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Abstract

The Bishop-Gromov bound—a cousin of the focusing lemmas that Hawking and Pen-

rose used to prove their black hole singularity theorems—is a differential geometry result

that upperbounds the rate of growth of volume of geodesic balls in terms of the Ricci

curvature. In this paper, I apply the Bishop-Gromov bound to Nielsen’s complexity ge-

ometry to prove lowerbounds on the quantum complexity of a typical unitary. For a broad

class of penalty schedules, the typical complexity is shown to be exponentially large in

the number of qubits. This technique gives results that are tighter than all known lower-

bounds in the literature, as well as establishing lowerbounds for a much broader class of

complexity geometry metrics than has hitherto been bounded. For some metrics, I prove

these lowerbounds are tight. This method realizes the original vision of Nielsen, which

was to apply the tools of differential geometry to study quantum complexity.
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1 Introduction

Geometric ideas were introduced into the study of quantum complexity by Nielsen and col-

laborators [1–5]. Their vision was that by considering a definition of complexity that replaces

quantum gates with a smooth path through unitary space, the tools of differential geometry

might be brought to bear on proving complexity lowerbounds. So far this vision has not been

realized. In this paper, I will use a theorem from differential geometry—the Bishop-Gromov

bound [6, 7]—to prove a complexity lowerbound for the complexity geometry. I address the

following basic question:

Question: For the complexity geometry on N qubits, does the complexity of a typical

operator grow exponentially with N?

For one particular complexity geometry—what below we will call the ‘cliff’ metric—this question

has already been answered in the affirmative by Nielsen, Dowling, Gu, and Doherty [2], using a

non-geometric technique that leverages prior results from gate complexity. In this paper I will

use a tool from differential geometry to rederive this result in a way that makes no mention

of gates, ε-balls, or error budgets, and improves the exponent. I will argue that my improved

lowerbound is tight. Next, I will apply this technique to many different complexity geometries,

and show that for a broad class of metrics, many much less complex than the cliff metric, the

complexity of a typical unitary is still exponential in N .

1.1 Review of gate complexity and complexity geometry

The complexity of a transformation quantifies how hard it is to implement. The group of

transformations we will be interested in implementing is U(2N), the purity-preserving linear

functions on N qubits. Let’s consider two different sets of primitive operations we might use

to build elements of this group, which will yield two different definitions of complexity.

Gate Complexity. For gate complexity, we compile complex unitaries by arranging gates in

a circuit. Usually the primitive gates may only act on a small number—often two—qubits at a

time. There may either be a discrete set of primitive gates (e.g. CNOT plus Hadamard plus a

random phase are known to be universal [8]) or a continuous set (for example we may permit

any transformation U(22) on the two qubits). The value of the complexity is then the number

of primitive gates required to build the target unitary.

We are interested in the number of gates required to synthesize typical elements of U(2N).

For a discrete gate set, we must introduce a tolerance ε if we aspire to reach every element,

whereas for a continuous gate set we can hit every element exactly. Either way, we can derive

an exponential lowerbound just by counting. For discrete gates, we count the number of ε-balls
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in U(2N), namely eO(log[ε−1]4N ), and then count the number of different circuits with C gates,

eO(C log[N ]); for continuous gate sets we count the number of degrees of freedom in U(2N), namely

4N , and then count the dimensionality of the space of gates, O(1); in both cases therefore we

cannot hope to have fully explored the majority of the unitary group until

Cgates[U(2N)] ∼> 4N . (1.1)

For many sets of primitive gates (including the continuous two-qubit gate set U(22)) we can,

with a little more work, prove that this complexity lowerbound is approximately tight. For gate

complexity the question of the complexity of a typical unitary thus has a simple and settled

answer. Not so for complexity geometry.

Complexity Geometry. Complexity geometry introduce a new metric on the unitary group

that stretches directions that are hard to move in, so that complex unitaries are pushed farther

away [1–5]. The complexity of a unitary may then be defined as the length of the shortest path

connecting U to the identity. We thus compile a complex unitary by gliding through U(2N) on

a continuous path, guided by a (possibly time-dependent) Hamiltonian.

A complete basis for the Hamiltonians in the tangent space of U(2N) is given by the

generalized-Pauli operators. A k-local generalized-Pauli σI is the product of k single-qubit

Pauli operators and N − k identity operators that act on the other qubits. For example

(σx)1 ⊗ 12 ⊗ (σy)3 ⊗ (σy)4 ⊗ 15 ⊗ . . . ⊗ 1N is a 3-local generalized Pauli, where the numer-

ical subscript indicates which qubit the operator acts on. There are

Nk ≡
(
N

k

)
3k (1.2)

different k-local (‘weight k’) generalized Pauli’s, for a total of
∑N

k=0

(
N
k

)
3k = 4N . Nk is peaked

at k = 3
4
. In this basis, the complexity distance between U and U + dU is then defined by [1]

ds2 =
∑
IJ

Tr[i dU U †σI ]IIJTr[i dU U †σJ ] . (1.3)

(See also Sec. 1 of [9] for a pedagogical introduction, and [10] for other recent work.) Here IIJ
is a positive-definite matrix. Were IIJ the identity matrix, IIJ = δIJ , this would recover the

standard ‘bi-invariant’ inner-product metric on U(2N); in the inner-product metric the distance

s between two unitaries is given by cos s = |Tr[U1U
†
2 ]|, where we have normalized the trace so

that the maximum separation (the ‘diameter’) is π. In the inner-product metric, it is equally

‘easy’ to move in any direction. In the complexity geometry, we change IIJ so that while it

may still be inexpensive to move in some directions (e.g. in the directions of Hamiltonians that
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act nontrivially on only two qubits), other directions may be assigned a large ‘penalty factor’

IIJ to reflect that moving in highly non-local directions is hard. The IIJs we will consider in

this paper will be diagonal in the generalized-Pauli basis, and will have a diagonal value that

depends only on the k-locality, so that the metric is fully specified by the ‘penalty schedule’ Ik
that assigns a penalty factor to each value of k ≤ N . The infinitesimal distance in off-diagonal

directions is then determined by Pythagoras’ theorem, since Eq. 1.3 has an L2 norm. Finally,

notice that the metric Eq. 1.3 is ‘right-invariant’, which means the distance from 1 to U is the

same as the distance from UR to UUR, as a consequence of which the complexity geometry is

homogeneous.

We want to know the complexity of a typical operator, as a function of N and the penalty

schedule Ik. Unlike for gate complexity, we cannot just count. We can’t count points because

the number of points reachable by even an arbitrarily short path is uncountable. And we can’t

even count dimensions, since there is no restriction on how often the path may change direction,

so the dimensionality of the space of even arbitrarily short paths is infinity. To lowerbound

the complexity of a typical unitary, we cannot use counting. Instead we must measure volume.

But first let’s note some useful lemmas.

The first useful lemma is that the gate complexity upperbounds the Nielsen complexity. This

is because the complexity geometry definition is more permissive than the gate definition. For

example, any k-qubit gate can be implemented by evolving with an at-most-k-local Hamiltonian

for an inner-product distance at most π. So even if we make a more permissive definition of

gate complexity that allows us to deploy any U(2k) k-qubit gate at a cost of
√Ik per gate, the

gate complexity upperbounds the geometric complexity

Cgeom.,Ik [U ] ≤ π Cgates,Ik [U ] . (1.4)

The second useful lemma relates distances in two different complexity geometries. The more

expensive penalty schedule must have concomitantly longer distances, so

∀k, Ik ≥ Īk → Cgeom,Ik [U ] ≥ Cgeom,Īk [U ] . (1.5)

As a special case, increasing every Ik in a penalty schedule to be equal to the maximum penalty

gives a rescaled version of the inner-product metric, and so upperbounds

Cgeom,Ik [U ] ≤ πmaxk
√
Ik . (1.6)
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1.2 The Bishop-Gromov bound

The volume of a geodesic ball of radius C in d-dimensional hyperbolic space is given by

volumeBG(C) where, for unit vectors ~X,

volumeBG(C) ≡ Ωd−1

∫ C
0

dτ

(√
d− 1

−min ~X [RµνXµXν ]
sinh

[√
−min ~X [RµνXµXν ]√

d− 1
τ

])d−1

.

(1.7)

Since hyperbolic space is isotropic, the ‘min’ here is redundant as the Ricci curvature is the same

in all directions (and so RµνX
µXν is independent of ~X). But the Bishop-Gromov theorem [6,7]

says that this same expression upperbounds the volume of geodesic balls in any d-dimensional

homogeneous space, even when it’s not isotropic

BG theorem: volumeball(C) ≤ volumeBG(C) . (1.8)

Though calculating the exact volume of the geodesic ball is hard, the BG theorem gives a simple

upperbound in terms of a single local geometric quantity.

(For mathematicians, the Bishop-Gromov bound is a venerable ‘comparison theorem’ of

differential geometry that needs no introduction, but physicists may find it helpful to think of

it as arising from the d+ 0-dimensional Raychaudhuri equation [11]

θ′ +
1

d− 1
θ2 − ω2 = −σ2 −RµνX

µXν , (1.9)

where if you don’t know what those letters mean1 please don’t read this paragraph. The 3 + 1

version of this focussing equation was most famously deployed by Penrose and Hawking [12],

who assured a non-negative RµνX
µXν by applying Einstein’s equations and then imposing the

Weak Energy Condition, and then used the negativity of the right-hand side to upperbound the

expansion of lightsheets and show that ‘trapped surfaces’ inevitably hit black hole singularities.

To derive the BG bound, one lowerbounds RµνX
µXν by assumption, puts ω = 0 since a

geodesic ball has zero angular momentum, and then ignores the shear σ since it can only make

the ball grow slower. Integrating along geodesics leaving the origin then yields Eq. 1.8.)

1.3 Proof strategy overview

Our proof strategy is, schematically,

bound curvature below → bound volumeball(C) above → bound complexity below, (1.10)

1Or if they’re all Greek to you.
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as we will now explain. The complexity metric has an infinite number of points but only a

finite (though generally double-exponentially large) volume,

volumeIk(U(2N)) =

∫ √
|g| = ωd

√∏
k≤N

(Ik)(
N
k)3k . (1.11)

Here ωd is the volume of the unit d = 4N -dimensional unitary group U(2N) with the inner-

product metric, Ik = 1. Since the complexity of an operator is defined as its geometric distance

from the identity, the volume of unitaries with complexity less than C is simply the volume of

the geodesic ball with radius C. We cannot hope to be able to synthesize the median unitary

until this geodesic ball has engulfed (half of) the space

volumeball(Ctypical) =
1

2
volumeIk(U(2N)) . (1.12)

Combining Eqs. 1.8, 1.11, and 1.12, we will lowerbound Ctypical using

volumeBG(Ctypical) ≥ volumeball(Ctypical) =
1

2
ωd

√∏
k≤N

(Ik)(
N
k)3k . (1.13)

1.4 The Ricci curvature

To evaluate the Bishop-Gromov bound, we must calculate the most negative component of

the Ricci curvature. The curvature of right-invariant metrics was investigated by Milnor [13]

(note mathematicians use the mirror convention and call them ‘left-invariant’). As recounted

in Appendix A, the Ricci curvature is diagonal in the generalized Pauli basis and given by

R σI
σI

=
∑
σJ

(Tr([σI , σJ ]2))2

4

I2
σI
− (I[σI ,σJ ] − IσJ )2

4IσIIσJI[σI ,σJ ]

. (1.14)

Define #overlapsame as the number of qubits to which σI and σJ assign the same SU(2) Pauli

(σx, σy or σz) and #overlapdiff. as the number of qubits to which they both assign a Pauli

(i.e. not 1) but the Pauli’s are different. Then 1
4
Tr([σI , σJ ]2) will be 1 if #overlapdiff. is odd and

0 otherwise. When the commutator is nonzero it is another generalized Pauli with weight

weight([σI , σJ ]) = weight(σI) + weight(σJ)−#overlapdiff. − 2#overlapsame . (1.15)

These formulae, plus some combinatorics, are sufficient to calculate the Ricci curvature for

every direction and every penalty schedule.
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1.5 Approximations

The Bishop-Gromov technique can give a precise lowerbound, but in this paper we will extract

only the exponential behavior in N . This will allow us to make a number of simplifications.

First, since we are interested in a lowerbound, we will drop the positive term in Eq. 1.14.

Since 1
2
[σI , (

1
2
[σI , σJ ])] = σJ we can reorder the sum to write

R σI
σI
≥ −2

∑
σJ with

w(σJ )<w([σI ,σJ ])

(Tr([σI , σJ ]2))2

4

(I[σI ,σJ ] − IσJ )2

4IσIIσJI[σI ,σJ ]

. (1.16)

Second, to make the double-exponentially large terms more manageable, we can take the

4Nth root of Eq. 1.13, which to good approximation becomes

(Ω4N )
1

4N L sinh

[Ctypical

L

]
≥
(1

2

) 1

4N

(ω4N )
1

4N

√
Iav. (1.17)

where L2 ≡ 4N

−min ~X [RµνXµXν ]
and Iav. is the geometric mean of the penalty factors. The (1

2
)

1

4N

term is very close to one and can be dropped: in this high-dimensional negatively curved space,

geodesic balls grow so rapidly that the bounds we can place on the typical complexity are very

close to the bounds we can place on the worst-case complexity (the ‘diameter’), and henceforth

we’ll elide the two. We can also neglect the difference between the volume of the unit unitary

ω4N and the volume of the unit sphere Ω4N , since the ratio is the trifling
( ω

4N

Ω
4N

) 1

4N ∼ 3
4
. Eq. 1.17

then implies

Ctypical ∼> min
[√
Iav. , L

]
≡ min

[√
Iav. ,

√
4N

−min ~X [RµνXµXν ]

]
. (1.18)

.

2 Complexity Lowerbounds

2.1 The cliff metric

The first and simplest application of the Bishop-Gromov technique will be to a case already

considered by Nielsen, Dowling, Gu, and Doherty [2],

cliff schedule: I1 = I2 = 1 Ik≥3 = Icliff = q . (2.1)

To lowerbound the diameter, we must lowerbound the Ricci curvature. The terms in Eq. 1.16

can only be nonzero when weight(σJ) = 2 and weight([σI , σJ ]) > 2 . Since there are only
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N2 =
(
N
2

)
32 two-local generalized Pauli’s in total, the curvature is certainly lowerbounded by

R σI
σI
≥ −2

(
N

2

)
32 (q − 1)2

4qIσI
. (2.2)

This equation tells us the most negative components of the Ricci curvature are in the 2-local

directions. This is easy to understand: the sectional curvature is negative when two easy

directions commute to a hard direction, and indeed we see in this calculation that the only

negative contributions to the Ricci tensor are when a two-local direction (easy) commutes with

another two-local direction (easy) to make a three-local direction (hard). This gives2

min ~X [RµνX
µXν ] = R 2

2 ≥ −2

(
N

2

)
32 (q − 1)2

4q
∼ −q , (2.3)

where in the final term we have dropped all terms sub-exponential in N . On the other hand,

the geometric mean of the penalty factors Iav. is exponentially close to q. The Bishop-Gromov

bound Eq. 1.18 thus yields

Ctypical ∼> min
[√

q ,

√
4N

q

]
. (2.4)

(We use ‘∼>’ not ‘≥’ since we have neglected terms that are not exponential in N .) This is

equal to
√
q up to q = 2N , and then decreases again. Even though the lowerbound gets lower

for q > 2N , the complexity itself does not. Eq. 1.5 tells us that the complexity for q > 2N is

lowerbounded by the complexity for q = 2N , so Eq. 2.4 becomes

Ctypical ∼> min
[√

q , 2
N
2

]
. (2.5)

For exponentially large q this gives an exponentially large lowerbound.

The step from Eq. 2.4 to 2.5 was the first example of a trick we will use repeatedly in this paper:

even if a metric is too highly curved for the BG bound to have purchase, we may be able to

lowerbound the complexity by finding an easier (lower Ik) metric that is gently curved. Indeed,

we can immediately use this trick to improve Eq. 2.5. The negative curvature was driven by

two 2-local directions commuting to a 3-local direction, giving a sectional curvature − I3I 2
2

= −q.
If we made an easier metric with an intermediate step, I3 =

√
q , then the 2-2 sections (and 2-3

sections) would contribute only − I3I22 = − I4
I2I3 = −√q . Adding more such steps and optimizing

2Note that this approximate expression is consistent with the exact answer calculated by Dowling and Nielsen
in Appendix A of [4], namely R 2

2 = −24(N − 2)q + 8(6N − 11) +
(
1
24N − 8(3N − 5)

)
q−2.
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the staircase leads, as we will see in Eq. 2.21, to

Ctypical ∼> min
[√

q , 4
N
2

]
. (2.6)

We can combine this with the upperbounds given by Eqs. 1.4 and 1.6 to yield

min
[√

q , 2N
]
≤ Ctypical ≤ min[

√
q , 4N ] . (2.7)

For q < 4N we have fixed (the exponential part) of the complexity exactly: it’s
√
q .
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Imax = 4N

<latexit sha1_base64="M6YcJ19TdPd9DC1IlTS9pN9XXUY=">AAACAnicbVDLSsNAFJ3UV62vqks3g0VwVRIRdVnsxmUF+4AmlMl00g6dZMLMjVhCdm78FTcibhT8AH/Bv3HSZtPWAwOHc85w77l+LLgG2/61SmvrG5tb5e3Kzu7e/kH18KijZaIoa1MppOr5RDPBI9YGDoL1YsVI6AvW9SfN3O8+MqW5jB5gGjMvJKOIB5wSMNKgWnOFHPXdkMCYEpE2s4EL7AlUmJq0SYnMwyZl1+0Z8CpxClJDBVqD6o87lDQJWQRUEK37jh2DlxIFnAqWVdxEs5jQCRmxdFYhw2dGGuJAKvMiwDN1IUdCraehb5L5rnrZy8X/vH4CwY2X8ihOgEV0PihIBAaJ83vgIVeMgpgaQqjiZkNMx0QRCuZqFVPdWS66SjoXdeeqfnl/WWvcFkcooxN0is6Rg65RA92hFmojil7QG/pEX9az9Wq9Wx/zaMkq/hyjBVjff3vZl/E=</latexit>

log[Ctypical]

Figure 1: The (exponential part of the) diameter of the cliff metric for N qubits with I1 = I2 = 1, Ik≥ 3 = Imax,
given by Eq. 2.7. For Imax < 4N the (exponential part of the) diameter is exactly

√Imax , for Imax > 4N we
can bound the diameter above and below: the diameter is somewhere in the shaded region. In Sec. 3 we will
conjecture that the correct answer is given by the blue line and the Bishop-Gromov lowerbound is tight.

2.2 The delayed-cliff metric

The delayed-cliff schedule is cheap for all ks up to some K < 3
4
N ,

delayed-cliff schedule: Ik≤K = 1 Ik>K = Icliff = q . (2.8)

The only non-zero contributions to the sum Eq. 1.16 will be when w(σJ) ≤ K < w([σI , σJ ]).

This means there cannot be more terms in the sum than there are σJs with weight less than

K, so a crude lowerbound on the Ricci curvature is that

min ~X [RµνX
µXν ] > −

(
K∑
k=0

Nk
)

(q − 1)2

q
∼ −NK q . (2.9)
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So long as K
N
< 3

4
, then to excellent approximation Iav. = q, and an (unoptimized) complexity

lowerbound is given by combining Eqs. 1.18 and 2.9,

Ctypical ∼> min
[√

q ,

√
4N

NK q
]
→ Ctypical ∼> min

[√
q ,

2
N
2

(NK)
1
4

]
. (2.10)

This equation would still hold for a ‘symmetric delayed-cliff schedule’ that also makes cheap

the NK directions with the largest values of k. This implies

If all directions are cheap Ik = 1 except those with
3

4
− ε < k

N
<

3

4
+ ε are exponentially

expensive, then for all ε > 0 the typical unitary will be exponentially complex. (2.11)

The point is that the number of generalized Pauli’s, Nk ≡
(
N
k

)
3k, is so sharply peaked at k = 3

4
N

(thanks to the central limit theorem) that even though the range 0.749N < k < 0.751N contains

only a small fraction of the values of k, it contains almost all the generalized Pauli’s.

2.3 Pick ‘N ’ Mix

Consider a ‘randomized’ version of the delayed cliff metric, in which we pick any N of the

generalized Pauli’s to be easy I = 1, and all others to be hard. Nothing about the argument

that lead to Eq. 2.10 relied on the easy directions sharing a particular k-locality, and so the

same bound still applies3. So long as 4N/N is still exponentially large, and so long as the hard

directions are exponentially expensive, the typical complexity will still be exponential in N .

2.4 The exponential metric

The exponential schedule (discussed in [14,15]) is defined by

exponential schedule: Ik = x2k . (2.12)

We know immediately that for all x > 1 the complexity of a typical unitary will be exponential

in N . This follows from the fact that the exponential schedule clearly upperbounds a delayed

cliff schedule with exponentially large q (e.g. K = 1
2
N & q = xN).

Let’s strive for a tighter bound. Unfortunately the exponential metric is too highly curved for

a direct application of the Bishop-Gromov bound to be useful. Instead, we will first lowerbound

3Though I expect the optimized bound for the delayed cliff is slightly tighter than the optimized bound for
a random assortment with the same number of cheap directions, because if you respect k-locality you get fewer
distinct commutators than you do for random assortments, since N2k < N 2

k . This is what k-locality ‘buys’ you.
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the complexity of the (strictly easier) ‘truncated exponential schedule’,

truncated exponential schedule: Ik = min
[
x2k, x2k̄

]
, (2.13)

and then use Eq. 1.5. The most negative contribution to the Ricci curvature comes when

w(σI) = 2, w(σJ) = k̄ − 1, and w([σI , σJ ]) = k̄ giving

min ~X [RµνX
µXν ] = R 2

2 ∼> −Nk̄−1

Ik̄
Ik̄−1I2

∼ −Nk̄ . (2.14)

Since Nk is sharply peaked around k = 3
4
N , to excellent approximation Iav. = x2k̄, and Eq. 1.18

gives

Ctypical ∼> min
[
xk̄,

√
4N

Nk̄

]
. (2.15)

Optimizing this expression over k̄ gives Nk̄ x2k̄ = 4N and so

Ctypical ∼> xk̄ where Nk̄ x2k̄ = 4N . (2.16)

For example, for x = 4 this evaluates to Ctypical ≥ 4(0.349...)N .

2.5 The binomial schedule

Next let’s consider a penalty schedule for which the k-local penalty factor is given by (a power

of) the number of k-local directions,

binomial schedule: Ik = (Nk)α ≡
((

N

k

)
3k
)α

. (2.17)

We know immediately that for all α > 0 the complexity of a typical unitary will be exponential

in N . This follows from the fact that the binomial schedule clearly upperbounds a ‘symmetric

delayed cliff’ schedule with exponentially large q. To get a tighter lowerbound, we should

consider the ‘truncated binomial schedule’

truncated binomial schedule: Ik = min
[
(Nk)α, (Nk̄)α

]
, (2.18)

for some k̄. Using Eqs. 1.15 & 1.16, it is straightforward combinatorics to show that the most

negative components of the Ricci tensor are in two-local directions, and that the σJ that make

the largest contribution are those for which w(σJ) = k̄ − 1 and w([σI , σJ ]) = k̄, giving

min ~X [RµνX
µXν ] = R 2

2 ∼> −Nk̄−1

Ik̄
Ik̄−1I2

∼ −Nk̄ . (2.19)
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Since Nk is sharply peaked around k = 3
4
N , to excellent approximation Iav. = (Nk̄)α, and

Eq. 1.18 gives

Ctypical ∼> min
[√
N α
k̄
,

√
4N

Nk̄

]
. (2.20)

Optimizing this expression over k̄ gives N 1+α
k̄

= 4N and so

Ctypical ∼> 2
αN
1+α . (2.21)

Taking α large4 recovers the cliff schedule Eq. 2.1, except with sufficient tapering at small k to

improve the limit to that quoted in Eq. 2.6. (We could have reached the same conclusion by

taking x large in Eq. 2.16.)

3 Discussion

In this paper I used the Bishop-Gromov theorem to lowerbound the complexity of a typical

unitary in the complexity geometry, for a range of penalty schedules. We saw that the Bishop-

Gromov technique was able to prove a lowerbound of 4N/2 for the cliff schedule, as well as

lowerbounds for the other schedules that were also exponential in N . For the special case of

the cliff metric (and unlike for the other metrics), there was already an exponential lowerbound

known due to the work of Nielsen, Dowling, Gu, and Doherty [2], namely 4N/3. Both methods

are non-constructive, in the sense that even though both assure you that almost all unitaries

are highly complex, neither presents you with a certified hard unitary. However my method

is non-constructive even given an oracle for gate complexity, whereas Ref. [2] proved that if a

unitary is exponentially hard to approximate in gate complexity, it is also exponentially hard

to reach in the cliff metric.

One of the other metrics for which we were able to prove an exponential complexity lower-

bound was the ‘exponential’ metric, discussed in Sec. 2.4. This confirms part of a conjecture

made in [14]. Indeed, according to the strong form of the conjectures made in [15], all schedules

harder than the ‘critical schedule’ should have the same diameter. This paper has provided a

consistency check on these ideas by showing that there is a large class of schedules all of which

give exponential diameters.

As well as bounding how complex typical unitaries are, the Bishop-Gromov theorem may also

be used to quantify how atypical are low-complexity unitaries. The Bishop-Gromov theorem

‘natively’ upperbounds the volume of unitaries with complexity less than a given value, but it

4Technically we must also multiply the Ik by N−α
2 to keep I2 = 1, though this factor is too puny to matter.
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can also be used to give a lowerbound, because of the theorem that [6, 7]

d

dC
volumeball.(C)
volumeBG(C) ≤ 0 . (3.1)

This inequality means that if the growth of the geodesic ball ever falls behind the Bishop-

Gromov pace, it can never catch up. Since we know that the geodesic ball must have engulfed

the whole space by the time the diameter is reached, and since we can upperbound the diameter

(see e.g. Eq. 2.7), this allows us to lowerbound the volume growth.

Let’s make a mathematical conjecture. In Fig. 1, we saw that for the cliff metric with q < 4N

the BG bound was able to determine (the exponential part of) the diameter exactly, whereas

for q > 4N there was a gap between the upperbound and the BG lowerbound. My conjecture

is that the Bishop-Gromov lowerbound is tight:

conjecture: the infinite-cliff metric (Ik≤2 = 1, Ik≥3 =∞) has diameter 2N . (3.2)

Let’s describe two pieces of circumstantial evidence in favor of this conjecture.

The first piece of evidence is that the BG bound cannot be tightened further. In Sec. 2.5,

we showed that by using a ‘staircase’ technique, we could enhance the BG lowerbound on the

complexity of the cliff metric from the naive 2
N
2 to the improved 2N . This is as good as it

gets: there isn’t an even better shape for the staircase that gives an even higher lowerbound.

Eq. 1.18 tells us that to get a lowerbound above 2N we’d need both min ~X [RµνX
µXν ] to be

exponentially small (or positive) and Imax > 4N . However, if I2 = 1 and Imax > 4N , then there

must exist k such that Ik > 4Ik−1. Eq. 1.16 tells us that this value of k will make at least an

O(1) negative contribution to R 2
2 . To turn this into a rigorous proof we’d need to confirm that

the positive terms in Eq. 1.14 cannot fully cancel these negative contributions, and thereby

give an upperbound on the most negative component of the Ricci curvature when there is a

sufficiently large ratio between I2 and Imax.

For the second piece of circumstantial evidence, consider a new definition of complexity I’ll

call zig-zagδ complexity. In zig-zagδ complexity you move in piecewise-linear segments. Within

each segment, you move with a fixed TrH2 ≤ 1 time-independent 2-local Hamiltonian, for an

inner-product distance δ. Then for the next segment you pick some new fixed 2-local Hamilto-

nian. The complexity of a path is defined as C = Sδ, where S is the number of segments. This

definition interpolates between the infinite-cliff complexity geometry when δ = 0, and a model

that is only somewhat more powerful than the gate definition when δ = π. To reach every

point, simple dimension-counting tells us we need S∼> 4N , so that we have enough ‘fine motor

skills’ to fill out the dimensionality of the neighbourhood of a point. But even for S = 4N , if δ
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is too small we don’t have enough ‘gross motor skills’ to reach every ε-ball. Consider starting

with a complexity geometry path, and ‘coarse-graining’ into a zig-zagδ path by divvying up the

path into segments of length δ and within each segment applying the time-average Hamiltonian.

This introduces a per-segment inner-product error of about δ2, for a total inner-product error of

Sδ2. This suggests that the critical values are S = 4N and δ = 2−N , and that the zig-zagδ diam-

eter of the unitary group is 4Nδ for δ > 2−N and 2N for δ < 2−N . Taking δ → 0 recovers Eq. 3.2.

Nielsen’s original vision was to use the tools of differential geometry to lowerbound the

complexity of the complexity geometry, and then use that to prove novel lowerbounds on gate

complexity. This paper has realized the first half of that vision. When we proved complexity

lowerbounds for the complexity geometry, we also via Eq. 1.4 implicitly proved lowerbounds for

gate complexity. But those lowerbounds were too weak to be novel. The problem is that the

gate definition of complexity is so much less permissive than the complexity geometry definition

that it is easier to directly prove limitations on gate complexity rather than to indirectly prove

limitations via the complexity geometry. The Bishop-Gromov bound has proven itself a powerful

tool for establishing complexity lowerbounds for the complexity geometry, but it seems we’re

going to need more powerful tools still to realize the totality of Nielsen’s vision.
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A The curvature of right-invariant metrics

Milnor [13] gives as his Lemma 1.1 that, defining αIJK ≡ IkTr[[σI , σJ ]σK ], the sectional curva-

ture is

κ(σI , σJ) =
1

4

∑
σK

2αIJK (−αIJK + αJKI + αKIJ)− (αIJK −αJKI +αKIJ)(αIJK +αJKI −αKIJ)

(A.1)

plus a term proportional to αKIIαKJJ that vanishes for U(2N) because the structure constants

are completely antisymmetric. Indeed, using the antisymmetry, as a matter of algebra this is

κ(σI , σJ) =
∑
σK

Tr[[σI , σJ ]σK ]2

4IσIIσJIσK
(
−3I2

σK
+ 2IσK (IσI + IσJ ) + (IσI − IσJ )2

)
. (A.2)
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The Ricci curvature is diagonal in the generalized Pauli basis, as proved in Appendix A.3. of

Ref. [4]. Along the diagonal, the Ricci curvature in a direction is the sum of the sectional

curvatures of all sections with a leg pointing down that direction

R σI
σI

∣∣∣
not summed

=
∑
σJ

R σJσI
σIσJ

∣∣∣
not summed over σI

=
∑
σJ

κ(σI , σJ). (A.3)

Plugging Eq. A.2 into A.3, and then symmetrizing over σJ & σK (allowed since they are both

inside the sum), and then using that Tr[[σI , σJ ]σK ] = Tr[[σI , σJ ]σK ]δ(σK)([σI ,σJ ]), gives Eq. 1.14.
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