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In recent years, the modeling interest has increased significantly from molecular level to

atomic and quantum levels. Computational chemistry plays a significant role in designing

computational models for the operation and simulation of systems ranging from atoms and

molecules to industrial processes. It is influenced by a tremendous increase in computing

power and the efficiency of algorithms. The representation of chemical reactions using

classical automata theory in thermodynamic terms had a great influence on computer

science. The study of chemical information processing with quantum computational

models is a natural goal. In this study, we have modeled chemical reactions using

two-way quantum finite automata, which are halted in linear time. Additionally, classical

pushdown automata can be designed for such chemical reactions with multiple stacks. It

has been proven that computational versatility can be increased by combining chemical

accept/reject signatures and quantum automata models.

Keywords: chemical reaction, two-way quantum finite automata, quantum finite automata, Belousov-Zhabotinsky

reaction, pushdown automata, quantum chemistry

1 INTRODUCTION

Recently, the connection between complex reactions and their thermodynamics has received
overwhelming response among research communities. Initially, in the 1970s, Conrad [1]
processed the information of molecular systems and stated that complex biochemical systems
cannot be analyzed in classical computers. Till now, artificial approaches use complex biomolecules
or logic gates–based reaction-diffusion systems to solve the problems [2–4]. Classical systems are not
robust and incapable to describe quantum systems. Some tasks that are impossible in classical
systems can be realized in quantum systems. Quantum computation is concerned with computer
technology based on the principles of quantum mechanics, which describes the behavior and nature
of matter and energy in quantum level [5]. Quantum computation demonstrates the computation
power and other properties of the computers based on the principles of quantum mechanics.

Models of finite automata are abstract computing devices, which play a crucial role to solve
computational problems in theoretical computer science. Classical automata theory is closely
associated with formal language theory, where automata are ranked from simplest to most
powerful depending on their language recognition power [6]. Classical automata theory has
been of significant importance due to its practical real-time applications in the development of
several fields. Therefore, it is the natural goal to study quantum variants of classical automata models,
which play an important role in quantum information processing.

The quantum automata theory has been developed using the principles of quantum mechanics
and classical automata. Quantum computational models make it possible to examine the resources
needed for computations. Soon after the brainstorm of Shor’s factorization quantum algorithm [7],
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the first models of quantum finite automata (QFAs) have been
introduced. Initially, Kondacs and Watrous [8], and Moore and
Crutchfield [9] proposed the concept of quantum automata
separately. Since then, a variety of quantum automata models
have been studied and demonstrated in various directions, such
as QFAs, Latvian QFA, 1.5-way QFA, two-way QFA (2QFA),
quantum sequential machine, quantum pushdown automata,
quantum Turing machine, quantum multicounter machines,
quantum queue automata [10], quantum multihead finite
automata, QFAs with classical states (2QCFA) [11, 12], state
succinctness of two-way probabilistic finite automata (2PFA),
QFA, 2QFA, and 2QCFA [13–15], interactive proof systems with
QFAs [16, 17], quantum finite state machines of matrix product
state [18], promise problems recognition by QFA [19–22],
quantum-omega automata [23] and semi-quantum two-way
finite automata [24–26], time complexity advantages of QFA
[27], nonuniform classes of polynomial size QFA [28, 29], QFA
and linear temporal logic relationship [30], and many more since
the past 2 decades [31–34]. These models are effective in
determining the boundaries of various computational features
and expressive power [35–37]. Quantum computers are more
powerful than Turing machines and even probabilistic Turing
machines. Thus, mathematical models of quantum computation
can be viewed as generalizations of its physical models.

Computational biochemistry has been a rapidly evolving
research area at the interface between biology, chemistry,
computer science, and mathematics. It helps us to apply
computational models to understand biochemical and
chemical processes and their properties. A combination of
chemistry and classical automata theory provides a
constructive means of refining the number of objects allowed
to understand the energetic cost of computation [38]. The
research has been consistently grown in the field of chemical
computing. There exist two ways to model complex chemical
reactions: abstract devices and formal models based on multiset
rewriting [39]. Complex chemical reaction networks carry out
chemical processes that mimic the workings of classical automata
models. Recently, Duenas-Diez and Perez-Mercader [38, 40] have
designed chemical finite automata for regular languages and
chemical automata with multiple stacks for context-free and
context-sensitive languages. Furthermore, the thermodynamic
interpretation of the acceptance/rejection of chemical
automata is given. It is useful to understand the energetic cost
of chemical computation. They have used the one-pot reactor
(mixed container), where chemical reactions and molecular
recognition takes place after several steps, without utilizing
any auxiliary geometrical aid.

In classical automata theory, it is known that two-way
deterministic finite automata (2DFA) can be designed for all
regular languages. It has also been investigated that 2PFA can be
designed for a nonregular language L � {anbn|n≥ 1} in an
exponential time [38, 40]. The research has consistently
evolved in the field of quantum computation and information
processing. In quantum automata theory, it has been proved that
2QFA can be designed for L with one-sided bounded error and
halted in linear time. Moreover, it has been demonstrated that
2QFA can be also designed for non–context-free language L �

{anbncn|n≥ 1} [8]. Hence, 2QFA is strictly more powerful than its
classical counterparts based on language recognition capability.

The field of chemistry and chemical computation plays a
significant role in the evolution of computational models to
mimic the behavior of systems at its atomic level. It is greatly
influenced by the computing power of quantum computers.
Motivated from the abovementioned facts, we have modeled
chemical reactions in the form of formal languages and
represented those using two-way QFAs. The main objective is
to examine how chemical reactions perform chemical sequence
identification equivalent to quantum automata models without
involving biochemistry or any auxiliary device. The crucial
advantage of this approach is that chemical reactions in the
form of accept/reject signatures can be processed in linear
time with one-sided bounded error (if the automata makes
error only in one direction, i.e., either on “no” instances or on
“yes” instances). This article is further designed as follows:
Subsection is devoted to prior work. In Section 2, some
preliminaries are given. The definition of two-way QFAs is
given in Section 3. In Section 4, the chemical reactions are
transcribed in formal languages and modeled using two-way
QFAs approach. Summary of work is given in Section 5.
Finally, Section 6 is the conclusion.

1.1 Prior Work
The field of chemical computation has rich and interesting
history. Various researchers have represented chemical
computation using the concept of logic gates–based reaction-
diffusion systems and artificial intelligence approaches. In early
1970s, Conrad [1] differentiated the information processing in
molecules using digital computation. Nearly a decade later,
Okamoto et al. [43] proposed the concept of a theoretical
chemical diode in cyclic enzyme systems. It has been proved
that it can be used to analyze the dynamic behavior of metabolic
switching events in biocomputer. In 1991, Hjelmfelt et al. [44]
designed neural networks and finite state machines using
chemical diodes. It has been found that the execution of a
universal Turing machine is possible using connecting
chemical diodes. Hjelmfelt et al. constructed clocked finite
state machines of binary adder, binary decoder, and stack
memory and showed that finite state machines can be
simulated by clocked neural networks.

In 1995, Tóth and Showalter [45] implemented AND and OR
logic gates using reaction-diffusion systems, where the signals are
programmed by chemical waves. It was the first empirical
realization of chemical logical gates. In 1997, Magnasco [46]
showed that logic gates can be constructed and executed in the
chemical kinetics of homogeneous solutions. It has been proved
that such constructions have computational power equivalent to
Turing machine. Adamatzky and Lacy Costello [47]
experimentally understood the Chemical XOR gate by
following the same approach of Toth and Showlter in 2002.
Further, Górecki et al. [48] constructed the chemical counters for
information processing in the excitable reaction-diffusion
systems.

It is one of the most promising new areas of research. Some
difficulties can be caused by connecting several gates together for
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advanced computation. Thus, recently, researchers started
focusing on native chemical computation, that is, without
reaction-diffusion systems. In 1994, Adleman [49] proposed
the concept of DNA computation and solved the Hamiltonian
path problem by changing DNA strands. In 2009, Benenson [2]
reviewed biological measurement tools for new-generation
biocomputers. Prohaska et al. [3] studied protein domain
using chromatin computation and introduced chromatin as a
powerful machine for chemical computation and information
processing. In 2012, Bryant [4] proved chromatin computer as
computationally universal by using it to solve an example of
combinatorial problem.

The structures of DNA and RNA are represented using the
concept of classical automata theory [50, 51]. Krasinski et al.
[52] represented the restricted enzyme in DNA with
pushdown automata in circular mode. Khrennikov and
Yurova [53] modeled the behavior of protein structures
using classical automata theory and investigated the
resemblance between the quantum systems and modeling
behavior of proteins. Bhatia and Kumar [54] modeled
ribonucleic acid (RNA) secondary structures using two-
way QFAs, which are halted in linear time. Duenas-Diez
and Perez-Mercader designed molecular machines for
chemical reactions. The native chemical computation has
been implemented beyond the scope of logic gates, that is,
with chemical automata [40]. It has been demonstrated that
chemical reactions transcribed in formal languages can be
recognized by Turing machine without using biochemistry
[38]. Recently, Bhatia and Zheng [55] modeled hairpin loop,
pseudoknot, and dumbbell RNA secondary structures using
2QCFA.

2 PRELIMINARIES

In this section, some preliminaries are given. We assume that the
reader is familiar with the classical automata theory and the
concept of quantum computation; otherwise, reader can refer to
the theory of automata [6], quantum information, and
computation [5, 56]. Linear algebra is inherited from quantum
mechanics to describe the field of quantum computation. It is a
crucial mathematical tool and allows us to represent the quantum
operations and quantum states by matrices and vectors,
respectively, that obey the rules of linear algebra. The
following are the notions of linear algebra used in quantum
computational theory:

• Vector space (V) [56]: A vector space (V) is defined over the
field F of complex numbers C consisting of a nonempty set
of vectors, satisfying the following operations:

• Addition: If two vectors |a〉 and |b〉 belong to V, then |a〉 +
|b〉 ∈ V .

• Multiplication by a scalar: If |a〉 belongs toV, then λ|a〉 ∈ V ,
where λ ∈ C.

• Dirac notation [5]: In quantum mechanics, the Dirac
notation is one of the most peculiarities of linear algebra.
The combination of vertical and angle bars (|〉 〈|) is used to

unfold quantum states. It provides an inner product of any
two vectors. The bra 〈b| and ket |a〉 represent the row vector
and column vector, respectively.

|a〉 � ⎡⎢⎢⎢⎢⎢⎣ α1

α2

α3

⎤⎥⎥⎥⎥⎥⎦, 〈b| � [ β*1 β*2 β*3 ], |a〉〈b| � ⎡⎢⎢⎢⎢⎢⎢⎣ α1β
*
1 α1β

*
2 α1β

*
3

α2β
*
1 α2β

*
2 α2β

*
3

α3β
*
1 α3β

*
2 α3β

*
3

⎤⎥⎥⎥⎥⎥⎥⎦
[1]

where β*i indicates the complex conjugate of complex number αi.

• Quantum bit [34]: A quantum bit (qubit) is a unit vector
defined over complex vector space C

2. In general, it is
represented as a superposition of two basis states labeled
|0〉 and |1〉.

∣∣∣∣ϕ〉 � α|0〉 + β|1〉 [2]

• The probability of state occurrence |0〉 is
∣∣∣∣α|2 and |1〉 is

∣∣∣∣β|2.
It satisfies that

∣∣∣∣α|2 + ∣∣∣∣β|2 � 1. The two complex amplitudes
(α and β) are represented by one qubit. Thus, 2n complex
amplitudes can be represented by n qubits.

• Quantum state [5]: A quantum state |ψ〉 is defined as a
superposition of classical states

∣∣∣∣ψ〉 � α1

∣∣∣∣w1〉 + α2

∣∣∣∣w2〉 + . . . + αn
∣∣∣∣wn〉 [3]

where αi s are complex amplitudes and |wi〉s are classical states for
1≤ i≤ n. Therefore, a quantum state |ψ〉 can be represented as
n-dimensional column vector.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α1
α2
. . .

αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [4]

• Unitary transformation: In quantum mechanics, the
transformation between the quantum systems must be
unitary. Consider a state |ψ〉 of quantum system at time
t: |ψ〉 � α1|w1〉 + α2|w2〉 + . . . + αn|wn〉 transformed into
state |ψ′〉 at time t’: |ψ′〉 � α1′|w1〉 + α2′|w2〉+ . . . + αn′|wn〉,
where complex amplitudes are associated by
|ψ′(t′)〉 � U(t′ − t)|ψ(t)〉, where U denotes a time reliant
unitary operator, which satisfies that (U(t′ − t))* U(t′ − t) �
1 and ∑ n

i�1|αi|2 � |α′
i|2 � 1 [5].

• Hilbert space: A physical system is described by a complex
vector space called Hilbert space H [56]. It allows us to
describe the basis of the quantum system. The direct sum∣∣∣∣x∣∣∣∣y〉 : H⊕H→C or inner product |x|v〉 : H⊗H→C of two
subspaces satisfies the following properties for any vectors:

• Linearity: (α〈x
∣∣∣∣ + β〈y

∣∣∣∣)∣∣∣∣z〉 � α
∣∣∣∣x∣∣∣∣z〉 + β

∣∣∣∣y∣∣∣∣z〉.
• Symmetric property:

∣∣∣∣x∣∣∣∣y〉 �
∣∣∣∣y∣∣∣∣x〉.

• Positivity: |x|x〉≥ 0 and |x|x〉 � 0 iff x � 0, where x ∈ H.
• where x, y, z ∈ H and α, β ∈ C.
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• Quantum finite automaton (QFA) [57]: It is defined as a
quintuple (Q, Σ, sint , Pacc,Uσ), where

• Q is a set of states,
• Σ is an input alphabet,
• Hilbert space H and sinit ∈ H is an initial vector such that∣∣∣∣sinit |2 � 1,
• Hacc ⊂ H and Pacc is an acceptance projection operator on
Hacc,

• Uσ denotes a unitary transition matrix for each input symbol
(σ ∈ Σ).

The computation procedure of QFA consists of an input string
w � σnσ2 . . . σn. The automaton works by reading each input
symbol, and their respective unitary matrices are applied on
the current state, starting with an initial state. The quantum
language accepted by QFA is represented as a function
fQFA(w) �

∣∣∣∣∣sinitUwPacc|2, where Uw � Uσ1Uσ2 . . .Uσn. The tape
head is allowed to move only in the right direction. Finally,
the probability of QFA in an acceptance state is observed: that is,
indicating whether the input string is accepted or rejected by
QFA. It is also called a real-time quantum finite automaton.

Based on the movement of tape head, QFA is classified as one-
way QFA, 1.5-way QFA, and 2QFA. In 1.5-way QFA, the tape head
is permitted to move only in the right direction or can be
stationary, but it cannot move toward the left direction. It has
been proved that it can be designed for non–context-free languages,
if the input tape is circular [58]. In this study, we focused on the
2QFAmodel due to the high computational power than its classical
counterparts.

3 TWO-WAYQUANTUM FINITE AUTOMATA

A quantum finite automaton (QFA) is a quantum variant of a
classical finite automaton. In QFA, quantum transitions are
applied by reading the input symbols from the tape [9]. Two-
way quantum finite automaton (2QFA) is a quantum counterpart
of a two-way deterministic finite automaton (2DFA). In 2QFA,
the tape head is allowed to move either in the left direction or
right direction or can be stationary. The illustration of 2DFA is
shown in Figure 1.

1. [9] A two-way quantum finite automaton is represented as
sextuple (Q, Σ, δ, q0,Qacc, Qrej), where

• Q is a finite set of states.

• Σ is an input alphabet.
• Transition function δ is defined by δ : Q × Γ × Q × D→C,

whereC is a complex number, Γ � Σ∪ {#, and D � {−1, 0,+1}
represent the left, stationary and right direction of tape head.

• Q � Qacc∪
 Qrej∪

 Qnon, where Qnon,Qacc, andQrej represent
the set of nonhalting, accepting, and rejecting states,
respectively. The transition function must satisfy the
following conditions:

• (i) Local probability and orthogonality condition:

∑∀(q1 ,σ1),(q2 ,σ2) ∈ Q×Γ

(q′ ,d) ∈ Q×D

δ(q1, σ, q′, d)δ(q2, σ, q′, d) � { 1 q1 � q2
0 q1 ≠ q2

}

(ii) First separability condition:

∑∀(q1 ,σ1),(q2 ,σ2) ∈ Q×Γ

q′ ∈ Q

δ(q1, σ1, q′,+1)δ(q2, σ2, q′, 0)
+ δ(q1, σ1, q′, 0)δ(q2, σ2, q′,−1)
� 0

(iii) Second separability condition:

∑∀(q1 ,σ1),(q2 ,σ2) ∈ Q×Γ

q′ ∈ Q

δ(q1, σ1, q′,+1)δ(q2, σ2, q′,−1) � 0

For each σ ∈ Γ, a 2QFA is said to be simplified, if there exists a
unitary linear operator Vσ on the inner product space such that
L2{Q}→ L2{Q}. The transition function is represented as

δ(q, σ, q′, d) � { q′Vσq
0

∣∣∣∣∣∣∣ if D(q′) � d
else

}, [5]

where q′Vσq is a coefficient of
∣∣∣∣q′〉 in Vσ

∣∣∣∣q〉.
Consider an input string w, written on the input tape enclosed

with both end markers such as #w. The computation of 2QFA is
as follows. The tape head is above the input symbol σ, and the
automaton is in any state q. Then, the state of 2QFA is changed to
q′ with an amplitude δ(q, σ, q′, d) and moves the tape head one
cell toward right, stationary, and left direction according to
∈ {−1, 0,+1}. It corresponds to a unitary evolution in the
innerproduct space Hn.

A computation of a 2QFA is a chain of superpositions
c0, c1, c2, . . . ., where c0 denotes an initial configuration. For
any ci, when the automaton is observed in a superposition
state with an amplitude αc, it has the form Uδ

∣∣∣∣ci〉∑c ∈ Cn
αc|ci〉,FIGURE 1 | Representation of two-way deterministic finite automata.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5473704

Bhatia and Zheng A Quantum Finite Automata for Modeling Chemical Reactions

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


where Cn represents the set of configurations. The probability
associated with a configuration is calculated by absolute squares
of amplitude. Superposition is said to be valid if the sum of the
squared moduli of their probability amplitudes is unitary. In
quantum theory, the time evolution is specified by unitary
transformations. Each transition function δ prompts a
transformation operator over the Hilbert spaceHn in linear time.

Uw
δ

∣∣∣∣∣∣∣∣∣∣∣∣q, j〉 � ∑
(q′ ,d) ∈ Q×D

δ(q,w(j), q′, d)
∣∣∣∣∣∣∣∣∣∣∣∣q′, j + d mod|w|〉

for each (q, j) ∈ C|w|, where q ∈ Q, j ∈ Z|w| and extended toHn by
linearity [9, 59].

4 MODELING OF CHEMICAL REACTIONS

Before we recognize the chemical reactions using two-way QFAs
model, it is important to show how computational chemistry
works. Figure 2 shows the illustration of language recognition by
the chemical computation model. It consists of three parts: i) a
mixed container where the computation process occurs, ii) an

input translator that translates the chemical aliquots into input
symbols and gives those consecutively depending upon the
processing time, iii) a system to monitor the response of an
automaton as a chemical criterion. Finally, the chemical
computation produces well-defined chemical accept/reject
signatures for the input. For instance, if the number of as and
bs are equal in the input, then the chemical computation
produces heat, that is, an input is said to be accepted.
Otherwise, if no heat is released at the end of computation,
then the input is said to be rejected by the system. The following
are the construction of two-way quantum finite state machines of
chemical reactions.

THEOREM 1. Two-way QFAs can recognize all regular
languages.

PROOF. The proof has been shown in Ref. 9.

4.1 Chemical Reaction-1 Consisting
Regular Language
For an illustrative and visual implementation, we can choose a
precipitation reaction in an aqueous medium such as

KIO3 + AgNO3→AgIO3(s) + KNO3 [6]

FIGURE 2 | Representation of language recognition by chemical computation. It is reproduced from [40] under the Creative Commons CCBY license.

FIGURE 3 | Illustration of acid/base reaction of L1.
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During computation, if a white precipitate of silver iodate is
observed, then the input string is said to be accepted; if the
solution is clear from precipitate, the string has been rejected
because there was no reaction. Therefore, we have chosen the
recipes of alphabet symbols a for potassium iodate (KIO3) and b
for silver nitrate (AgNO3) quantitatively. Figure 3 shows the
chemical representation of symbols a and b, the bimolecular
precipitation reaction [38]. If the precipitate AgIO3 is not
presented in the solution, then the computation is said to be
rejected. For example, the input string w � aaab is said to be
accepted due to the presence of precipitate or, equally, heat has
been determined during computation. But, the inputw � aa is said
to be rejected due to the absence of precipitate or, precisely, heat
has not been observed. The Kleene star (Σ*) operator is a set of
infinite strings of all lengths over input alphabet as well as empty
string (ϵ). The language “(a + b)*”means the string containing any
number of “a”s or “b”s in any order or empty string. The language
“(ab)*”means the string containing any number of “ab”s or string
of length zero. Figure 4 shows the corresponding theoretical 2QFA
state transition graph to recognize L1.

THEOREM 2. A language L1 � {(a + b)*a(a + b)*b(a + b)*aa*
bb*} representing precipitation reaction in Eq. 6 can be
recognized by 2QFA.

PROOF. The idea of this proof is as follows. The initial state q0
reads a right-end marker # and moves the head toward the right
direction. If there is no occurrence of symbol b, then it shows no
precipitate, and the input is said to be rejected by the 2QFA.
Similarly, on reading the symbol b, the state q0 is changed into q1.
If there is no occurrence of symbol a, then the state is transformed
into rejecting state qr1. If the input string w ∈ L1 contains at least
one a and one b, then silver iodate is present during computation,
and it is said to be recognized by 2QFA. A 2QFA for L1 is defined
as follows: M2QFA � (Q, Σ, q0,Qacc,Qrej, δ),

where Q � {q0, q1, q2, q3, q4, q5, q6, q7, qa1, qa2, qr1, qr2}, where
q0 and q2 are used to move the head toward the $ on reading
as and bs, respectively. The states q1 and q3 are used to confirm
that the last symbol read by head is a and b, respectively.

Σ � {a, b}, q0 is an initial state, Qacc � {qa1, qa2} and
Qrej � {qr1, qr2}.

The specification of transition functions are given in Table 1.
It can be noted that in 2QFA, transitionmatrices consist of 0 and 1,

i.e., basically a two-way reversible finite automata (2RFA). Therefore,
2QFA can be designed for all the languages accepted by 2RFA. In
transition matrix, each column and row have exactly only one entry 1.
Hence, the dot product of any two rows is equal to zero. It is known
that the language recognition power of 2RFA is an equivalent to 2DFA.

FIGURE 4 | State transition diagram of L1.

FIGURE 5 | Illustration of the acid/base reaction of L2.
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4.2 Chemical Reaction-2 Consisting
Context-Free Language
Next, we have considered the context-free language from
Chomsky hierarchy satisfying the balanced chemical reaction
between NaOH and malonic acid as follows:

H2C3H2O4 + 2NaOH→Na2C3H2O4 + 2H2O [7]

The language generated by the abovementioned chemical
reaction is L2 consisting Dyck language of all words with
balanced parentheses. Figure 5 shows the acid/base reaction of
L2. 2QFA is designed for L2 as follows:

THEOREM 3. A language L2 consisting of Dyck language of all
words with balanced parentheses can be recognized by 2QFA
with probability 1, otherwise rejected with probability at least
1 − 1

N
, where N is any positive number.

PROOF. The idea of this proof is as follows. It consists of three
phases. First, the initial state q0 reads a first symbol and both
heads start moving toward the right-end marker $. If the input
string starts with closed parentheses, then it is said to be
rejected. On reading the left-end marker #, the computation
is split into N paths, denoted by q1,0, q2,0, . . . , qN ,0. Each path
possesses equal amplitude 1��

N
√ . Along the N different paths, each

path moves deterministically to the right-end marker . Each
computational path keeps track of the open parentheses with
respect to the closed parentheses. At the end of computation, if
the excess of open parentheses is observed, then it is said to be
rejected. It means pH value is greater than midpoint pH, and
intermediate gray tone is observed. Secondly, if there is an excess
of closed parentheses, then the darkest gray tone is observed,
that is, pH value is less than midpoint pH. It is said to be rejected
by 2QFA with probability 1 − 1

N
. If there is a balanced occurrence

of open and closed parentheses, the input string is said to be
accepted with probability 1. Hence, pH value is equal to
midpoint pH, and the lightest gray tone is observed at the end
of computation. A 2QFA for L2 is defined as follows: M2QFA �
(Q, Σ, q0,Qacc,Qrej, δ),where Q � {q0, q1, q2, q3} ∪ {qi,j

∣∣∣∣∣1≤ i≤N ,

0≤ j≤max(i,N − i + 1)}∪ {pk
∣∣∣∣1≤ k ≤N}∪ {si,0,wi,0, ri,0

∣∣∣∣1≤ i≤N}

FIGURE 6 | State transition diagram of L2.

FIGURE 7 | Illustration of the acid/base reaction of L3.
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∪ {qacc, qrej}, where q1 is used to check whether the first symbol is
an open parentheses or not, and q2 and q3 are used to traverse the
input string. Figure 6 shows the state transition diagram for L2.

Σ � {(, )}, q0 is an initial state, Qacc � {pN} and Qrej � {qr}∪
 {pk

∣∣∣∣1≤ k<N}∪ {ri,0
∣∣∣∣1≤ i≤N}.

The specification of transition functions is given in Table 2.

4.3 Chemical Reaction-3 Consisting
Context-Sensitive Language
To implement a chemical 2QFA for context-sensitive language,
we have used Belousov-Zhabotinsky (BZ) reaction network for
the nonlinear oscillatory chemistry [38], which consists of

temporal oscillation in the sodium bromate and malonic acid
system [60] as Figure 7 shows the acid/base reaction of L3. Figure
8 shows the state transition diagram for L3.

3BrO3 − +5CH2(COOH)2 + 3H+
→ 3BrCH(COOH)2

+ 4CO2 + 2HCOOH + 5H2O [8]

In 2019, Duenas-Diez and Perez-Mercader [38] designed
chemical Turing machine for BZ reaction network. The chemical
reaction is fed sequentially to the reactor as
{(BrO−

3 )
n(MA)n(NaOH)n}, where n> 0. It is transcribed in

formal language as L3 � {anbncn|n> 0}. The symbol a is
interpreted as a fraction of sodium bromate, b is used for
malonic acid and symbol, c is transcribed as a quantity of NaOH.
It is known that L3 is a context-sensitive language and cannot be
recognized by finite automata or pushdown automata with a stack.
Although it can be recognized by two-stack PDA, we have shown
that L3 can be recognized by 2QFA without using any external aid.

THEOREM 4. A language L3 � {anbncn|n> 0} can be
recognized by 2QFA in linear time. For a language,
L3 � {anbncn|n> 0}, and for arbitrary N-computational
paths, there exists a 2QFA such that for w ∈ L3; it accepts
w with bounded error ϵ and rejects w ∉ L3 with probability at
least 1 − 1

N
.

FIGURE 8 | State transition diagram of L3.

TABLE 1 | Details of the transition functions and head function for L1.

V#
∣∣∣∣q0〉 �

∣∣∣∣q0〉 Va

∣∣∣∣q0〉 �
∣∣∣∣q0〉 Vb

∣∣∣∣q0〉 �
∣∣∣∣q1〉 V#

∣∣∣∣q1〉 �
∣∣∣∣q2〉

V Va

∣∣∣∣q1〉 �
∣∣∣∣q2〉 Vb

∣∣∣∣q1〉 �
∣∣∣∣q2〉 Vb

∣∣∣∣q2〉 �
∣∣∣∣q2〉

V Va

∣∣∣∣q7〉 �
∣∣∣∣q7〉 Va

∣∣∣∣q2〉 �
∣∣∣∣q3〉 Va

∣∣∣∣q3〉 �
∣∣∣∣q1〉

V Va

∣∣∣∣q4〉 �
∣∣∣∣q4〉 Vb

∣∣∣∣q3〉 �
∣∣∣∣q4〉 Vb

∣∣∣∣q4〉 �
∣∣∣∣q3〉

V#
∣∣∣∣q5〉 �

∣∣∣∣qr1〉 Va

∣∣∣∣q5〉 �
∣∣∣∣q6〉 Vb

∣∣∣∣q5〉 �
∣∣∣∣q5〉 Vb

∣∣∣∣q6〉 �
∣∣∣∣q6〉

V Va

∣∣∣∣q6〉 �
∣∣∣∣qa2〉

Head functions:

D(q0) � (+1),D(q1) � (−1),D(q2) � (+1),D(q3) � (−1),
D(q4) � (+1),D(q5) � (−1),D(q6) � (+1),D(q7) � (−1),

D(qa1) � D(qa2) � (0),D(qr1) � D(qr2) � (0)
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PROOF. The design of proof for BZ reaction network is as
follows. It consists of two phases. First, the 2QFA traverse the
input to check the form a+b+c+. On reading the right-end marker
$, the computation is split into N paths such that
w1,0,w2,0, . . . ,wN ,0. Second, the first path is used to check if
the number of bs and cs are equal or not. The second path is
used to check the initial part of an input string to identify if it is in
{anbn|n> 0}. On reading the right-end marker $, the both paths
are split into N different paths with an equal amplitude 1��

N
√ .

Finally, upon reading the right-end marker #, if the number of as
and bs and the number of bs and cs are equal in respective
computational paths, then all paths come into N-way quantum
Fourier transform (QFT) and either one acceptance state or
rejection states are observed. Suppose, if the input string is not in
the corrected form, then all computation paths read the # at different
times. Thus, their amplitudes do not cancel each other, and the input
string is said to be rejected with probability 1 − 1

N
. Otherwise, the

input string is said to be recognized by 2QFA with probability 1.

5 SUMMARY

In summary, 2QFA model can be efficiently designed for balanced
chemical reaction and BZ reaction network with one-sided error
bound, which are halted in linear time. Table 3 shows the language
recognition ability of different computational models. The classical
2DFA and 2PFA are known to be equal in computational power to
one-way deterministic finite automata (1DFA) [24, 61]. It has been
proved that 2PFAs can be designed for nonregular languages in
expected polynomial time. Additionally, it has been demonstrated

that the chemical PDA can be designed for aforementioned
chemical reactions with multiple stacks. The recognition of
languages by native chemical automata can be found in Refs.
39–41. But, we have shown that 2QFA can recognize such
chemical reactions without any external aid. It has been proved
that 2QFA ismore powerful than classical variants because it follows
the quantum superposition principle to be in more than one state at
a time on the input tape. For execution, it needs at least O(log n)
quantum states to store the position of tape head, where n denotes
the length of an input string.

6 CONCLUSION

The enhancement in many existing computational approaches
provides momentum to molecular and quantum simulations at
the electronic level. It helps to test new abstract approaches for
considering molecules and matter. Previous attempts to model
the aforementioned chemical reactions used finite automata and
pushdown automata with multiple stacks. In this study, we
focused on well-known languages of Chomsky hierarchy and
modeled those using two-way QFAs. The crucial advantage of the
quantum approach is that these chemical reactions transcribed in
formal languages can be parsed in linear time, without using any
external aid.We have shown that two-way quantum automata are
more superior to its classical variants by using quantum
transitions. To the best of our knowledge, no such modeling
of chemical reactions is performed using quantum automata
theory so far. For the future purpose, we will try to represent
complex chemical reactions in formal languages and model those
using other quantum computational models.
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TABLE 2 | Details of the transition functions and head function for L2.

V#|q0〉 � |q0〉,V(|q0〉 � |q0〉,V)|q0〉 � |q1〉,V#|q1〉 � |qr〉

V(|q1〉 � |q2〉,V)|q2〉 � |q2〉,V(|q2〉 � |q3〉,V)|q3〉 � |q0〉

V#|q2〉 � 1��
N

√ ∑  N
i�1|qi,0〉

V(|qi,0〉 � |qi,i〉,V)|qi,0〉 � |qi,N−i+1〉, for 1≤ i ≤N,V(|qi,j〉 � |qi,j−1〉, for 1≤ j ≤ i

V)|qi,j〉 � |qi,j−1〉, for 1≤ j ≤N − i + 1, 1≤ i ≤N

V$|qi,0〉 � |si,0〉,V)|si,0〉 � |wi,0〉,V(|si,0〉 � |ri,0〉, for 1≤ i ≤N

V$|wi,0〉 � 1��
N

√ ∑ N
k�1exp(2πi

N
ki)∣∣∣∣∣∣∣pk〉, for 1≤ i ≤N

Head functions:

D(q0) � (+1),D(q1) � (−1),D(q2) � (+1),D(q3) � (−1),D(qi,0) � (+1), for 1≤ i ≤N

D(qi,j) � (0), for 1≤ i ≤N, j ≠ 0,D(qr) � (0),D(pk) � (0), for 1≤ k ≤N
D(si,0) � (−1),D(wi,0) � (+1),D(ri,0) � (0), for 1≤ i ≤N

TABLE 3 | Comparison of computational power of models.

Languages Class 2DFA/

2PFA

Chemical

FA/PDA

2QFA

L1 � {(a + b)*a(a + b)*b(a + b)*aa*bb*} RL ✓ ✓ ✓

A language L2 consisting Dyck language of

balanced parentheses

CFL 7 ✓ (with 1-

stack PDA)

✓

L3 � {anbncn|n>0} CSL 7 ✓ (with 2-

stack PDA)

✓

RL, CFL, and CSL stand for regular languages, context-free languages, and context-

sensitive languages, respectively.
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