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A quantum algorithm for evolving 
open quantum dynamics on 
quantum computing devices
Zixuan Hu1,2, Rongxin Xia1 & Sabre Kais1*

Designing quantum algorithms for simulating quantum systems has seen enormous progress, yet 
few studies have been done to develop quantum algorithms for open quantum dynamics despite its 

importance in modeling the system-environment interaction found in most realistic physical models. 

In this work we propose and demonstrate a general quantum algorithm to evolve open quantum 

dynamics on quantum computing devices. The Kraus operators governing the time evolution can be 

converted into unitary matrices with minimal dilation guaranteed by the Sz.-Nagy theorem. This allows 

the evolution of the initial state through unitary quantum gates, while using significantly less resource 
than required by the conventional Stinespring dilation. We demonstrate the algorithm on an amplitude 

damping channel using the IBM Qiskit quantum simulator and the IBM Q 5 Tenerife quantum device. The 
proposed algorithm does not require particular models of dynamics or decomposition of the quantum 

channel, and thus can be easily generalized to other open quantum dynamical models.

�e time evolution of quantum systems is a century old subject that has been extensively studied for both fun-
damental and practical purposes. Open quantum dynamics is an important sub�eld of quantum physics that 
studies the time evolution of a system interacting with an environment1. Because the environment is usually 
too large to be treated exactly, in open quantum dynamics we o�en make approximations by averaging out the 
environment’s e�ect on the system. �e resultant time evolution of the system density matrix is non-unitary and 
o�en governed by a master equation. �e idea of simulating quantum systems with quantum algorithms was �rst 
proposed by Feynman2 and has received massive attention in recent years3–17 for its promise of outperforming the 
best available classical algorithms. However relatively few studies18–23 have been done to develop quantum algo-
rithms for open quantum dynamics despite its importance. A key di�culty is the evolution of an open quantum 
system is o�en non-unitary, while quantum algorithms are mostly realized by unitary quantum gates. An early 
study18 tackled this problem by including the environment in the quantum simulation process therefore making 
the evolution unitary. Focused on Markovian dynamics, their procedure required a reset on the environment for 
every time step, which can become expensive if the system becomes entangled with the environment or the evo-
lution time is large. It is known that any non-unitary quantum operation can be made into a unitary one by the 
Stinespring dilation theorem24. However, due to the large increase of the dimension of the Hilbert space, the com-
putational cost required by naïve application of Stinespring dilation to the quantum operation can be prohibitive 
for actual implementation on a quantum computing device. Perhaps for this reason, most algorithms developed 
(see e.g. ref. 19,20) so far rely on the knowledge of the decomposition of the quantum channel which may not be 
generally available for a large system without costly computational e�orts. So far as we know a general quantum 
algorithm to simulate an arbitrary quantum channel for a general density matrix with minimal resource has not 
been proposed and demonstrated. In this study we propose and demonstrate such a quantum algorithm utiliz-
ing the Sz.-Nagy dilation theorem – being a variation of the Stinespring dilation theorem the Sz.-Nagy dilation 
requires much smaller dimension increase and can save signi�cant computational resources. Without assuming 
any speci�c property of the quantum channel, we work with the most general form of the time evolution for a 
density matrix – the operator sum representation:

∑ ∑ρ ρ ρ= = †t t M M( ) ( )
(1)k

k
k

k k
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where ρ(t) is the system density matrix at time t, ρ is the initial system density matrix, and Mk’s are the Kraus 
operators that satisfy:

∑ =†M M I
(2)k

k k

It is also common that the time evolution of ρ(t) is described by a master equation:

ρ ρ= t t( ) ( ) (3)

where the time derivative of ρ(t) is given by the superoperator  applying to ρ(t) itself. It is known that any master 
equation of the form of Eq. (3) can be converted into the form of Eq. (1) 25,26, a�rming the generality of Eq. (1). 
An example of converting a widely used type of master equation – the Lindblad equation – into the operator sum 
representation has been provided in ref. 27. In this work we focus on the more general operator sum representa-
tion. Our method starts with an initial ρ expressed by a sum of di�erent pure quantum states weighted by the 
associated probabilities:

∑ρ φ φ= p
(4)i

i i i

where pi is the probability of �nding the state |φi〉 in the mixture with the condition ∑ =p 1i i
. Note here the dif-

ferent |φi〉’s are not necessarily orthogonal to each other, and Eq. (4) can be understood either as a knowledge of 
the initial physical composition of the system that is easily available from system preparation, or as a diagonal 
decomposition of ρ that requires additional resource to compute. We show in the following that the quantum 
algorithm proposed can simulate the time evolution of ρ(t). �e outputs of the algorithm carry the full informa-
tion of ρ(t) that can be extracted by quantum tomography28. However, we remark that the most important physi-
cal information carried by ρ(t)–e.g. the populations of di�erent quantum states and the expectation value of an 
observable 〈O〉 = Tr(Oρ(t))–can be obtained without quantum tomography but by projection measurements 
instead, which greatly reduces the resources needed. �is is realized by exploiting the positive-semide�niteness 
of ρ(t). We then estimate the gate complexity of our method to be signi�cantly lower than the conventional 
Stinespring dilation. Finally we demonstrate the application of the quantum algorithm to an amplitude damping 
channel with implementation on the IBM Qiskit29 quantum simulator and the IBM Q 5 Tenerife30 quantum 
device.

Results
Theory for the algorithm. In this section we present the quantum algorithm that evolves ρ(t) with the 
initial ρ given in the form ρ φ φ= ∑ pi i i i  in Eq. (4), which represents a knowledge of the initial physical compo-
sition of the system. Here we prepare each |φi〉 as an input state vi in a given basis and want to evolve:

φ = = …t c c cM v( ) ( , , , ) (5)ik k i ik ik ikn
T

1 2

First note that each Kraus operator Mk is a contraction such that it can be dilated into a unitary matrix. An 
operator A is a contraction if it shrinks or preserves the norm of any vector such that the operator norm 

= ≤A sup 1
Av

v
. By Eq. (2) we have ∑ =†M M Ik k k , which implies Mk is a contraction (see the supplementary 

information (SI) for the proof). By the Sz.-Nagy dilation theorem31,32, any contraction A of a Hilbert space H has 
a corresponding unitary operator UA in a larger Hilbert space K such that:

= ≤n NA P U P , (6)
n

H
n

HA

where PH is the projection operator into space H. �e physical meaning of Eq. (6) is that the e�ect of a contrac-
tion A applied up to N times on a smaller space H can be replicated by a unitary UA applied up to N times on a 
larger space K, given the input vector lies entirely in H and the output vector is projected into H. For the purpose 
of creating a quantum circuit the Sz.-Nagy dilation theorem allows us to simulate the e�ect of any non-unitary 
matrix by a unitary quantum gate, because every operator on a �nite dimensional space is bounded and therefore 
can be made into a contraction which has a unitary dilation. �e Sz.-Nagy theorem also guarantees the existence 
of a minimal dilation in the sense that the space K has the smallest dimension to achieve Eq. (6). An example of a 
minimal unitary dilation of A with N = 1 is:

=




 −






†

†

U
A D

D A (7)
A

A

A

where = − †D I A AA  is called the defect operator of A. We can easily verify that UA is unitary and =A P U PH HA . 
However if we want to apply =A P U PH HA

2 2 , or =BA P U U PH HB A  where UB is a unitary dilation of B, then we need 
minimal unitary dilations with N = 2:

=
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We see that the number N in Eq. (6) is an important parameter that de�nes both the form and the applicability 
of the minimal unitary dilation. In the following we will refer to a minimal unitary dilation with a given N an 
N-dilation31. A general rule is that to simulate the e�ect of N contractions multiplying successively, we need to 
convert all of them to N-dilations. Going back to our original goal of simulating M vk i with unitary gates we con-
struct a 1-dilation UA of the form in Eq. (7) with =A Mk and evolve:

φ =  → . . .
 

t M v U v( ) ( , 0, , 0) (9)ik k i i
T T

M

unitary dilation

k

If Mk has the dimension n by n, then the 1-dilation UMk
 is n2  by n2 . Now UMk

 can be further decomposed into 
sequences of two-level unitary gates with a procedure illustrated in ref. 3,33. �e two-level unitary gates can be 
used as elementary gates in an optical beamsplitter setup33–36 and in the following we use the number of two-level 
unitary gates in the decomposition of a unitary gate to represent the gate complexity. Generally the number of 
two-level unitary gates needed to decompose a unitary gate is equal to the number of non-zero elements in the 

lower-triangular part of the gate3,33. For each UMk
 of the form in Eq. (7) with =A Mk, we have −n n

2

2

 non-zero 

elements from Mk, n2 non-zero elements from DMk
, −n n

2

2

 non-zero elements from − †Mk, and the total gate count 

is −n n2 2  for each k and i. �e classical complexity of evaluating φ =t M v( )ik k i is incidentally also −n n2 2  for 
each k and i, counting all the multiplications and additions needed for a matrix multiplying a vector. Now we have 
the gate count for a single Kraus operator on a single pure state M vk i, the maximum number3 of Kraus operators 
in Eq. (1) is =m n2, and if the number of pure states in the physical composition Eq. (4) is comparable to n, we 
have totally −n n2 5 4 two-level n2  by n2  gates. As a comparison, the conventional Stinespring dilation converts 
the whole quantum operation  ρ ρ= ∑

†M M( ) k k k into a unitary operation ρ ⊗ †e eU U( )  by considering the 
tensor product space of the initial ρ and an auxiliary environment3. By results from ref. 3, the dimension of U is 
given by ⋅n m where m is the total number of Kraus operators Mk in the sum ρ∑

†M Mk k k. In the most general case 

=m n2, U is n3 by n3 which requires −n n

2

6 3

 two-level n3 by n3 unitary gates for the gate decomposition3. �erefore 

comparing the total cost for the entire quantum operation our method has a moderate advantage (O(n5) vs. 
O(n6)) over the conventional Stinespring method. In addition, the complexity for realizing a n2  by n2  two-level 
unitary is signi�cantly smaller than that for realizing a n3 by n3 two-level unitary on conventional quantum com-
puters using 1-qubit and 2-qubit elementary gates, due to the complication involved in multi-qubit controlled 
gates3. Finally, the greatest advantage of our method is the ability to break the whole quantum operation into n3 
processes (each M vk i costing −n n2 2  two-level unitaries) that can be simulated in parallel. Because all current 
quantum computing platforms have a limit on the maximum circuit depth due to gate errors, our method can 
enable the simulation of more complicated open quantum systems by replacing a single O(n6) process with n3 
parallel O(n2) processes.

Now to put the pieces back together, the full evolved density matrix can be assembled by 
ρ φ φ= ∑ ⋅t p t t( ) ( ) ( )ik i ik ik  and measured by quantum tomography28. However, we remark that the most impor-
tant physical information such as the populations of di�erent states and the expectation value of an observable 
can be extracted by performing projection measurements on the output φ t( )ik  without actually determining the 
state of φ t( )ik .�is means that we do not need the phases of the coe�cients associated with each basis state, but 
only the absolute values, thus saving considerable computational costs. To get the populations of states in the 
current basis, note the diagonal vector of φ φt t( ) ( )ik ik  is:

φ φ = …diag t t c c c( ( ) ( ) ) ( , , , ) (10)ik ik ik ik ikn
T

1
2

2
2 2

Equation (10) means we can obtain the diagonal element cikj

2
 of φ φt t( ) ( )ik ik  by applying a projection meas-

urement on the jth entry in the �rst n-dimensional subspace of …U v( , 0, , 0)i
T T

Mk
. Using an optical setup such as 

in ref. 36 the probability of measuring each entry in …U v( , 0, , 0)i
T T

Mk
 can be e�ciently obtained by recording the 

photon distribution at the output of the optical modes. Adding the results through k and i gives the diagonal ele-
ments of ρ t( ):

∑ρ φ φ= ⋅diag t p diag t t( ( )) ( ( ) ( ) )
(11)ik

i ik ik

which gives the populations in the current basis. Although the o�-diagonal elements of ρ t( ) cannot be directly 
obtained without quantum tomography, they are nonetheless carried by φ t( )ik  and can become physically impor-
tant. For example, if we want to get the populations in another basis, a unitary basis transformation can be applied 
to each φ t( )ik  before measuring the diagonal elements:

∑

φ

ρ φ φ

=  → . . .

= ⋅

 

† †

( )t

diag t p diag t t

T TM v T
I

U v

T T T T

( ) 0
0

( , 0, , 0)

( ( ) ) ( ( ) ( ) )
(12)

ik k i i
T T

ik
i ik ik

M

unitary dilation

k

�e additional unitary T applied to φ t( )ik  requires no dilation and increases the quantum gate count by −n n

2

2

 

(non-zero elements in the lower-triangular part of T) to a total of −n n5 3

2

2

 for each k and i. �e classical complexity 
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of evaluating TM vk i is doubled from −n n2 2  to −n n4 22  for each k and i. Note here the quantum algorithm out-
performs the classical one by taking advantage of the unitarity of T.

Next to evaluate the expectation value of an observable ρ= Tr tO O( ( )), we recognize ρ tO ( ) is not always 
positive-semide�nite and hence additional processing must be done before the trace can be obtained from pro-
jection measurements on the output quantum state. �e idea here is to see the operator norm is bounded by the 
Hilbert-Schmidt norm: ≤O O HS, such that we de�ne:

=
+∼

O
O I O

O2 (13)

HS

HS

where Õ is always a contraction and positive-semide�nite (see the SI for a detailed proof) so we can apply the 
Cholesky decomposition37: =

∼ †O LL , where L is a lower triangular matrix. Note we could have de�ned 
∼
O with O  

in place of O HS in Eq. (13), but O HS requires fewer arithmetic steps to calculate. Now we have:

∑ρ ρ ρ ρ= = = =
∼ ∼ † † †Tr t Tr t Tr t Tr tO O LL L L L L( ( )) ( ( )) ( ( ) ) ( ( ) )

(14)k
k

where each ρ† tL L( )
k

 is positive-semide�nite. †L  is obviously a contraction because Õ is a contraction. Now evolve 
φ† tL ( )ik  with two 2-dilations of the form in Eq. (8) with =A Mk and = †B L :

φ =  → . . .
 † †

†tL L M v U U v( ) ( , 0, , 0) (15)ik k i i
T T

L M

unitary dilation

k

and we can evaluate 〈Õ〉 by:

∑ρ φ φ= = ⋅
∼ ∼ †Tr t Tr p t tO O L L( ( )) ( ( ) ( ) )

(16)i k
i ik ik

,

where the trace of φ φ† t tL L( ) ( )ik ik  can be obtained by projection measurements in a way similar to what has 
been explained for Eq. (10). �e di�erence here is that we do not need to measure individual diagonal elements 
and sum them together for the trace, but instead can measure the total probability of projecting into the �rst n

-dimensional space of …†U U v( , 0, , 0)i
T T

L Mk
. �is can potentially save measurement costs by reducing the num-

ber of inquiries needed on the output vector. Finally 〈O〉 is calculated with:

ρ ρ ρ= = − = −
∼ ∼

Tr t Tr t Tr tO O O O I O O O O( ( )) ((2 ) ( )) 2 ( ( )) (17)HS HS HS HS

where we have successfully obtained O  for the original observable.
�e †L  gate ( †L  is upper triangular requiring reduced number of two-level unitaries for the decomposition) plus 

the additional level of dilation for Mk increases the quantum gate count to +n n5 3

2

2

 for each k and i. A classical 

overhead (independent from the k and i counts) cost of −n2 12  for O HS and n
3

3

 for the Cholesky decomposi-

tion37 should also be counted towards the total cost of the quantum algorithm. On the other hand the classical 
complexity of evaluating †L M vk i is −n n3 2  for each k and i (taking into account that †L  is upper triangular), plus 

an overhead of + −n2 1
n

3

2
3

.

Complexity analysis. So far in evaluating the complexity of our method, each Kraus operator Mk is assumed 
to be completely general, and thus the number of 2-level unitary gates required to realize UMk

 is polynomial in the 
system dimension n (O(n2)). If using a conventional qubit-based hardware, q qubits can represent a =n 2q

-dimensional system, and the number of 2-level unitaries is exponential in the qubit number q (O(4q)). We note 
that this exponential scaling in the qubit number is necessary if Mk is a general matrix without any special prop-
erties, because approximating arbitrary unitary gates is generically exponential3. �at said, in the case when Mk is 
not a full matrix with arbitrary entries (Mk is sparse), the algorithm can become polynomial in q. �is happens in 
many realistic settings (like the amplitude damping channel shown below) when each Mk only mediates the tran-
sition process between l quantum states, where <l n is a constant of n and q. �is e�ectively reduces the dimen-
sion of the system from n to l for each Mk and the number of 2-level unitaries becomes O(l2), without a dependence 
on n and q. Note that we still need to run all the m number of Mk’s through all the initial composite states φi ’s, but 
this can be done in parallel and the complexity of the circuit for each Mk is greatly reduced as compared to the 
conventional Stinespring dilation. If we stop the analysis on the level of 2-level unitary gates the complexity for a 
sparse Mk is constant in n and q. �is desirable result is possible if using an optical beamsplitter setup33–36 to 
implement the 2-level unitaries as elementary gates. If a conventional qubit-based quantum computer is used, the 
2-level unitries need to be further decomposed into 1-qubit and 2-qubit elementary gates, in which case a Gray 
code sequence and a multi-control gate sequence are constructed with the complexity logarithmic in n (O(log2 n)) 
and polynomial in q (O(q2))3.

When implemented on a qubit-based quantum computer, our method also requires ancillary qubits for the 
Sz.-Nagy dilation process that enlarges the Hilbert space. For the simple evolution described in Eqs. (9) and (12) 
we need to increase the dimension by two-fold and one ancillary qubit is needed. For the observable evaluation 
described in Eq. (15) we need to increase the dimension by three-fold and two ancillary qubits are needed. Note 
that our use of the ancillary qubits is very simple as they do not scale with the system size or the complexity of the 
quantum operation.

https://doi.org/10.1038/s41598-020-60321-x
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Application to the amplitude damping channel. In this section we use a quantum channel model to 
demonstrate the application of the proposed method. �e amplitude-damping channel models the spontaneous 
emission of a 2-level atom. �e Lindblad master equation for this model is:

ρ γ σ ρ σ σ σ ρ=



 −






+ − − + t t t( ) ( )
1

2
{ , ( )}

(18)

where γ  is the spontaneous emission rate, σ =+ 0 1  is the Pauli raising operator that mediates the transition 
from the excited state to the ground state, and σ σ=− + †( ) . In the operator sum representation:

ρ ρ ρ

σ

σ

= +

=
+

+
−

=










= − =





−





γ γ

γ

γ
γ

− −

−

− + −

† †
t

e e

e

e e

M M M M

M I

M

( )

1

2

1

2

1 0

0

1 0 1

0 0 (19)

t t

z t

t
t

0 0 1 1

0

1

To calculate the populations in the initial basis { 0 , 1 } we can construct UM0
 and UM1

 of the 1-dilation form 

in Eq. (7) with =A Mk and = − †D I M Mk kMk
:

=



 −






=








γ γ− −e e

D D
0 0

0 1
,

1 0

0 (20)
t tM M0 1

Using an arbitrary initial ρ = ( )1 1
1 3

1

4
 and assuming the physical composition ρ = | 〉〈 |+ | +〉〈+|( 1 1 )

1

2
 is 

known, the input states are:

φ φ= → =





. . .






= + → =






. . .







� ���� ���� � ���� ����

v v1 0, 1, 0, , 0
1

2
1, 1, 0, , 0

(21)

m T m T

1 1 2 2

where m = 2 matching the size of the vectors with the dilation UMk
. We set γ = . × −1 52 10 s9 1 (typical nanosec-

ond lifetime), numerically calculate U viMk
 from =t 0 to t = 1000 ps with a time step of 10 picosecond, and obtain 

the populations of the ground and excited states from the �rst two entries of U viMk
. �e results are shown as the 

smooth lines in Fig. 1.
To calculate the populations in another basis + −{ , } where |± = ±( 0 1 )

1

2
, we need the transforma-

tion matrix =
−( )T 1 1

1 1
1

2
. We numerically calculate ( )T

I
U v0

0 iMk
 and obtain the populations of the ±  states 

shown as the smooth lines in Fig. 2.

Now we evaluate the expectation value of an observable O  for = − .
.( )O 2 0 5

0 5 1
 as an example. With =O HS

≈ .2 35
22

2
, we define = ≈ . .

. .
+ ‖ ‖

‖ ‖

~ ( )O 0 0740 0 107
0 107 0 713

O I O

O2
HS

HS

 and find ≈ .
. .( )L 0 271 0

0 393 0 748
 through Cholesky 

decomposition =
∼ †O LL . Next we construct †UL  and UMk

 of the 2-dilation form in Eq. (8) and apply them to the 

Figure 1. Showing the populations of the ground and excited states for the amplitude damping model. �e 
smooth lines are obtained by classical numerical calculations of the output vectors. �ese agree exactly with 
analytic results and are used as benchmarks. �e crosses are obtained by the IBM Qiskit simulator. �e dots are 
obtained by the IBM Q 5 Tenerife device. �e quantum circuits include 2 qubits and on average 13 elementary 
gates (see Fig. 4 for an example and the SI for all the circuits).
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initial state vi in the form of Eq. (21) with =m 4. Numerically calculating the output vector will give us O  by 
Eqs. (16) and (17). �e results are shown as the smooth line in Fig. 3:

�e overall simplicity of the unitary dilation gates used in our algorithm allows us to further demonstrate it 
using the IBM Qiskit29 quantum simulator and the IBM Q 5 Tenerife30 quantum device. So far we have been using 
the 2-level unitaries obtained from the UM0

 and UM1
 gates as elementary gates in our complexity evaluation. �is 

is possible if we use an optical platform for quantum computation involving beamsplitters33,35. To implement the 
algorithm on a conventional quantum platform such as the IBM simulator and devices, we further decompose the 
2-level unitaries into elementary 1-qubit and 2-qubit gates. �e constructed circuits require 2 qubits and on aver-
age 13 elementary gates for the basic U viMk

 evolution and 30 elementary gates for the basis transformation 

( )T

I
U v

0

0
iMk

. An example of the circuit for U vM 10
 is shown in Fig. 4, and a full list of the circuits can be found in 

the SI.
We implement these circuits on both the simulator and the quantum devices and show the results as the 

crosses (simulator) and dots (device) in Figs. 1 and 2. To obtain 
∼
O  we construct a circuit of 3 qubits with an 

average of 182 elementary gates for the †U U viL Mk
 operation (see the SI). �e increase in the number of gates is due 

to the increased size of the †UL  and UMk
 matrices and the associated 2-level unitaries. As mentioned earlier the 

decomposition of 2-level unitaries into 1-qubit and 2-qubit elementary gates scales as O(log2 n). �e large number 
of gates for this circuit prevents us from running it on the quantum device so that only the simulator results are 
shown as the crosses in Fig. 3. On the other hand the 2-level unitaries can be more easily implemented with a 

Figure 3. Showing the expectation values O . �e smooth line is obtained by classical numerical calculations 
of the output vectors. �is agrees exactly with analytic results and is used as a benchmark. �e crosses are 
obtained by the IBM Qiskit simulator. �e quantum circuits include 3 qubits and on average 184 elementary 
gates (see the SI for the circuits). Due to the large number of gates required the quantum device is not used for 
these results.

Figure 2. Showing the populations of the +  and −  states for the amplitude damping model. �e smooth 
lines are obtained by classical numerical calculations of the output vectors. �ese agree exactly with analytic 
results and are used as benchmarks. �e crosses are obtained by the IBM Qiskit simulator. �e dots are obtained 
by the IBM Q 5 Tenerife device. �e quantum circuits include 2 qubits and on average 30 elementary gates (see 
the SI for the circuits).
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multiport photonic device as demonstrated in refs. 35,36. We will seek to demonstrate our methods on such a pre-
ferred device in a future study.

In Figs. 1, 2 and 3, the numerical results (smooth lines) agree exactly with analytic results and are used as 
benchmarks for the simulator and device results. �e simulator results (crosses) �t the benchmark well while 
including the probabilistic error from the projection measurements. �e quantum device results (dots) �t the 
benchmark reasonably well considering all experimental errors from gate fault, qubit decoherence, and measure-
ment. �ese results demonstrate the ability of the proposed algorithm to simulate the time evolution of a density 
matrix and evaluate physical observables from the outputs.

Discussion
In this work we have presented a quantum algorithm for evolving the density matrix ρ ρ= ∑

†t M M( ) k k k and 
extracting physical information from the output. The method takes each physical composition φi  of 
ρ φ φ= ∑ pi i i i  as the input and evolves it through minimal Sz.-Nagy dilations of the Kraus operators Mk. �e 
input vector has the base length n (plus additional zeros matching the dimension of the evolution matrices) and 
various realizations of the time evolution have the quantum gate count of O(n2) for each k and i, which is a signif-
icant improvement over the O(n6) scaling of the conventional Stinespring dilation. In cases when Mk involves a 
reduced number of quantum states in the system (Mk is sparse) the complexity scaling can become O(log2 n), or 
polynomial in the number of qubits. The requirement of knowing the initial physical composition as a 
probability-weighted mixture of not necessarily orthogonal φi ’s should be easy to satisfy from system prepara-
tion. If indeed the initial physical composition is unknown and we have to work with the most general matrix 
form of the density matrix, then we can either perform the eigen-decomposition on ρ to obtain the form in  
Eq. (4) or use a modi�ed quantum algorithm. As details shown in the SI, the modi�ed method uses the �attened 
vector of the initial density matrix as the input and requires O(n3) gates per Kraus operator for various realizations 
of the time evolution. Both methods can be easily generalized to other open quantum dynamical models because 
the procedures involved are essentially the same – only the Kraus operators Mk’s for the operator sum representa-
tion are di�erent for di�erent models. �e generality of our methods–in the sense of not requiring particular 
dynamical models or costly decompositions of the density matrix and the quantum channel–opens up the possi-
bility of simulating more interesting systems such as decohering qubits or excitonic structures interacting with 
multiple baths38,39 – the latter helps to understand natural light harvesting complexes and exploit quantum coher-
ence e�ect to improve light harvesting e�ciency in arti�cial photocells38,40. Finally we have demonstrated the 
implementation of the algorithm on the IBM Qiskit simulator and the IBM Q 5 Tenerife device. Although the gate 
complexity is larger than calculated with the preferred optical setup, the results show reasonable agreements with 
the analytic benchmarks considering gate fault, qubit decoherence, and measurement error. In future studies we 
will seek to demonstrate our quantum algorithms on the preferred photonic devices that can implement 2-level 
unitaries as elementary gates.

Methods
�eoretical derivations and numerical details essential to the study are presented in the Results section. More 
details can be found in the Supplementary Information. For the parameters and con�gurations of the IBM simu-
lator and quantum machine, please go to IBM Quantum Experience at http://www.research.ibm.com/quantum.
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