(mn + 1)2/nh)2(mn+1)3 .
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2. If (C1) holds, but (C2) does not , then

|x| ≤ ((4mnd0)8mn(m,n)−1
h)96m3n4(m,n)−4d4

0+m−1d0 ,

|y| ≤ ((4mnd0)8mn(m,n)−1
h)96m4n3(m,n)−4d4

0+n−1d0 .

3. If (C1) and (C2) hold , but (C3) does not , then

|x| ≤ ((mn)3mn(m,n)−1
h)(5/128)m3n4(m,n)4+m−1(m,n)2 ,

|y| ≤ ((mn)3mn(m,n)−1
h)(5/128)m4n3(m,n)4+n−1(m,n)2 .

Theorem 1 improves on this result in general, although there are many
examples for which this result will provide smaller bounds, primarily in the
case that (C1) does not hold for F . We remark that Theorem 1 has been
presented in such a manner as to facilitate a comparison between these
two results.

Grytczuk and Schinzel also provide the example F (x, y) = xy− ty− txd,
with solution x = td+1 + t, y = (td + 1)d, which shows that the exponent
12d6 in (1.4) cannot be lowered below d2. This example also shows that
Theorem 3.3 of [10] is false for d > 2, wherein it is stated that if d0 = 1 then
max{|x|, |y|} < d(h+1)2d. It does follow from the proof of this theorem that
min{|x|, |y|} < d(h + 1)2d, from which one can deduce that max{|x|, |y|} <

h(d + 1)(d(h + 1))2d2
. We will see in the proof of Theorem 1 that there

is no need to distinguish this case separately, provided that the coefficient
am,n = 0.

It was established by Runge that if F ∈ Z[x, y] is irreducible in Q[x, y],
and if F (x, y) = 0 has infinitely many solutions in rational integers, then the
algebraic function y = y(x) satisfies (C4). It is evident that the same holds
for the algebraic function x = x(y). It can be shown that this is equiv-
alent to the condition that F is irreducible in Q(( 1

x ))[y] and in Q(( 1
y ))[x].

M. Ayad [2] has recently improved on this by showing that such a polyno-
mial F must either be irreducible or a product of two irreducibles of the
same degree in Q(( 1

x ))[y] and in Q(( 1
y ))[x], where Q denotes the algebraic

closure of Q. This generalizes a well known result of Schinzel [15]. The
proofs of these results rely on an ineffective theorem of Siegel, hence they
do not provide a method for obtaining upper bounds for the size of integer
solutions.

As an application of the quantitative results of [8], we prove the following
effective version of a theorem of Skolem [18, p. 90].

Theorem 2. Let F be a non-zero polynomial with rational integer co-
efficients, which is irreducible in Q[x, y] and satisfies F (0, 0) = 0. If m =
degx F , n = degy F , h = heightF , and g is a positive integer , then all
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integer solutions of F (x, y) = 0 with gcd(x, y) = g satisfy

(1.5)
|x| ≤ (m6n6(m + 1)n−1gmnhn)2m6n6

,

|y| ≤ (m6n6(n + 1)m−1gmnhm)2m6n6
.

There are certain subclasses of polynomials for which Runge’s Condition
is satisfied and for which the bound in (1.4) can be improved. One such class
is the class of superelliptic equations yn = P (x) with n ≥ 2 and P (x) ∈ Z[x]
of degree d ≥ 2.

Let us assume that F (x, y) = yn−P (x) is irreducible in Q[x, y], and for
simplicity that P (x) is monic. It follows that F satisfies Runge’s Condition
precisely if yn − xd is reducible, and this is equivalent to the condition
gcd(n, d) > 1.

Theorem 3. Let n ≥ 2, d ≥ 2 be integers such that g = gcd(n, d) > 1.
Suppose further that P (x) =

∑d
i=0 aix

i ∈ Z[x] is a monic polynomial of
degree d such that yn − P (x) is irreducible in Q[x, y]. Put h = max |ai| and
let l denote a divisor of g with l > 1. All integer solutions of the superelliptic
equation

(1.6) yn = P (x)

satisfy

(1.7) |x| ≤ l2d−l((d/l) + 2)l(h + 1)d+l .

For the case d = 2, it is readily verified that the bound in (1.7) can be
replaced by (h2 + 6h + 1)/4, which is best possible. For d ≥ 3 it is not
difficult to verify that the bound in (1.7) does not exceed (2dh)2d.

Under the same hypotheses as Theorem 3, with the extra condition that
l > 2, André [1] has shown that any rational solution (x, y) = (a/b, c/d),
gcd(a, b) = 1, of (1.6), for which b is not divisible by any prime congruent
to 1 modulo l, satisfies max{|a|, |b|} < (28dl3h2)3d+2.

Theorem 3 improves on André’s result for the case of integer solutions.
These results represent a substantial improvement on the best known result
for integer solutions to the general hyperelliptic and superelliptic diophan-
tine equations, due to Sprindžuk [19] and Turk [20], respectively. Masser
[12] has proved a result which improves on Theorem 3 for the case d = 4
and l = 2. Note that our improvement on these more general results re-
lies on the fact that we have restricted our attention to equations of the
form (1.6) for which n and the degree of P have a non-trivial common di-
visor.

For more on Runge’s method, we refer the reader to Ellison [7], Hilliker
and Straus [11], Mordell [13], and Shorey and Tijdeman [17].
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2. Eisenstein’s theorem on algebraic functions. Eisenstein [6]
proved that if a formal power series

y =
∞∑

k=0

akxk

satisfies a polynomial equation F (x, y) = 0, where F is a non-zero polyno-
mial with algebraic coefficients, then there is an algebraic number field K
such that a0, a1, . . . all lie in K, and there exist positive integers A0, A such
that A0A

kak are algebraic integers for each integer k with k ≥ 0.
Hermite [9], Coates [3], and Hilliker and Straus [10] have obtained quan-

titative versions of Eisenstein’s theorem by computing upper bounds for the
size of A0 and A in terms of the degree and height of F . Schmidt [16]
has recently improved on these results. More recently, Dwork and van der
Poorten have refined Schmidt’s result. The following result follows from the
introduction and Section 4 of [4].

Theorem A (Dwork and van der Poorten, 1991). Let H ∈ Z[t, z] be
a non-zero polynomial which has no multiple factors when regarded as a
polynomial in z. Let M = degt H, N = degz H, and h = heightH. If the
formal power series

z(t) =
∞∑

k=0

bktk

satisfies H(t, z(t)) = 0, then there is a positive integer B with

B < 4.8(8e−3N4+2.74 log Ne1.22Nh2)N

for which BM+kbk is an algebraic integer for all k ≥ 0.

3. Puiseux expansions of algebraic functions. Let F (x, y) be as
in the statement of Theorem 1, and write F (x, y) as

(3.1) F (x, y) = An(x)yn + An−1(x)yn−1 + . . . + A0(x) .

Puiseux’s theorem (for example see Chapter 3 of [5]) asserts the existence
of n distinct formal series

(3.2) yi(x) =
∞∑

k=−fi

ck,ix
−k/ei , i = 1, 2, . . . , n ,

such that

(3.3) F (x, y) = An(x)
n∏

i=1

(y − yi(x)) ,

where each ei is a positive integer, each fi is an integer chosen so that
c−fi,i 6= 0, and the ck,i ∈ C. For each i = 1, 2, . . . , n, the integer ei is
chosen to be minimal, meaning that for any divisor e > 1 of ei, there is
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some ck,i 6= 0 for which e does not divide k. Moreover, by the version of
Puiseux’s theorem found on p. 98 of [21], any series y(x) of the form (3.2)
which satisfies F (x, y(x)) = 0 must be one of the n series in (3.2).

The series in (3.2) are referred to as the Puiseux expansions of the alge-
braic function y defined by F (x, y) = 0. It is known that they converge for
all finite values x in the exterior of any circle about the origin which encloses
all finite singularities of the algebraic function y. These finite singularities
satisfy resy(F, Fy) = 0, where Fy denotes the partial derivative of F with
respect to y and resy(F, Fy) is the resultant (see p. 30 of [21]) of F and Fy

with respect to y. By Lemma 1 of [8], it follows that each of the Puiseux
series in (3.2) converges for |x| ≥ R0, where R0 is given by

(3.4) R0 = (h(m + 1)(n + 1))2n−1 .

Thus, by (3.3), if (x, y) ∈ C2 satisfies F (x, y) = 0 with |x| ≥ R0, then (x, y)
satisfies y = yi(x) for some i with 1 ≤ i ≤ n.

Let

(3.5) y(x) =
∞∑

k=−f

ckx−k/e

represent one of the n Puiseux expansions in (3.2). It is well known that
the coefficients c−f , c−f+1, . . . all lie in an algebraic number field. Let
K = Q(c−f , c−f+1, . . .), and put s = [K : Q]. If σ1, σ2, . . . , σs denote the
Q-isomorphisms of K into C, and ζ denotes a primitive eth root of unity,
then each of the conjugate series

(3.6) y(x, σi, j) =
∞∑

k=−f

σi(ck)(ζjx−1/e)k (1 ≤ i ≤ s, 0 ≤ j ≤ e− 1)

satisfies F (x, y(x, σi, j)) = 0, and hence is one of the n Puiseux expansions
in (3.2). It can be shown that the n series in (3.2) can be partitioned into
conjugacy classes, where the conjugacy class of the series in (3.5) is the
set consisting of those series in (3.6). Let S denote this conjugacy class,
and for each i = 1, 2, . . . , s, define Si = {y(x, σi, j) ∈ S ; 0 ≤ j ≤ e − 1}.
It follows from the definition of e that each Si has exactly e distinct ele-
ments. We will show that S is the disjoint union of Si1 , Si2 , . . . , Sis0

for
some subset {i1, i2, . . . , is0} of {1, 2, . . . , s}, from which it follows that S
contains precisely es0 distinct elements. We need only show that each
pair of sets Si1 and Si2 are either disjoint or equal. To see this, suppose
that y(x, σi1 , j1) = y(x, σi2 , j2) ∈ Si1 ∩ Si2 . Let y(x, σi1 , a) be an arbi-
trary element of Si1 , and put b ≡ a + j2 − j1 (mod e). Then it follows
that y(x, σi1 , a) = y(x, σi2 , b), and so y(x, σi1 , a) ∈ Si2 . This shows that
Si1 ⊆ Si2 , and hence by the same argument for the reverse inclusion, we
deduce that Si1 = Si2 .
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Lemma 1. Let F (x, y) be as in Theorem 1, and assume that am,n = 0.

1. If am,j 6= 0 for some non-zero j, then the algebraic function y defined
by F (x, y) = 0 has more than one class of conjugate Puiseux expansions.

2. If (C1) holds, but either (C2) or (C3) does not , then both of the
algebraic functions x and y, defined by F (x, y) = 0, have more than one
class of conjugate Puiseux expansions.

P r o o f. 1. Let (3.5) represent a Puiseux expansion of the algebraic
function y and let S denote its conjugacy class. Assume that the elements of
S are given by (3.6). If y has only one class of conjugate Puiseux expansions,
then S has n distinct elements, and there is an integer s0 such that n = es0.
Thus, the representation of F (x, y) in (3.3) becomes

(3.7) F (x, y) = An(x)
s0∏

i=1

e−1∏
j=0

(
y −

∞∑
k=−f

σi(ck)ζjkx−k/e
)

.

Note that f > 0 since degx F > 0 and am,n = 0. From (3.7) it is clear
that the monomial of highest degree in x of F is xdegAn(x)+fs0 , and that it
appears only with constant coefficient, contrary to our hypothesis.

2. The reader is referred to p. 433 of [14].

4. Proof of Theorem 1. 1. We shall follow closely the argument
of Hilliker and Straus given in [10]. We may assume that am,n = 0, for if
am,n 6= 0, then by Theorem 3.2 of [10], max{|x|, |y|} < (2(h + 1))d+1, and
so (1.2) holds.

By part 1 of Lemma 1 the algebraic function y defined by F (x, y) = 0
has more than one class of conjugate Puiseux expansions. Let (3.5) be a
Puiseux expansion for y, S its conjugacy class, and s0 an integer such that
S has es0 distinct elements. Then

(4.1) 1 ≤ es0 ≤ n− 1.

We now restrict our attention to the case f > 0, as the other case is left
for the end of the proof. We note that the integer f satisfies

(4.2) fs0 ≤ m .

To see this, apply (3.3) to write F (x, y) as

F (x, y) = An(x)
∏
T

(y − yi(x))
∏
T c

(y − yi(x)) ,

where T is the set of Puiseux expansions for y with fi > 0. If T has t
elements and α =

∑
T fi/ei, then xdeg An(x)+αyn−t appears as a monomial

of F , and since S ⊆ T we have fs0 ≤ deg An(x) + α ≤ m.
Let M denote the number of integer pairs (u, v) which satisfy

(4.3) 1 ≤ u ≤ vf/e and 1 ≤ v ≤ es0 .
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Then

(4.4) M ≤ 1
2 (fs0)(es0 + 1) ≤ mn/2 .

For % = 0, 1, . . . , 2M define

(4.5) F (x, y, %) = x%
∏
S

(y − y(x, σi, j))

where the product extends over the es0 distinct elements of S. Then

(4.6) F (x, y, %) = P (x, y, %) +
∑

u

∑
v

b%,u,vyv/xu + E(x, y, %) ,

where P (x, y, %) is a polynomial with rational coefficients, the double sum
is extended over all pairs (u, v) satisfying (4.3), and the terms collected in
E(x, y, %) are those of the form yv/xu with 0 ≤ v ≤ es0 and u > vf/e. Note
that for % = 0, 1, . . . , 2M ,

(4.7) degy P (x, y, %) = es0 ≤ n− 1 and degx P (x, y, %) ≤ m(n + 1) .

Our goal now is to estimate the denominators of the rational numbers
b%,u,v and the denominators of the coefficients of P (x, y, %). Put x = t−e

and y = zt−f . Then the series

(4.8) z(t) =
∞∑

k=0

bktk ,

with bk = ck−f , satisfies F (t−e, z(t)t−f ) = 0. Put

r = max
ai,j 6=0

(ei + fj) and H(t, z) = trF (t−e, zt−f ) .

Then by our choice of r, H ∈ Z[t, z], H(0, z) 6≡ 0, r < 2mn, and z(t) satisfies
H(t, z(t)) = 0.

The polynomial H also satisfies degz H ≤n, degt H < 2mn, and heightH
= heightF . Moreover, since F is irreducible in Q[x, y], H has no multiple
factors when regarded as a polynomial in z. By Theorem A with N = n
and M = 2mn there is a positive integer B with

(4.9) B < 4.8(8e−3n4+2.74 log ne1.22nh2)n

such that B2mn+kbk is an algebraic integer for all k ≥ 0.
By (4.5) and (4.6) it can be shown that the rational numbers b%,u,v and

the coefficients of P (x, y, %) can be written as symmetric polynomials, with
integer coefficients, in the conjugates of bk where k ≤ fes0+2Me. The total
degree of these symmetric polynomials in bk and its conjugates is at most es0.
Therefore, B(2mn+fes0+2Me)es0b%,u,v is an integer for % = 0, 1, . . . , 2M and
each pair (u, v) satisfying (4.3), and B(2mn+fes0+2Me)es0P (x, y, %) ∈ Z[x, y]
for % = 0, 1, . . . , 2M . By (4.1), (4.2) and (4.4), (2mn + fes0 + 2Me)es0

≤ (2mn + mn2 −m)(n− 1) < mn2(n + 1).
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We now estimate the absolute values of the b%,u,v and the coefficients
of P (x, y, %). It follows from the argument given on p. 647 of [10] that the
coefficients bk of (4.8) satisfy

(4.10) |σi(bk)| ≤ λ1R
k
1

for k ≥ 0 and 1 ≤ i ≤ s0, where R1 = R
1/e
0 , λ1 = 2(h + 1)R2mn/e

0 , and R0

is given in (3.4).
Given formal expressions

∑
i∈I

∑
j∈J ai,jx

iyj and
∑

i∈I

∑
j∈J bi,jx

iyj

with coefficients in C, we write∑
i∈I

∑
j∈J

ai,jx
iyj �

∑
i∈I

∑
j∈J

bi,jx
iyj

if |ai,j | < bi,j for all i ∈ I and j ∈ J .
By (3.5) and (4.10), we deduce that for 1 ≤ i ≤ s0 and 0 ≤ j ≤ e− 1,

(4.11) y(x, σi, j) � λ1R
f
1

∞∑
k=−f

(R1x
−1/e)k = λ1x

f/e(1− (R0/x)1/e)−1 .

In particular, if (x, y) ∈ Z2 satisfies (3.5) with |x| > 2eR0, then

(4.12) |y| < 2λ1|x|f/e .

We remark that (4.12) also holds in the case that f ≤ 0. Combining (4.5)
and (4.11) we have for % = 0, 1, . . . , 2M ,

F (x, y, %) � x%(y + λ1x
f/e(1− (R0/x)1/e)−1)n−1(4.13)

� (4λ1)nx%+nf/e
( n∑

δ=0

yδx−δf/e
)
(1− 2(R0/x)1/e)−1 .

Also, with E(x, y, %) as in (4.6) we have for % = 0, 1, . . . , 2M ,

(4.14) E(x, y, %) � (4λ1)nx%+nf/e
( n∑

δ=0

yδx−δf/e
) ∞∑

k=0

(2(R0/x)1/e)k+%e+nf .

Let β represent the maximum of the numbers |b%,u,v| and the absolute values
of the coefficients of the polynomials P (x, y, %). Then by (4.13),

(4.15) β ≤ (4λ1)n(2R
1/e
0 )mn2

.

By (4.12) and (4.14), if (x, y) ∈ Z2 satisfies (3.5) with |x| > 2eR0, then

(4.16) |E(x, y, %)| < 2(n + 1)(8λ2
1)

n(2R
1/e
0 )mn2

|x|−1/e .

Define B%,u,v = Bmn2(n+1)b%,u,v so that each B%,u,v ∈ Z. By Siegel’s
lemma (for example see Lemma 3.24 of [10]), there are integers T% for
% = 0, 1, . . . , 2M , not all zero, with |T%| < (2M + 1)max |B%,u,v|, such that∑2M

%=0 T%B%,u,v = 0 for all pairs (u, v) satisfying (4.3). By (4.4) and (4.15),
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the integers T% satisfy

(4.17) |T%| < (mn + 1)Bmn2(n+1)(4λ1)n(2R
1/e
0 )mn2

.

Thus, from (4.6), we obtain

(4.18) Bmn2(n+1)
2M∑
%=0

T%F (x, y, %)

= Bmn2(n+1)
2M∑
%=0

T%P (x, y, %) + Bmn2(n+1)
2M∑
%=0

T%E(x, y, %).

Put Q(x, y) = Bmn2(n+1)
∑2M

%=0 T%P (x, y, %); then Q ∈ Z[x, y], degyQ ≤
n−1, degxQ ≤ m(n+1), and Q(x, y) 6≡ 0 since Bmn2(n+1)T% is the coefficient
of x%yes0 in Q(x, y), and at least one of the integers T% is not zero. By
combining (4.16) and (4.17),∣∣∣Bmn2(n+1)

2M∑
%=0

T%E(x, y, %)
∣∣∣(4.19)

< Bmn2(n+1)(2M + 1)(mn + 1)Bmn2(n+1)

× (4λ1)n(2R
1/e
0 )mn2

max
%
|E(x, y, %)|

< B2mn2(n+1)(mn + 1)2(32λ3
1)

n(2R
1/e
0 )2mn2

(2(n + 1))|x|−1/e ,

provided that |x| > 2eR0. Put

λ2 = B2mn2(n+1)(mn + 1)2(32λ3
1)

n(2R
1/e
0 )2mn2

(2(n + 1)) ;

then for |x| > λe
2 we have |Bmn2(n+1)

∑2M
%=0 T%E(x, y, %)| < 1.

If (x, y) ∈ Z2 satisfies (3.5) and |x| ≥ R0, then (x, y) satisfies F (x, y, %) =
0 for % = 0, 1, . . . , 2M . Thus, by (4.18) and (4.19), any such point (x, y)
with |x| > λe

2 satisfies Q(x, y) = 0. Therefore the x-coordinate of such
a point satisfies resy(F (x, y), Q(x, y)) = 0, and the y-coordinate satisfies
resx(F (x, y), Q(x, y)) = 0. Since degyQ ≤ n − 1 < degy F and F is irre-
ducible, (F,Q) = 1 and so both resultants are non-zero polynomials. By
Lemma 1 of [8], it follows that

(4.20)
|x| ≤ (h(m + 1)

√
n + 1)n−1((height Q)(mn + m + 1)

√
n)n ,

|y| ≤ (h(n + 1)
√

m + 1)m(n+1)((height Q)n
√

mn + m + 1)m.

By (4.15) and (4.17),

(4.21) height Q ≤ B2mn2(n+1)(mn + 1)2(4λ1)2n(2R
1/e
0 )2mn2

,

hence the bounds in (1.2) now follow by combining (4.21) with (4.20). If
(x, y) ∈ Z2 is an integer solution of F (x, y) = 0 satisfying (3.5) with 2eR0 <
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|x| ≤ λe
2, then by (4.12) we have |y| < 2λ1λ

f
2 ≤ 2λ1λ

m
2 , and again the

bounds in (1.2) hold.
In the case that (x, y) ∈ Z2 is a solution of F (x, y) = 0 with |x| ≤ 2eR0,

we see that y is then a root of a polynomial whose height does not exceed
(m + 1)(2eR0)mh, and so (1.2) holds in this case as well.

We complete the proof of Theorem 1 by considering the case that f ≤ 0.
Let (x, y) ∈ Z2 be a solution of F (x, y) = 0 which satisfies (3.5). By the
argument in the preceding paragraph, we may assume that |x| > 2eR0. It
follows from (4.12) that |y| < 2λ1, and so x is then a root of a polynomial
whose height does not exceed (n+1)(2λ1)nh, and so (1.2) holds in this case.

2. By part 2 of Lemma 1 both of the algebraic functions x and y defined
by F (x, y) = 0 have more than one class of conjugate Puiseux expansions.
The bounds in (1.3) are obtained by taking the minimum of the bounds
in (1.2) and those which are obtained from (1.2) with the roles of x and y
interchanged.

5. Proof of Theorem 2. Assume without loss of generality that
degx F > 0. If degy F = 0, then the irreducibility of F together with
the assumption that F (0, 0) = 0 forces F (x, y) = ax for some non-zero
integer a. In this case, the only solutions of F (x, y) = 0 with gcd(x, y) = g
are (x, y) = (0, g) and (x, y) = (0,−g). We therefore may assume that
degy F > 0.

Let l ≥ 1 be the largest positive integer that divides all exponents of y
in the non-zero monomials of F . Then F (x, y) can be written as

(5.1) F (x, y) = An(x)ynl + An−1(x)y(n−1)l + . . . + A0(x),

where A0(0) = 0 and A0(x) 6≡ 0. Let k be the highest power of x dividing
A0(x) and put m = max{k, l}. If (x, y) is an integer solution of F (x, y) = 0
with gcd(x, y) = g, then z defined by

(5.2) z =
A0(x)gm

xkyl

is an integer. Therefore, by putting yl = A0(x)gm/(xkz) in (5.1) and factor-
ing out the term A0(x)/(xkzn), it follows that the integers x and z satisfy
G(x, z) = 0, where G(x, z) is the polynomial defined by

(5.3) G(x, z) =
n∑

i=0

Ai(x)(A0(x)/xk)i−1gmizn−i .

Our goal is to show that G satisfies the conditions of Theorem 1. It is
clear that G ∈ Z[x, z], and is of positive degree in x and z. Moreover, since
zn has a non-constant coefficient, G does not satisfy (C1) for the variable z.
Thus it suffices to show that G is irreducible in Q[x, z].
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Assume that G = PQ for some P,Q ∈ Z[x, z]. Let P (x, z) = Br(x)zr +
. . .+B0(x) and Q(x, z) = Cs(x)zs+. . .+C0(x), where n = r+s. Substituting
A0(x)gm/(xkyl) for z in the equation G = PQ produces the polynomial
equation

(5.4) gnm

(
A0(x)

xk

)n−1

F (x, y)

=
[
ylrP

(
x,

A0(x)gm

xkyl

)][
ylsQ

(
x,

A0(x)gm

xkyl

)]
.

The two factors on the right hand side of (5.4) are polynomials in Z[x, y].
The irreducibility of F in Q[x, y] forces one of the two factors, say
ylrP (x,A0(x)gm/(xkyl)), to be a polynomial in the variable x only. This im-
plies that P (x, z) = Br(x)zr. By (5.3) and the fact that An(x) 6≡ 0, it must
be the case that r = 0, and so P (x, z) = B0(x). Again by (5.3), B0(x) must
divide xk, and so P (x, z) = xt for some t with 0 ≤ t ≤ k. Thus, xt divides
the left hand side of (5.4). Since A0(x)/xk has a non-zero constant term, it
follows that xt divides F (x, y). Since F is irreducible and degy F > 0, we
must have t = 0. Therefore P (x, z) = 1, and so G is irreducible in Q[x, z].

By (5.3) we deduce that height G ≤ gmn(m+1)n−1hn, degxG ≤ m(m−
1)(n − 1), and degzG ≤ n. Since G does not satisfy condition (C1) of
the introduction, the result of Grytczuk and Schinzel provides a sharper
estimate for |x| than that in Theorem 1. Applying their result to G with z
in the place of their x, and x as above in the place of their y, one obtains

(5.5) |x| ≤ ((degz G + 1)(degx G + 1)

×(degz G degx G + 1)2/ degxG heightG)2(degzG degxG+1)3 .

In the case that m = n = 1, it is easy to verify that |x| ≤ gh, so that the
bound in (1.5) holds for |x|. If mn > 1 then (degxG+1)(degz G+1) ≤ m2n2,
and so combining this estimate with that for |x| in (5.5), the bound in (1.5)
for |x| follows. The same argument with the roles of x and y interchanged
shows that the bound in (1.5) holds for |y|.

6. Proof of Theorem 3. Let l > 1 be a divisor of g, and put n0 = n/l.
If (x, y) is a solution of (1.6), then (x, yn0) is a solution of the superelliptic
equation

(6.1) yl = P (x) .

The bound in (1.7) will be obtained by applying Runge’s method to equa-
tion (6.1).

The following result gives a precise description of the Puiseux expansions
of the algebraic function y defined by (6.1).
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Lemma 2. Let d, l, g, and P (x) be as in the statement of Theorem 3. Let

(6.2) y = w(x) =
∞∑

i=−s

cix
−i/e

be a Puiseux expansion of the algebraic function y defined by (6.1). Then

(i) The l Puiseux expansions of y are given by ζj
l w(x), j = 0, 1, . . . , l−1,

where ζl denotes a primitive l-th root of unity.
(ii) The integers e and s satisfy e = 1 and s = d/l.
(iii) Exactly one of the l Puiseux expansions of y has leading coefficient

equal to one and all of its coefficients rational. Moreover , if w(x), given in
(6.2), denotes this expansion, then l2(d/l+i)−1ci ∈ Z for all i ≥ −d/l + 1.

P r o o f. (i) follows from (6.1) and Puiseux’s theorem. For (ii) and (iii),
put z = x−dP (x) and apply Taylor’s theorem to z1/l, about z0 = 1, to show
that the l Puiseux expansions for y are given by

(6.3) ζt
l x

d/l
∞∑

k=0

(
1/l

k

)( d−1∑
j=0

ajx
j−d

)k

(0 ≤ t ≤ l − 1) ,

where the terms should be suitably arranged. It is now evident that e = 1
and s = d/l, which is (ii). The first statement in (iii) follows by putting w(x)
equal to that series in (6.3) with t = 0. The second statement in (iii) follows
by observing that the coefficient ci of x−i in (6.2) is a linear combination,
with integer coefficients, of the numbers

(
1/l
k

)
with 0 ≤ k ≤ d/l + i, and

using the fact that l2k−1
(
1/l
k

)
∈ Z for each k ≥ 1.

We now proceed with the proof of Theorem 3. Let F (x, y) = yl − P (x);
then the resultant resy(F, Fy) = (−P (x))lll, so that any finite singularity
x of the algebraic function y defined by F (x, y) = 0 satisfies P (x) = 0,
and hence satisfies |x| < h + 1. Thus, each of the Puiseux expansions of
y is analytic for |x| ≥ h + 1. Therefore any solution (x, y) ∈ Z2 of (6.1)
with |x| ≥ h + 1 satisfies y = ζj

l w(x) for some 0 ≤ j ≤ l − 1, where w(x)
is chosen to be the unique Puiseux expansion of y with rational coefficients
and leading coefficient equal to 1. With w(x) chosen this way, it follows that
only ±w(x) is real for integer values of x. Thus any solution (x, y) ∈ Z2 of
(6.1) with |x| ≥ h + 1 satisfies y = ±w(x). It is sufficient to consider those
solutions which satisfy y = w(x).

Let m = d/l, t = x−1, y = zt−m, and bj = cj−m for j ≥ 0. Then the
series

(6.4) z(t) =
∞∑

j=0

bjt
j
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satisfies the polynomial equation

H(t, z) = tlmF (t−1, zt−m) = zl − 1− alm−1t− . . .− a0t
lm = 0 .

Moreover, the series z(t) in (6.4) is analytic for |t| ≤ 1/(h + 1). Fix 0 < r ≤
1/(h + 1); then for each j ≥ 0,

|bj | =
∣∣∣∣ 1
2πi

∫
|t|=r

z(t)
tj+1

dt

∣∣∣∣ ≤ 1
rj

max
|t|=r

|z(t)| .

Either |z(t)| ≤ 1, or

max
|t|=r

|z(t)| ≤ max
|t|=r

|z(t)|l = max
|t|=r

|1 + alm−1t + . . . + a0t
lm|

≤ h(1 + r + . . . + rlm) ≤ h(1 + 1/(h + 1) + . . . + (1/(h + 1))lm)

= h + 1− (1/(h + 1))lm < h + 1 .

In any case we have max|t|=r |z(t)| < h+1, and so by choosing r = 1/(h+1)
we see that

|bj | ≤ (h + 1)j+1

for j ≥ 0. Therefore,

(6.5) |ci| ≤ (h + 1)i+m+1

for i ≥ −m.
By Lemma 2(iii), we have

(6.6) l2(i+m)−1ci ∈ Z

for i ≥ −m + 1. Put

Q(x) = l2m−1
0∑

i=−m

cix
−i and E(x) = l2m−1

∞∑
i=1

cix
−i .

Then by (6.6), Q ∈ Z[x], Q(x) 6≡ 0, and

l2m−1(y − w(x)) = l2m−1y −Q(x)− E(x) .

By (6.5),

|E(x)| ≤ l2m−1
∞∑

j=1

|cj | |x|−j ≤ l2m−1(h + 1)m+2|x|−1

( ∞∑
j=0

(
h + 1
|x|

)j)
< 2l2m−1(h + 1)m+2|x|−1

provided that |x| > 2(h + 1). Thus

|E(x)| < 1

provided that |x| > 2l2m−1(h + 1)m+2. Therefore, if (x, y) ∈ Z2 satisfies
y = w(x) with |x| > 2l2m−1(h + 1)m+2, then l2m−1y = Q(x), and hence x
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satisfies

(6.7) l(2m−1)lP (x) = Q(x)l .

It is readily verified that equation (6.7) defines a polynomial whose height
does not exceed l(2m−1)l(h + 1)(m+1)l(m + 2)l, and the result follows.
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